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1 Introduction

Let Ω ⊂ IRn(n ≥ 2) be an open, bounded, connected set having a boundary Γ of class

C2. We are concerned with the following initial boundary value problem

utt − divA(x)∇u+ ρ(ut) = 0, in Ω× (0,+∞)

u = 0, on Γ0 × (0,+∞)

−ut = f(x)zt + k(x)z, on Γ1 × (0,+∞)
∂u
∂νA

+ F = h(x)zt, on Γ1 × (0,+∞)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω

z(x, 0) = z0(x), x ∈ Γ1,

(1.1)

where A(x) be a symmetric and positive matrix for each x ∈ Rn with smooth elements

aij(x), i, j = 1, 2, · · · , n, ∂u
∂νA

=
n∑

i,j=1
aij

∂u
∂xj

νi, ν = (ν1, ν2, · · · , νn) is the unit normal of Γ

pointing toward the exterior of Ω, (Γ0,Γ1) is a partition of Γ; F is the feedback function

which may depend on the state (u, ut), position x and time t; ρ, f, k and h are given

functions.

Let IRn have the usual topology and x = (x1, x2, · · · , xn) be the natural coordinate

system in IRn. We define

g = A−1(x) for x ∈ IRn,

as a Riemannian metric on IRn and consider the couple (IRn, g) as a Riemannian manifold.

Denote by 〈·, ·〉 the Euclidean product of IRn. Denote by g = 〈·, ·〉g the inner product and

by D the covariant differential of the metric g, respectively. Then

〈X,Y 〉g = 〈A−1(x)X,Y 〉 for X,Y ∈ IRnx , x ∈ IRn,

and the covariant differential DH of a vector field H is a tensor field of rank 2, defined by

DH(X,Y ) = g(DYH,X), for X,Y ∈ IRn
x, x ∈ IRn.

Let H be a vector field on Riemannian manifold (IRn, g) such that

DH(X,X) ≥ α|X|2g, ∀X ∈ IRnx , x ∈ Ω, (1.2)

for some constant α > 0, where | · |g is the norm of IRnx .

Remark 1.1 About the existence of vector field H, see [36, 37] for details and exam-

ples. In particular, if aij = δij, then we can choose H = x − x0 for fixed x0 ∈ IRn and

α = 1.

We consider a partition (Γ0,Γ1) of the boundary Γ such that

Γ0 6= ∅; (1.3)
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H · ν ≤ 0 for x ∈ Γ0; (1.4)

H · ν ≥ 0 for x ∈ Γ1. (1.5)

Furthermore, we assume

Γ0 ∩ Γ1 = ∅ or H · n ≤ 0 on Γ0 ∩ Γ1, (1.6)

where n denotes the unit normal vector pointing outward at Γ1 when considering Γ1 as a

sub-manifold of Γ.

Set

F = H · ν
(
µ0ut +

∫ t

0
ut(t− s)dµ(s)

)
, (1.7)

where µ0 is some positive constant and µ is a Borel measure on IR+.

When ρ = 0 and A(x) = I, the problem of proving uniform decay rates for wave equa-

tions with boundary dissipations but without acoustic boundary conditions has attracted

a lot of attention in recent years, see [1, 2, 7, 10, 21, 28, 29, 30]. The problem (1.1) covers

the case of a problem with memory type as studied in the references [1, 2, 7, 28], when

the measure µ is given by µ(s) = k(s)ds, where ds stands for Lebesgue measure and k

is a nonnegative kernel. It also covers the case of a problem with a delay as studied for

instance in the references [29, 30], when the measure µ is given by µ = µ1δτ , where µ1

is a nonnegative constant and τ > 0 represents the delay. An intermediate case treated

in the reference [30] is the case when dµ(s) = k(s)χ[τ1,τ2](s)ds, where 0 < τ1 < τ2, χ[τ1,τ2]

is the characteristic function of the interval [τ1, τ2] and k is a nonnegative function in

L∞([τ1, τ2]). We would like to highlight [10], where a general borelian measure is involved,

the authors recovered and extended some of the results from the literature.

In the case of variable coefficients with a general A(x), boundary stability of the wave

equation was considered in the references [9, 12, 16, 25, 28] and many others. When

delay exists, the problem (1.1) covers the case of a problem as studied for instance in the

references [30, 31].

The wave equation with acoustic boundary conditions is a coupled system of second

and first order partial differential equations in time, where the coupling is given on the

portion of the boundary. It was introduced by Morse and Ingard [27] and developed by

Beale and Rosencrans [5]. Since then, many authors have studied problems with acoustic

boundary conditions. See, for instance, [4, 8, 13, 14, 18, 20, 23, 24] and references therein.

In [3], Abbas and Nicaise proved the asymptotic stability and nonuniform stability

of a semigroup associated to a multidimensional wave equation with generalized acoustic

boundary condition. Later, Graber and Said-Houari [18] studied the following semilinear
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problem with the porous acoustic boundary conditions:

utt −∆u+ α(x)u+ φ(ut) = j1(u), in Ω× (0,+∞)

u = 0, on Γ0 × (0,+∞)

f(x)zt + g(x)z = −ut, on Γ1 × (0,+∞)

∂νu− h(x)η(zt) + ρ(ut) = j2(u), on Γ1 × (0,+∞)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω

z(x, 0) = z0(x), x ∈ Γ1,

(1.8)

where α : Ω→ IR and f, g, h : Γ→ IR are given functions.The existence and uniqueness of

local solutions was proved by nonlinear semigroup theory. Introducing some restrictions

on the source terms, the authors proved the local solution can be extended to be global.

In addition, stability and blow up results were proved. However, these papers all dealt

with constant coefficient cases.

In general, the coefficient matrices A(x) in (1.1) are related to some property of ma-

terials in applications. The authors considered the uniform energy decay with nonlinear

acoustic boundary conditions in [34] and energy decay with memory type acoustic bound-

ary conditions in [35]. We would like to cite [24], where a variable-coefficient wave equation

with acoustic boundary conditions and a time-varying delay in the boundary feedback was

studied by Li and Chai. See also [17, 26] and references therein. In the all papers men-

tioned above, Riemannian geometry method was used. The method was first introduced

by Yao [36] for controllability of the wave equation with variable coefficients. For a survey

on the differential geometric methods, see Yao [37].

Summarizing, we shall consider the problem (1.1) where Γ0,Γ1 and F are defined by

(1.2)-(1.7).

Here, we use the multiplier inequalities of the geometric version and Lasiecka and

Tataru arguments [22] to derive some decay estimates of the energy for the variable coef-

ficients problem (1.1).

The paper is organized as follows. In section 2, we present the assumptions and we

enunciate the main results. In section 3, the proofs of the stability result are given. Finally,

we made a collection of some preliminaries results which are used in the paper. We will

use C to denote generic positive constants.

2 Main results

First, as in Cornilleau and Nicaise [10], we assume that there exists β > 0 such that

µ∗ :=

∫ +∞

0
eβsd|µ|(s) < µ0, (2.1)

where |µ| is the absolute value of the measure µ.
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We consider the following assumptions.

Assumption. The functions ρ, f, k and h satisfying the following:

(i) ρ ∈ C(IR) is a increasing function with ρ(0) = 0 satisfying

sρ(s) > 0 for all s 6= 0, (2.2)

and there exist positive constant ρ such that

sρ(s) ≤ ρs2, |s| ≥ 1. (2.3)

(ii) f, k, h ∈ C(Γ1) are positive functions and there exist positive constant a0 such

that

min
x∈Γ1

{f(x), k(x), h(x)} > a0.

Defining

H1
Γ0

(Ω) = { u ∈ H1(Ω) | u|Γ0 = 0 },

Au = −divA(x)∇u.

Next, we present well-posedness of the solution in the framework of hypotheses (1.2)-(1.7).

Proposition 2.1 Suppose (u0, u1, z0) ∈ H1
Γ0

(Ω)×L2(Ω)×L2(Γ1). Then (1.1) admits

a unique solution

u ∈ C([0,∞);H1(Ω)) ∩ C1([0,∞);L2(Ω))

in the weak sense of Propst and Prüss. Moreover, if u0 ∈ H2(Ω) ∩ H1
Γ0

(Ω) and u1 ∈
H1

Γ0
(Ω), then

u ∈ C1([0,∞);H1(Ω)) ∩ C2([0,∞);L2(Ω)),

and in addition

Au(t) ∈ L2(Ω),
∂u

∂νA

∣∣∣
Γ1

(t) ∈ H1/2(Γ1), ∀t ≥ 0.

Remark 2.1 The proof of Proposition 2.1 can be easily given by an application of

Theorem 4.4 in Propst and Prüss [32].

In the next section, we assume that µ is supported in [0, τ ](τ > 0) and that Γ0∩Γ1 = ∅.
Let w(x, θ, s, t) = ut(x, t− θs), x ∈ Γ1, θ ∈ (0, 1), s ∈ (0, τ), t > τ.

Define Hilbert space H = H1
Γ0

(Ω)×L2(Ω)×L2(Γ1 × (0, 1)× (0, τ))×L2(Γ1) with the

following inner product:

〈(u, v, w, z)T , (û, v̂, ŵ, ẑ)T 〉 =

∫
Ω

[〈∇gu(x),∇gû(x)〉g + v(x)v̂(x)]dx

+

∫
Γ1

∫ 1

0

∫ τ

0
w(x, θ, s)ŵ(x, θ, s)dµ(s)dθdΓ

+

∫
Γ1

k(x)h(x)z(x)ẑ(x)dΓ. (2.4)
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Define the operator B : D(B) ⊂ H → H by

B


u

v

w

z

 =


v

Au− ρ(v)

−s−1wρ

− 1
f(x) [k(x)z + v]

 ,

where

D(B) = {(u, v, w, z)T ∈ H : Au ∈ L2(Ω),
∂u

∂νA
= −H · ν(µ0ut +

∫ τ

0
w(x, 1, s)dµ(s)) on Γ1,

v(x) = w(x, 0, s) on Γ1 × (0, τ)}.

Proposition 2.2 Assume that Assumption and (1.2)-(1.7) hold. Suppose (u0, u1, z0) ∈
H. Then (1.1) admits a unique solution (u, ut, w, z)

T ∈ C([τ,∞);H). Moreover, if

(u0, u1, z0) ∈ D(B) , then the solution is regular with (u, ut, w, z)
T ∈ C([τ,∞);D(B)).

In the sequel, we consider the measure λ obtained by the application of Proposition

4.1 to |µ|.
Inspired by Cornilleau et al.[10], we define the energy of the solution (1.1) by the

following formula:

E(t) =
1

2

∫
Ω
u2
tdx+

1

2

∫
Ω
|∇gu|2gdx+

1

2

∫
Γ1

khz2dΓ

+
1

2

∫
Γ1

H · ν
∫ t

0

( ∫ s

0
u2
t (x, t− τ)dτ

)
dλ(s)dΓ

+
1

2

∫
Γ1

H · ν
∫ ∞
t

( ∫ s

0
u2
t (x, s− τ)dτ

)
dλ(s)dΓ. (2.5)

So, we have the following stabilization result.

Theorem 2.1 Assume that Assumption and (1.2)-(1.7) hold. Then, there exist con-

stant T0 > 0 such that the energy E(t), associated to the solution u of (1.1) satisfies

E(t) ≤ S
( t
T0
− 1

)
, for all t > T0, (2.6)

with S(t) decays uniformly to zero, where S(t) is a solution of the differential equation

(4.5).

3 Proofs of the Main Results

To prove Theorem 2.1, we need the following several lemmas.
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Lemma 3.1 There exists a constant C > 0, such that, for any solution of (1.1) and

any T ≥ S ≥ 0,

E(S)− E(T ) ≥ C
∫ T

S

∫
Γ1

H · ν
(
u2
t +

∫ t

0
u2
t (t− s)dλ(s)

)
dΓdt

+

∫ T

S

∫
Γ1

fhz2
t dΓdt+

∫ T

S

∫
Ω
utρ(ut)dxdt. (3.1)

That is to say, the energy is a non-increasing function of time.

Proof. Set

E0(t) =
1

2

∫
Ω
u2
tdx+

1

2

∫
Ω
|∇gu|2gdx+

1

2

∫
Γ1

khz2dΓ. (3.2)

It follows that

E0(S)− E0(T ) = −
∫ T

S

∫
Γ1

ut
∂u

∂νA
dΓdt−

∫ T

S

∫
Γ1

khzztdΓdt+

∫ T

S

∫
Ω
utρ(ut)dxdt.

(3.3)

Using boundary condition (1.7) and Young’s inequality, for any ε > 0, we obtain

E0(S)− E0(T ) =

∫ T

S

∫
Γ1

H · ν
(
µ0u

2
t + ut

∫ t

0
ut(t− s)dµ(s)

)
dΓdt

+

∫ T

S

∫
Γ1

fhz2
t dΓdt+

∫ T

S

∫
Ω
utρ(ut)dxdt

≥
∫ T

S

∫
Γ1

H · ν
(
(µ0 −

ε

2
)u2
t −

1

2ε
(

∫ t

0
ut(t− s)dµ(s))2

)
dΓdt

+

∫ T

S

∫
Γ1

fhz2
t dΓdt+

∫ T

S

∫
Ω
utρ(ut)dxdt. (3.4)

By Cauchy-Schwartz inequality, it follows that

E0(S)− E0(T ) ≥
∫

Γ1

H · ν
(
(µ0 −

ε

2
)

∫ T

S
u2
tdt−

µ∗
2ε

∫ T

S

∫ t

0
u2
t (t− s)d|µ|(s)dt

)
dΓ

+

∫ T

S

∫
Γ1

fhz2
t dΓdt+

∫ T

S

∫
Ω
utρ(ut)dxdt. (3.5)

We split E − E0 into two terms:

[E − E0]|ST =
1

2

∫
Γ1

H · ν[ϕ− ψ]|STdσ, (3.6)

where

ϕ =

∫ t

0

∫ s

0
u2
t (t− τ)dτdλ(s), ψ =

∫ t

0

∫ s

0
u2
t (τ)dτdλ(s).

Variable replacement gives

ϕ =

∫ t

0

∫ t

0
u2
t (τ)dτdλ(s)−

∫ t

0

∫ t−s

0
u2
t (τ)dτdλ(s).
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And by Fubini’s theorem, we get

ψ =

∫ t

0
u2
t (τ)

∫ t

τ
dλ(s)dτ.

Hence,

[ϕ− ψ]|ST =
[ ∫ t

0
u2
t (τ)λ([0, τ ])dτ −

∫ t

0

∫ t−s

0
u2
t (τ)dτdλ(s)

]∣∣∣S
T

=
[ ∫ t

0

∫ t−s

0
u2
t (τ)dτdλ(s)

]∣∣∣T
S
−
[ ∫ t

0
u2
t (τ)λ([0, τ ])dτ

]∣∣∣T
S

≥
∫ T

S

∫ t

0
u2
t (t− s)dλ(s)dt− µ0

∫ T

S
u2
t (t)dt, (3.7)

where Fubini’s theorem and λ([0, τ ]) ≤ λ(IR+) < µ0 were used .

It follows from (3.4)-(3.7) that

E(S)− E(T ) = [E − E0]|ST + E0(S)− E0(T )

≥
∫ T

S

∫
Γ1

H · ν
(
(µ0 −

µ0 + ε

2
)u2
t (t) +

1

2
(1− µ∗

ε
)

∫ t

0
u2
t (t− s)dλ(s)

)
dσdt

+

∫ T

S

∫
Γ1

fhz2
t dΓdt+

∫ T

S

∫
Ω
utρ(ut)dxdt. (3.8)

The proof completed by choosing µ∗ < ε < µ0.

Remark 3.1 In fact, we have E0 is non-increasing. Twice using Fubini’s theorem,

we obtain the following identities:∫ T

S

∫ t

0
u2
t (t− s)d|µ|(s)dt =

∫ T

S

∫ T

s
u2
t (t− s)dtd|µ|(s)

=

∫ T

S

∫ T−s

0
u2
t (t)dtd|µ|(s)

=

∫ T

S

( ∫ T−t

0
d|µ|(s)

)
u2
t (t)dt,

for any T ≥ S ≥ 0. Using (3.5) and the fact that |µ|([0, T − t]) ≤ µ0 and the choice of

ε = µ∗, it follows that

E0(S)− E0(T ) ≥
∫

Γ1

H · ν
(
µ0 −

ε

2
− µ0µ∗

2ε

)( ∫ T

S
u2
tdt
)
dΓ

+

∫ T

S

∫
Γ1

fhz2
t dΓdt+

∫ T

S

∫
Ω
utρ(ut)dxdt

=

∫
Γ1

H · ν
(µ0 − µ∗

2

)( ∫ T

S
u2
tdt
)
dΓ

+

∫ T

S

∫
Γ1

fhz2
t dΓdt+

∫ T

S

∫
Ω
utρ(ut)dxdt

≥ 0. (3.9)
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In the context of singularities, using Proposition 3 of [10], the following Rellich in-

equality is useful.

Lemma 3.2 Suppose u ∈ H1(Ω) such that

Au ∈ L2(Ω), u|Γ0 ∈ H
3
2 (Γ0) and

∂u

∂νA

∣∣∣
Γ1

∈ H
1
2 (Γ1).

Then u satisfies 2 ∂u
∂νA

H(u)− |∇gu|2gH · ν ∈ L1(Γ) and we have the following inequality:

−2

∫
Ω
AuH(u)dx ≤

∫
Ω

(
|∇gu|2g divH − 2DH(∇gu,∇gu)

)
dx

+

∫
Γ

(
2
∂u

∂νA
H(u)− |∇gu|2gH · ν

)
dΓ. (3.10)

Remark 3.2 If Γ0 ∩ Γ1 = ∅, (3.10) is an identity, see Yao [36]. If n ≤ 3 and Γ0 ∩ Γ1

is not empty set, in Komornik [19], an application of Theorem 6.10 in Grisvard [15] gives

(3.10). For any dimensions, Bey et al. [6] extended and proved the Rellich inequality.

With this result, we prove the following observability for the problem (1.1).

Lemma 3.3 Let u be a solution to the system (1.1). Then there exists a time T0 > 0

such that, for T > T0 and any δ(0 < δ < 1
2), there exists C > 0 for which

E(T ) ≤ C
∫ T

0

∫
Γ1

(
fhz2

t +H · ν[u2
t +

∫ t

0
u2
t (t− s)dµ(s)]

)
dΓdt

+C

∫ T

0

∫
Ω

[utρ(ut) + ρ2(ut)]dxdt+ C‖u‖2L2(0,T ;H1/2+δ(Ω)). (3.11)

Proof. Set P = divH −α. Multiplying (1.1) by 2H(u) +Pu, an integration by parts

gives

0 =

∫ T

0

∫
Ω

[utt +Au+ ρ(ut)][2H(u) + Pu]dxdt

=
( ∫

Ω
ut[2H(u) + Pu]dx

)∣∣∣T
0
−
∫ T

0

∫
Ω

(
ut[2H(ut) + Put]− [Au+ ρ(ut)][2H(u) + Pu]

)
dxdt.

(3.12)

It follows from Green formula that

−
∫

Ω
AuPudx =

∫
Ω

divA(x)∇u · Pudx

=

∫
Γ
Pu

∂u

∂νA
dΓ−

∫
Ω
P |∇gu|2gdx−

1

2

∫
Γ
u2 ∂P

∂νA
dΓ− 1

2

∫
Ω
u2APdx.

(3.13)
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Using Lemma 3.2 and (3.13), if (1.2) holds, it follows that

−
∫

Ω
Au(2H(u) + Pu)dx

≤ −α
∫

Ω
|∇gu|2gdx+

∫
Γ

( ∂u
∂νA

[2H(u) + Pu]− |∇gu|2gH · ν
)
dΓ

−1

2

∫
Γ
u2 ∂P

∂νA
dΓ− 1

2

∫
Ω
u2APdx. (3.14)

Remark that∫
Γ

( ∂u
∂νA

[2H(u) + Pu]− |∇gu|2gH · ν
)
dΓ =

∫
Γ

{ ∂u

∂νA

(
2[
∂u

∂νA

1

|νA|2g
H · ν + 〈H,∇gτu〉g] + Pu

)
−
(
|∇gτu|2g +

∣∣∣ ∂u
∂νA

∣∣∣2 1

|νA|2g

)
H · ν

}
dΓ, (3.15)

where ∇gτu ∈ Γx, the tangent space of Γ at x, and

H(u) =
∂u

∂νA

1

|νA|2g
H · ν + 〈H,∇gτu〉g,

|∇gu|2 = |∇gτu|2g +
∣∣∣ ∂u
∂νA

∣∣∣2 1

|νA|2g
is used.

Moreover, since u = 0 and H · ν ≤ 0 on Γ0, we observe that

−
∫

Ω
Au[2H(u) + Pu]dx

≤ −α
∫

Ω
|∇gu|2gdx+

∫
Γ1

{(∣∣∣ ∂u
∂νA

∣∣∣2 1

|νA|2g
− |∇gτu|2g

)
H · ν +

(
〈H,∇gτu〉g + Pu

) ∂u
∂νA

}
dΓ

−1

2

∫
Γ1

u2 ∂P

∂νA
dΓ− 1

2

∫
Ω
u2APdx. (3.16)

It follows from divergence theorem and u|Γ0 = 0 that∫
Ω
ut[2H(ut) + Put]dx =

∫
Ω

(P − divH)u2
tdx+

∫
Γ
u2
tH · νdΓ

= −
∫

Ω
αu2

tdx+

∫
Γ1

u2
tH · νdΓ. (3.17)

Furthermore, for ε > 0 sufficiently small, we have∫ T

0

∫
Ω
ρ(ut)[2H(u) + Pu]dxdt ≤ Cε

∫ T

0

∫
Ω
ρ2(ut)dxdt+ ε

∫ T

0

∫
Ω
|∇gu|2gdxdt

+C

∫ T

0

∫
Ω

(
ρ2(ut) + u2

)
dxdt. (3.18)

Substituting (3.16) - (3.18) into (3.12), we obtain that

α

∫ T

0

∫
Ω

(u2
t + |∇gu|2g)dxdt ≤ C[E(0) + E(T )] + C

∫ T

0

∫
Γ1

(
| ∂u
∂νA
|2 + |∇gτu|2g + u2

tH · ν
)
dΓdt

+C

∫ T

0

∫
Γ1

u2dΓdt+ C

∫ T

0

∫
Ω

[u2 + ρ2(ut)]dxdt. (3.19)
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Using Lemma 7.2 in Lasiecka and Triggiani [21] to (1.1), it follows that: for any ε > 0

and 0 < δ < 1/2 small enough, arbitrary but fixed, there exists a constant CT,δ,ε > 0 such

that ∫ T−ε

ε

∫
Γ1

|∇gτu|2gdΓdt ≤ CT,δ,ε{
∫ T

0

∫
Γ1

(| ∂u
∂νA
|2 + u2

t )dΓdt

+

∫ T

0

∫
Ω
ρ2(ut)dxdt+ ‖u‖2L2(0,T ;H1/2+δ(Ω))}. (3.20)

Using the Sobolev embedding theorem and the trace theory, it is obvious that

‖u‖L2(Ω) ≤ C‖u‖H1/2+δ(Ω), (3.21)

‖u‖L2(Γ1) ≤ C‖u‖H1/2(Ω) ≤ C‖u‖H1/2+δ(Ω). (3.22)

Applying inequality (3.19) over the interval [ε, T − ε] rather than over [0, T ], and

combining (3.20)-(3.22), we have

α

∫ T−ε

ε

∫
Ω

(u2
t + |∇gu|2g)dxdt ≤ C[E(0) + E(T )] + C

{∫ T

0

∫
Γ1

(
| ∂u
∂νA
|2 + u2

tH · ν
)
dΓdt

+

∫ T

0

∫
Ω
ρ2(ut)dxdt+ ‖u‖2L2(0,T ;H1/2+δ(Ω))

}
. (3.23)

On the other hand, we have∫ T

0

∫
Γ1

khz2dΓdt =

∫ T

0

∫
Γ1

(−ut − fzt)hzdΓdt

= −
( ∫

Γ1

hzudΓ
)∣∣∣T

0
+

∫ T

0

∫
Γ1

hztudΓdt−
∫ T

0

∫
Γ1

fhzztdΓdt

≤ CE(0) + ε

∫ T

0
E0(t)dt+ Cε

∫ T

0

∫
Γ1

fhz2
t dΓdt, (3.24)

where ε > 0 is constant.

On the another hand, from the boundary condition and Young’s inequality, we have∫
Γ1

| ∂u
∂νA
|2dΓ ≤ C{

∫
Γ1

fhz2
t dΓ +

∫
Γ1

H · ν(u2
t +

∫ t

0
u2
t (t− s)dµ(s))dΓ}. (3.25)

Observe that

(

∫ ε

0
+

∫ T

T−ε
)

∫
Ω

(u2
t + |∇gu|2g)dxdt ≤ 2εE(0), (3.26)

taking ε small enough, it follows that∫ T

0
E0(t)dt ≤ CE(0) + C

{∫ T

0

∫
Γ1

(
fhz2

t +H · ν[u2
t +

∫ t

0
u2
t (t− s)dµ(s)]

)
dΓdt

}
+C

{∫ T

0

∫
Ω
ρ2(ut)dxdt+ ‖u‖2L2(0,T ;H1/2+δ(Ω))

}
. (3.27)
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Furthermore, Lemma 5 in Cornilleau[10] and Lemma 3.1 give that∫ T

0

∫
Γ1

H · ν
( ∫ t

0
[

∫ s

0
u2
t (x, t− τ)dτ ]dλ(s) +

∫ ∞
t

[

∫ s

0
u2
t (x, s− τ)dτ ]dλ(s)

)
dΓdt

≤ C(

∫ T

0

∫
Γ1

H · ν
∫ t

0
u2
t (x, t− s)dλ(s)dΓdt+

∫ ∞
0

∫
Γ1

H · νu2
tdΓdt) ≤ CE(0). (3.28)

Whence ∫ T

0
E(t)dt ≤

∫ T

0
E0(t)dt+ CE(0). (3.29)

Next, for E(0), we have

E(0) = E(T ) +

∫ T

0

∫
Γ1

H · ν
(
µ0u

2
t + ut

∫ t

0
ut(t− s)dµ(s)

)
dΓdt

+

∫ T

0

∫
Γ1

fhz2
t dΓdt+

∫ T

0

∫
Ω
utρ(ut)dxdt

+
1

2

[ ∫
Γ1

H · ν
( ∫ t

0
[

∫ s

0
u2
t (x, t− τ)dτ ]dλ(s) +

∫ ∞
t

[

∫ s

0
u2
t (x, s− τ)dτ ]dλ(s)

)
dΓ

]∣∣∣∣0
T
.

(3.30)

Since [ ∫
Γ1

H · ν
( ∫ t

0
[

∫ s

0
u2
t (x, t− τ)dτ ]dλ(s) +

∫ ∞
t

[

∫ s

0
u2
t (x, s− τ)dτ ]dλ(s)

)
dΓ

]∣∣∣∣0
T

=

∫
Γ1

H · ν
( ∫ ∞

0
[

∫ s

0
u2
t (x, s− τ)dτ ]dλ(s)−

∫ T

0
[

∫ s

0
u2
t (x, T − τ)dτ ]dλ(s)

−
∫ ∞
T

[

∫ s

0
u2
t (x, s− τ)dτ ]dλ(s)

)
dΓ

=

∫
Γ1

H · ν
( ∫ T

0
[

∫ s

0
u2
t (x, s− τ)dτ ]dλ(s)−

∫ T

0
[

∫ s

0
u2
t (x, T − τ)dτ ]dλ(s)

)
dΓ

≤
∫

Γ1

H · ν
∫ T

0

( ∫ s

0
u2
t (x, s− τ)dτ

)
dλ(s)dΓ

=

∫
Γ1

H · ν
∫ T

0
u2
t (x, θ)

∫ T

θ
dλ(s)dθdΓ

≤ µ0

∫
Γ1

H · ν
∫ T

0
u2
tdtdΓ, (3.31)

considering (3.27)-(3.30), we obtain that∫ T

0
E(t)dt ≤ CE(T ) + C

{∫ T

0

∫
Γ1

(
fhz2

t +H · ν[u2
t +

∫ t

0
u2
t (t− s)dµ(s)]

)
dΓdt

}
+C

{∫ T

0

∫
Ω

[utρ(ut) + ρ2(ut)]dxdt+ ‖u‖2L2(0,T ;H1/2+δ(Ω))

}
. (3.32)

Recalling that E(t) is monotone decreasing, from (3.32) we obtain

TE(T ) ≤
∫ T

0
E(t)dt
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≤ CE(T ) + C

∫ T

0

∫
Γ1

(
fhz2

t +H · ν[u2
t +

∫ t

0
u2
t (t− s)dµ(s)]

)
dΓdt

+C

∫ T

0

∫
Ω

[utρ(ut) + ρ2(ut)]dxdt+ C‖u‖2L2(0,T ;H1/2+δ(Ω)). (3.33)

Taking T large enough, dependent of H,α, ε, the estimate (3.11) follows from the

inequality (3.33). The proof is complete.

Next, the lower order term in the inequality (3.11) can be absorbed by a compactness-

uniqueness argument in the following lemma.

Lemma 3.4 Suppose that all assumption (1.2)-(1.7) hold true. Let u be a solution

of the system (1.1). Then there exists T0 > 0 such that for all T ≥ T0, there exists CT > 0

for which

E(T ) ≤ CT
∫ T

0

∫
Γ1

(
fhz2

t +H · ν[u2
t +

∫ t

0
u2
t (t− s)dµ(s)]

)
dΓdt

+CT

∫ T

0

∫
Ω

[utρ(ut) + a(x)ρ2(ut)]dxdt. (3.34)

Proof. The lower order term in the inequality (3.11) can be absorbed by a compactness-

uniqueness argument as follows, that is, the following is true:

‖u‖2L2(0,T ;H1/2+δ(Ω)) ≤ C
{∫ T

0

∫
Γ1

(
fhz2

t +H · ν[u2
t +

∫ t

0
u2
t (t− s)dµ(s)]

)
dΓdt

+

∫ T

0

∫
Ω

[utρ(ut) + ρ2(ut)]dxdt
}
. (3.35)

Suppose that (3.35) is not true. Then there exists a sequence {uk, zk} of solutions of

the problem (1.1) such that

‖uk‖2L2(0,T ;H1/2+δ(Ω)) ≥ k
{∫ T

0

∫
Γ1

(
fhz2

kt +H · ν[u2
kt +

∫ t

0
u2
kt(t− s)dµ(s)]

)
dΓdt

+

∫ T

0

∫
Ω

[uktρ(ukt) + ρ2(ukt)]dxdt
}
. (3.36)

Hence, if

‖uk‖2L2(0,T ;H1/2+δ(Ω)) = 1, (3.37)

it follows that

lim
k→∞

{∫ T

0

∫
Γ1

(
fhz2

kt +H · ν[u2
kt +

∫ t

0
u2
kt(t− s)dµ(s)]

)
dΓdt

+

∫ T

0

∫
Ω

[uktρ(ukt) + ρ2(ukt)]dxdt
}

= 0. (3.38)

Thus, Ek(t) is bounded uniformly for every t. Then there exists a subsequence of

{uk, zk}, still denoted by {uk, zk}, such that

uk(0) ⇀ u0 in H1
Γ0

(Ω),
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ukt(0) ⇀ u1 in L2(Ω),

zk(0) ⇀ z0 in L2(Γ1).

Denote by u the solution corresponding to the initial data (u0, u1).

Then

{uk, ukt}
∗
⇀{u, ut} in L∞(0, T ;H1(Ω)× L2Ω).

It follows from Aubin-Lions compactness theorem that

uk → u in L2(0, T ;H1/2+δ(Ω))).

It is obvious that u 6= 0.

By (3.38) and passing to the limit in the problem (1.1), we obtain u ∈ H1(Ω× (0, T ))

which satisfies 
utt − divA(x)∇u = 0, in Ω× (0, T ),

u = 0, on Γ0 × (0, T ),

ut = 0, ∂u
∂νA

= 0, on Γ1 × (0, T ).

(3.39)

Let v = ut. Differentiating (3.39), we have
vtt − divA(x)∇v = 0, in Ω× (0, T ),

v = 0, on Γ0 × (0, T ),

v = 0, ∂v
∂νA

= 0, on Γ1 × (0, T ).

(3.40)

By standard uniqueness results for the wave equation, we have for T large enough,

ut = v ≡ 0, which, together with (3.39), then we have ū(x, t) = ū(x) which is independent

of time t, and divA(x)∇u = 0. Since u|Γ0 = ∂u
∂νA
|Γ1 = 0 , it is easy to prove that u ≡ 0,

which contradicts the assumption ‖u‖L2(0,T ;H1/2+δ(Ω)) = 1. The proof is complete.

Proof of Theorem 2.1 Firstly, we are going to prove that

ψ(E(T )) + E(T ) ≤ E(0), (3.41)

where ψ is an appropriate positive, continuous and strictly increasing function with ψ(0) =

0.

If Assumption (i) holds, as in [22], let p : [0,+∞)→ IR be concave, strictly increasing

functions satisfying p(0) = 0 and

p(sρ(s)) ≥ s2 + ρ2(s) for all|s| ≤ 1. (3.42)

We define

Λ = {(x, t) ∈ Ω× (0, T ); |ut(x, t)| > 1}.

We have ∫
Λ
ρ2(ut)dxdt ≤ ρ

∫ T

0

∫
Ω
utρ(ut)dxdt. (3.43)
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and ∫
(Ω×(0,T ))\Λ

ρ2(ut)dxdt ≤
∫

(Ω×(0,T ))\Λ
p(utρ(ut))dxdt. (3.44)

It follows from Jensen’s inequality that∫
(Ω×(0,T ))\Λ

ρ2(ut)dxdt

≤ meas(Ω× (0, T ))p(
1

meas(Ω× (0, T ))

∫ T

0

∫
Ω
utρ(ut)dxdt)

≤ meas(Ω× (0, T ))p̃(

∫ T

0

∫
Ω
utρ(ut)dxdt), (3.45)

where

p̃(s) = p(
s

meas(Ω× (0, T ))
). (3.46)

Thus, ∫ T

0

∫
Ω

(utρ(ut) + ρ2(ut))dxdt

≤ (1 + ρ)

∫ T

0

∫
Ω
utρ(ut)dxdt+ meas(Ω× (0, T ))p̃(

∫ T

0

∫
Ω
utρ(ut)dxdt). (3.47)

Combining (3.34) with (3.47), we obtain

E(T ) ≤ CM{M0

M
(

∫ T

0

∫
Ω
utρ(ut)dxdt+ p̃(

∫ T

0

∫
Ω
utρ(ut)dxdt))

+
1

M
(

∫ T

0

∫
Γ1

H · ν
(
u2
t +

∫ t

0
u2
t (t− s)dµ(s)

)
dΓdt+

∫ T

0

∫
Γ1

(u2
t + fh|zt|2)dΓdt)},

(3.48)

where M0 = 1 + ρ+ meas(Ω× (0, T )), M = max{meas(Ω× (0, T )),meas(Γ1 × (0, T ))}.
Set

L =
1

CM
,

c = max{M0

M
,

1

M
}.

As p̃ is increasing, the function cI + p̃ is invertible. This allows us to define

ψ(s) = (cI + p̃)−1(Ls) (3.49)

and to conclude that

ψ(E(T )) ≤ E(0)− E(T ). (3.50)

Then the inequality (3.41) holds.

As in [22], the final conclusion

E(t) ≤ S
( t
T0
− 1

)
, for all t > T0, (3.51)

follows from Lemma 4.1, which completes the proof of Theorem 2.1.
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Remark 3.3 Specificially, taking ρ(s) = s|s|θ−1, 0 < θ < 1, then Assumption (i)

holds. Thus the decay rates of system (1.1) is as follows:

E(t) ≤ C(E(0))
[
E−

m
2 (0) +mt

]− 2
m , m =

1− θ
θ

. (3.52)

4 Appendix

The assumption (2.1) implies the following equivalence about Borel measure:

Proposition 4.1 ([10]) Let µ be a Borel positive measure on IR+ and µ0 > 0. The

following properties are equivalent:

(1) ∃β > 0 such that ∫ +∞

0
eβsdµ(s) < µ0. (4.1)

(2) There exists a Borel measure λ on IR+ such that

λ(IR+) < µ0, µ ≤ λ, (4.2)

and for some constants γ > 0, for all measure set B,∫
B
λ([s,+∞))ds ≤ γ−1λ(B). (4.3)

Remark 4.1 If µ is some Borel measure such that

|µ|(IR+) < µ0,

∫ +∞

0
easd|µ|s < +∞,

for some constants a > 0, then µ fulfils the assumption (2.1) for β small enough.

Lemma 4.1 ([22]) Let ψ be a positive, increasing function such that ψ(0) = 0. Since

ψ is increasing, it is possible to define an increasing function q, q(x) = x− (I + ψ)−1(x).

Consider a sequence (sn)n∈N of positive numbers which satisfies

sm+1 + ψ(sm+1) ≤ sm. (4.4)

Then sm ≤ S(m), where S(t) is a solution of the differential equation

d

dt
S(t) + q(S(t)) = 0, S(0) = s0. (4.5)

Moreover, S(t) is monotone decreasing with lim
t→∞

S(t) = 0.
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