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Abstract

The main target of this article is to prove the products, behaviors and simple zeros for the classes of the entire functions

associated with the Weierstrass-Hadamard product and the Taylor series.
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ON SOME CLASSES OF THE ENTIRE FUNCTIONS

XIAO-JUN YANG

Abstract. The main target of this article is to prove the products, behaviors and simple
zeros for the classes of the entire functions associated with the Weierstrass-Hadamard
product and the Taylor series.

1. Introduction

The theory of the entire functions of different orders and geniuses [1, 2, 3] (see the
derailed definitions for them in Section 2) has been developed to propose their classes in
order to study the zeros and poles and behaviors for them. One of great interest classes of
the entire functions is the Laguerre–Pólya class of the entire functions due to Laguerre [3]
and Pólya [4], which deal with the problems for the zeros for the entire functions of the
real variable [6, 7]. In this paper we introduce some classes of the entire functions, which
are represented by the Weierstrass-Hadamard product [1, 2] and the Taylor series in the

theory of the entire functions. Conveniently, let i =
√
−1, F(n) (s) be the nth derivatives of

the entire function F (s), and R and C are the sets of the real and complex numbers.

Definition 1. A entire function of order ρ = 1 and genus υ = 0, expressed by the Taylor
series

(1) S (s) = S (ς)+
∞∑
k=1

S(k) (ς) (s−ς)k

k! ,

is said to be in the class, written S ∈ Y, if S (s) admits a representation of the Weierstrass-
Hadamard product

(2) S (s) = S (0)
∞∏
k=1

(
1− s

σk

)
,

where σk = ςk + iτk ∈ C for ςk ∈ R and τk ∈ R, σk ̸= 0, s ∈ C, ς ∈ C, S (0) ̸= 0, S (ς) ̸= 0

and S(k) (ς) ̸= 0 are the Taylor coefficients for k ∈ N.

Definition 2. A entire function of order ρ = 1 and genus υ = 1, expressed by the Taylor
series

(3) Ŝ (s) = Ŝ (ς)+
∞∑
k=1

Ŝ(k) (ς) (s−ς)k

k! ,

1991 Mathematics Subject Classification. Primary: 32A15; Secondary: 30C15; 30D20.
Key words and phrases. entire function, Weierstrass-Hadamard product, Taylor series, zeros of

polynomials.
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is said to be in the class, written Ŝ ∈ L, if Ŝ (s) admits a representation of the Weierstrass-
Hadamard product

(4) Ŝ (s) = Ŝ (0) eQs
∞∏
k=1

(
1− s

σk

)
es/σk ,

where σk = ςk + iτk ∈ C for ςk ∈ R and τk ∈ R, σk ̸= 0, s ∈ C, ς ∈ C, Q ∈ C, Ŝ (0) ̸= 0,

Ŝ (ς) ̸= 0 and Ŝ(k) (ς) ̸= 0 are the Taylor coefficients for k ∈ N.

Here, it is expected that the case of ςk = ς ≡ ξ and τk ∈ R\ {0} for ξ ∈ R\ {0} will

produce S (s) ∈ Y and Ŝ ∈ L, and these yields the subclasses Ỹ and L̄ as shown below. In
other words, we can define the entire functions as follows:

Definition 3. A entire function of order ρ = 1 and genes υ = 0, expressed by the Taylor
series

(5) S̃ (s) = S̃ (ξ)+
∞∑
k=1

S̃(k) (ξ) (s−ξ)k

k! ,

is said to be in the class, written S̃ ∈ Ỹ, if S̃ (s) admits a representation of the Weierstrass-
Hadamard product

(6) S̃ (s) = S̃ (0)
∞∏
k=1

(
1− s

σk

)
,

where σk = ξ + iτk ∈ C for ξ ∈ R\ {0} and τk ∈ R\ {0}, s ∈ C, S̃ (0) ̸= 0, S̃ (ξ) ̸= 0 and

S̃(k) (ξ) ̸= 0 are the Taylor coefficients for k ∈ N.

Definition 4. A entire function of order ρ = 1 and genes υ = 1, expressed by the Taylor
series

(7) S̄ (s) = S̄ (ξ)+
∞∑
k=1

S̄(k) (ξ) (s−ξ)k

k! ,

is said to be in the class, written S̄ ∈ L̄, if S̄ (s) admits a representation of the Weierstrass-
Hadamard product

(8) S̄ (s) = S̄ (0) eQs
∞∏
k=1

(
1− s

σk

)
es/σk ,

where σk = ξ + iτk ∈ C for ξ ∈ R\ {0} and τk ∈ R\ {0}, s ∈ C, Q ∈ C, S̄ (0) ̸= 0, S̄ (ξ) ̸= 0

and S̄(k) (ξ) ̸= 0 are the Taylor coefficients for k ∈ N.

The purpose of the paper is to study the some classes of the entire functions. In Section
2 we introduce the results in the theory of the entire functions. In Section 3 we consider
alternative products for the above classes of the entire functions. In Section 4 we investigate
the behaviors for the above classes of the entire functions on the critical line. Finally, we
give the simple zeros for some entire functions in Section 5.
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2. Preliminary results

In this section we give some results in the theory of the entire functions applied in the
present paper.

Definition 5. Let s ∈ C. The Weierstrass primary factors H (s, 0) and H (s, p) are defined
as ([3], Lecture 4, p.25)

(9) H (s, 0) = 1− s (p = 0) ,

and

(10) H (s, p) = (1− s) exp
(
s+ 1

2s
2 + · · ·+ 1

ps
p
)

(p > 1) ,

where p ∈ N is of genus.

Definition 6. Let Ω = {µk}∞k=1 be the set of the sequence of all zeros for the Weierstrass-
Hadamard product

(11) Ĥ (s) =
∞∏
k=1

H(s, p)

such that

(12) |µ1| < |µ2| < |µ3| < · · · < |µk| < |µk+1| < · · · ,

and

(13) lim
k→∞

µk = ∞.

We say (11) is a canonical product of genus p ([3], Lecture 4, p.28).

Definition 7. The maximum modulus of Ĥ (s) on a disk of radius v is defined as (See [1],
p.1)

(14) MV (v) = max
|s|=v

∣∣∣Ĥ (s)
∣∣∣ .

Definition 8. The order β of Ĥ (s) is defined by (See [1], p.8])

(15) β = lim
v→∞

sup log logMV(v)
log v .

Definition 9. The exponent of convergence γ (the convergence exponent of its zeros) for

Ĥ (s) is defined by (See [1], p.14)

(16) γ = inf
{
θ
∣∣∣|µk|−θ < ∞ , µk ∈ Ω, k ∈ N

}
.

It is proved that Theorem 2 in the Levin’s book ([3], Theorem 2, p.29) presented the
property of the Weierstrass-Hadamard product:
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Lemma 1. Let µk ∈ Ω for k ∈ N such that

(17)
∞∑
k=1

1/ |µk|p+1 < ∞.

Then the Weierstrass-Hadamard product

(18) Ĥ (s) =
∞∏
k=1

H(x/xk, p),

converges uniformly on every compact set ℜ.

Theorem 2.6.5. in the Boas’ book ([1], Theorem 2.6.5., p.19) stated the theorem of Borel
as follows:

Lemma 2. (Theorem of Borel)

Let s ∈ C. Then Ĥ (s) of genus p is an entire function of order equal to the convergence
exponent of its zeros.

Lemma 3. • Let S ∈ Y. Then the exponent of convergence for S (s) is γ = 1 and
S (s) converges uniformly on every compact set ℵ.

• Let Ŝ ∈ L. Then the exponent of convergence for Ŝ (s) is γ = 1 and Ŝ (s) converges
uniformly on every compact set ℵ̂.

• Let S̃ ∈ Ỹ. Then the exponent of convergence for S̃ (s) is γ = 1 and S̃ (s) converges
uniformly on every compact set ℵ̃.

• Let S̄ ∈ L̄. Then the exponent of convergence for S̄ (s) is γ = 1 and S̄ (s) converges
uniformly on every compact set ℵ̄.

Proof. By Lemma 1, Theorem of Borel and S ∈ Y, Ŝ ∈ L, S̃ ∈ Ỹ and S̄ ∈ L̄, we easily get
the required results. �

3. New products for some classes of the entire functions

In this section we investigate new products for some classes of the entire functions.
Now we denote σk ∈ Ω and show the following theorems:

Theorem 1. Let S ∈ Y, s ∈ C, ς ∈ C, Q ∈ C, α ∈ C\ {0} and α ̸= σk. Then

(19) S (α) = S (0) eQα
∞∏
k=1

(
1− α

σk

)
eα/σk ̸= 0,

(20) S (s) = S (α) eQ(s−α)
∞∏
k=1

(
1− s−α

σk−α

)
e(s−α)/σk

and

(21) S (ς)+
∞∑
k=1

S(k) (ς) (s−ς)k

k! = S (α) eQ(s−α)
∞∏
k=1

(
1− s−α

σk−α

)
e(s−α)/σk ,

where σk = ςk + iτk run though all zeros of S (s) for ςk ∈ R\ {0} and τk ∈ R\ {0}.
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Proof. Since ς ∈ C, α ∈ C\ {0} and α ̸= σk, we have 1−α/σk ̸= 0, eQα ̸= 0, eα/σk ̸= 0 and
S (0) ̸= 0 such that

(22) S (α) = S (0) eQα
∞∏
k=1

(
1− α

σk

)
eα/σk ̸= 0

is valid. Hence, we prove (9).
On the another hand, we show

(23)

S (s) = S (0) eQs
∞∏
k=1

(
1− s

σk

)
es/σk

=

(
S (0) eQs

∞∏
k=1

es/σk

) ∞∏
k=1

(
1− s

σk

)
=

(
S (0) eQs

∞∏
k=1

es/σk

) ∞∏
k=1

σk−s
σk

=

(
S (0) eQs

∞∏
k=1

es/σk

) ∞∏
k=1

(
σk−α
σk−α · σk−s

σk

)
=

(
S (0) eQs

∞∏
k=1

es/σk

) ∞∏
k=1

(
σk−α
σk

· σk−s
σk−α

)
=

(
S (0) eQs

∞∏
k=1

es/σk

)
·
( ∞∏

k=1

σk−α
σk

)
·
( ∞∏

k=1

σk−s
σk−α

)
=

(
S (0) eQs

∞∏
k=1

es/σk

)
·

∞∏
k=1

(
1− α

σk

)
·
[ ∞∏
k=1

σk−α−(s−α)
σk−α

]
=

(
S (0) eQs

∞∏
k=1

es/σk

)
·

∞∏
k=1

(
1− α

σk

)
·

∞∏
k=1

(
1− s−α

σk−α

)
=

[
S (0)

∞∏
k=1

(
1− α

σk

)]
· eQs

∞∏
k=1

(
1− s−α

σk−α

)
es/σk .

By (13), we have

(24)

S (s) =
[
S (0)

∞∏
k=1

(
1− α

σk

)]
· eQs

∞∏
k=1

(
1− s−α

σk−α

)
es/σk

=

[
S (0)

∞∏
k=1

(
1− α

σk

)]
· eQs

∞∏
k=1

(
1− s−α

σk−α

)
es/σk

=

(
S (α) e−Qα

∞∏
k=1

e−α/σk

)
·
[
eQs

∞∏
k=1

(
1− s−α

σk−α

)
es/σk

]
= S (α) eQ(s−α)

∞∏
k=1

(
1− s−α

σk−α

)
e(s−α)/σk

if

(25) S (0)
∞∏
k=1

(
1− α

σk

)
= S (α) e−Qα

∞∏
k=1

e−α/σk

is derived from (9).
Combining (1) and (10), we may obtain (11).
This completes the proof of Theorem 1. �
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Theorem 2. Let Ŝ ∈ L, s ∈ C, α ∈ C\ {0} and α ̸= σk. Then

(26) Ŝ (ξ) = Ŝ (0)
∞∏
k=1

(
1− α

σk

)
̸= 0,

(27) Ŝ (s) = Ŝ (α)
∞∏
k=1

(
1− s−α

σk−α

)
and

(28) Ŝ (ς)+
∞∑
k=1

Ŝ(k) (ς) (s−ς)k

k! = Ŝ (α)
∞∏
k=1

(
1− s−α

σk−α

)
,

where σk = ςk + iτk run though all zeros of Ŝ (s) for ςk ∈ R\ {0} and τk ∈ R\ {0}.

Proof. By taking α = ξ and

(29) eQ(s−ξ)
∞∏
k=1

e(s−ξ)/σk = 1

in Theorem 1 since Ŝ (ξ) is of genes υ = 0, we show (16) and (17), and by Ŝ ∈ L, we get
(18).

Thus, the required results follow. �
Theorem 3. Let S̄ ∈ L̄, s ∈ C and Q ∈ C. Then

(30) S̄ (ξ) = S̄ (0) eQξ
∞∏
k=1

(
1− ξ

σk

)
eξ/σk ̸= 0,

(31) S̄ (s) = S̄ (ξ) eQ(s−ξ)
∞∏
k=1

(
1− s−ξ

iτk

)
e(s−ξ)/σk

and

(32) S̄ (ξ)+
∞∑
k=1

S̄(k) (ξ) (s−ξ)k

k! = S̄ (ξ) eQ(s−ξ)
∞∏
k=1

(
1− s−ξ

iτk

)
e(s−ξ)/σk ,

where σk = ξ + iτk run though all zeros of S̄ (s) for ξ ∈ R\ {0} and τk ∈ R\ {0}.

Proof. By taking α = ξ and ς = ξ in Theorem 1 and considering S̄ ∈ L̄, we show (30),

(33)

S̄ (s) = S̄ (ξ) eQ(s−ξ)
∞∏
k=1

(
1− s−ξ

σk−ξ

)
e(s−ξ)/σk

= S̄ (ξ) eQ(s−ξ)
∞∏
k=1

(
1− s−ξ

iτk

)
e(s−ξ)/σk

and

(34)

S̄ (ξ)+
∞∑
k=1

S̄(k) (ξ) (s−ξ)k

k! = S̄ (ξ) eQ(s−ξ)
∞∏
k=1

(
1− s−ξ

σk−ξ

)
e(s−ξ)/σk

= S̄ (ξ) eQ(s−ξ)
∞∏
k=1

(
1− s−ξ

iτk

)
e(s−ξ)/σk .

Hence, we finish the proof. �
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Theorem 4. Let S̃ ∈ Ỹ and s ∈ C. Then

(35) S̃ (ξ) = S̃ (0)
∞∏
k=1

(
1− ξ

σk

)
̸= 0,

(36) S̃ (s) = S̃ (ξ)
∞∏
k=1

(
1− s−ξ

iτk

)
and

(37) S̃ (ξ)+
∞∑
k=1

S̃(k) (ξ) (s−ξ)k

k! = S̃ (ξ)
∞∏
k=1

(
1− s−ξ

iτk

)
,

where σk = ξ + iτk run though all zeros of S̃ (s) for ξ ∈ R\ {0} and τk ∈ R\ {0}.

Proof. By using

(38) eQ(s−ξ)
∞∏
k=1

e(s−ξ)/σk = 1

in Theorem 3 since S̃ (s) is of genes υ = 0, we show (33) and

(39) S̃ (s) = S̃ (ξ)
∞∏
k=1

(
1− s−ξ

σk−ξ

)
= S̃ (ξ)

∞∏
k=1

(
1− s−ξ

iτk

)
,

and by S̃ ∈ Ỹ, we reduce to

(40) S̃ (ξ)+
∞∑
k=1

S̃(k) (ξ) (s−ξ)k

k! = S̃ (ξ)
∞∏
k=1

(
1− s−ξ

σk−ξ

)
= S̃ (ξ)

∞∏
k=1

(
1− s−ξ

iτk

)
.

Thus, the required results follow. �

Theorem 5. Let S̃ ∈ Ỹ and S̃ (s) = S̃ (2ξ − s) for s ∈ C. Then

(41) S̃ (ξ)+
∞∑
k=1

S̃(2k) (ξ) (s−ξ)2k

(2k)! = S̃ (ξ)
∞∏
k=1

(
1− s−ξ

iτk

)
,

where σk = ξ + iτk run though all zeros of S̃ (s) for ξ ∈ R\ {0} and τk ∈ R\ {0}.

Proof. With use of Theorem 4 we deduce

(42)

S̃ (2ξ − s) = S̃ (ξ)+
∞∑
k=1

S̃(k) (ξ) [(2ξ−s)−ξ]k

k!

= S̃ (ξ)+
∞∑
k=1

S̃(k) (ξ) (ξ−s)k

k!

= S̃ (ξ)
∞∏
k=1

(
1− ξ−s

iτk

)
and

(43) S̃ (s) = S̃ (ξ)+
∞∑
k=1

S̃(k) (ξ) (s−ξ)k

k! = S̃ (ξ)
∞∏
k=1

(
1− s−ξ

iτk

)
.
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Since S̃ (s) = S̃ (2ξ − s), we have

(44) S̃ (ξ)+
∞∑
k=1

S̃(k) (ξ) (ξ−s)k

k! = S̃ (ξ)+
∞∑
k=1

S̃(k) (ξ) (s−ξ)k

k!

such that

(45) S̃ (s) = S̃ (ξ)+
∞∑
k=1

S̃(2k) (ξ) (ξ−s)2k

(2k)!

and

(46)
∞∑
k=0

S̃(2k+1) (ξ) (s−ξ)2k+1

(2k+1)! = 0

if we combine (42) and (43). �

4. Behaviors for some entire functions on the critical line

In this section we consider the behaviors for some entire functions on the critical line
Re(s) = ξ. We now begin with the following result:

Theorem 6. Let S̄ ∈ L̄ such that V̄ (x) = S̄ (ξ + ix), where x ∈ R. If Q ∈ C and V̄ (0) ̸= 0,
then

(47) V̄ (x) = V̄ (0) eixQ
∞∏
k=1

(
1− x

τk

)
eix/σk ,

(48) V̄ (0)+
∞∑
k=1

V̄(k) (0) xk

k! = V̄ (0) eixQ
∞∏
k=1

(
1− x

τk

)
eix/σk ,

V̄ (x) converges uniformly on every real compact set ℘̄ and τk ∈ R\ {0} run though all real
zeros of V̄ (x).

Proof. Making use of Theorem 4, we suggest

(49) S̄ (ξ) = V̄ (0) ̸= 0,

(50)

V̄ (x) = S̄ (ξ + ix) = S̄ (ξ) eQ[(ξ+ix)−ξ]
∞∏
k=1

[
1− (ξ+ix)−ξ

iτk

]
e[(ξ+ix)−ξ]/σk

= V̄ (0) eixQ
∞∏
k=1

(
1− x

τk

)
eix/σk

and

(51)

V̄ (x) = S̄ (ξ + ix) = S̄ (ξ)+
∞∑
k=1

S̄(k) (ξ) [(ξ+ix)−ξ]k

k!

= V̄ (0)+
∞∑
k=1

ikS̄(k) (ξ) xk

k!

= V̄ (0)+
∞∑
k=1

V̄(k) (0) xk

k! ,
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where

(52) ikS̄(k) (ξ) = V̄(k) (0)

and

(53) S̄ (ξ) eQ[(ξ+ix)−ξ]
∞∏
k=1

[
1− (ξ+ix)−ξ

iτk

]
e[(ξ+ix)−ξ]/σk = V̄ (0) eixQ

∞∏
k=1

(
1− x

τk

)
eix/σk .

By (51) and (53), V̄ (x) can be rewritten as

(54) V̄ (0)+
∞∑
k=1

V̄(k) (0) xk

k! = V̄ (0) eixQ
∞∏
k=1

(
1− x

τk

)
eix/σk .

With Lemma 3, we see that S̄ (s) converges uniformly on every compact set ℵ̄ and that
V̄ (x) converges uniformly on every real compact set ℘̄.

Since S̄ ∈ L̄, τk ∈ R\ {0} run though all real zeros of V̄ (x).
Therefore, the proof of Theorem 6 is complete. �

Theorem 7. Let S̃ ∈ Ỹ such that Ṽ (x) = S̃ (ξ + ixn), where x ∈ R. If Ṽ (0) ̸= 0, then

(55) Ṽ (x) = Ṽ (0)
∞∏
k=1

(
1− x

τk

)
,

(56) Ṽ (0)+
∞∑
k=1

Ṽ(k) (0) xk

k! = Ṽ (0)
∞∏
k=1

(
1− x

τk

)
,

Ṽ (x) converges uniformly on every real compact set ℘̃ and τk ∈ R\ {0} run though all real

zeros of Ṽ (x).

Proof. In view of Theorem 4 and Ṽ (x) = S̃ (ξ + ix), we get

(57) S̃ (ξ) = Ṽ (0) ̸= 0,

(58)

Ṽ (x) = S̃ (ξ + ix) = S̃ (ξ)
∞∏
k=1

[
1− (ξ+ix)−ξ

iτk

]
= Ṽ (0)

∞∏
k=1

[
1− (ξ+ix)−ξ

iτk

]
= Ṽ (0)

∞∏
k=1

(
1− x

τk

)
,

and

(59)

Ṽ (x) = S̃ (ξ + ix) = S̃ (ξ)+
∞∑
k=1

S̃(k) (ξ) [(ξ+ix)−ξ]k

k!

= Ṽ (0)+
∞∑
k=1

ikS̃(k) (ξ) xk

k!

= Ṽ (0)+
∞∑
k=1

Ṽ(k) (0) xk

k! ,
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where

(60) ikS̃(k) (ξ) = Ṽ(k) (0) .

Hence, from (58) and (59) we arrive at

(61) Ṽ (0)+
∞∑
k=1

Ṽ(k) (0) xk

k! = Ṽ (0)
∞∏
k=1

(
1− x

τk

)
.

By Lemma 3, we show S̃ (s) converges uniformly on every compact set ℵ̃, and we obtain

Ṽ (x) converges uniformly on every real compact set ℘̃.

Since S̃ ∈ Ỹ, τk ∈ R\ {0} run over all real zeros of Ṽ (x).
Therefore, we finish the proof of Theorem 7. �

Remark. Putting S̃ ∈ Ỹ and (56), we suppose that

(62) Ṽ (x) = Ṽ (−x) .

Applying (56) and (62), we show

(63) Ṽ (0)+
∞∑
k=1

Ṽ(k) (0) xk

k! = Ṽ (0)+
∞∑
k=1

(−1)k Ṽ(k) (0) xk

k! .

Then,

(64)
∞∑
k=1

Ṽ(2k+1) (0) x(2k+1)

(2k+1)! = 0

and

(65) Ṽ (x) = Ṽ (0)+
∞∑
k=1

Ṽ(2k) (0) x2k

(2k)! .

By (55) and (62), we get

(66) Ṽ (0)
∞∏
k=1

(
1− x

τk

)
= Ṽ (0)

∞∏
k=1

(
1− x2

τ̂2k

)
,

where τ̂k = |τk|.
From (65) and (66) we see

(67) Ṽ (x) = Ṽ (0)
∞∏
k=1

(
1− x2

τ2k

)
= Ṽ (0)+

∞∑
k=1

Ṽ(2k) (0) x2k

(2k)! .

By Theorem 7, we find that Ṽ (x) converges uniformly on every real compact set ℘̃ and

τk ∈ R\ {0} run though all real zeros of Ṽ (x).
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5. Simple zeros for some entire functions

In this section we present two theorems on the simple zeros for some entire functions.

Theorem 8. Let S̃ ∈ Ỹ and S̃ (s) = S̃ (2ξ − s). Then all zeros of S̃ (s) are simple.

Proof. By Theorem 5, we show

(68) S̃ (s) = S̃ (ξ)+
∞∑
k=1

S̃(2k) (ξ) (s−ξ)2k

(2k)! = S̃ (ξ)
∞∏
k=1

(
1− s−ξ

iτk

)
,

and all zeros of S̃ (s) are σk = ξ + iτk for ξ ∈ R\ {0} and τk ∈ R\ {0}.
Hence, all zeros of S̃ (s) are simple, and this completes the proof. �

Theorem 9. Let S̄ ∈ L̄. Then all zeros of S̄ (s) are simple.

Proof. By using Theorem 5 we get

(69) S̄ (ξ)+
∞∑
k=1

S̄(k) (ξ) (s−ξ)k

k! = S̄ (ξ) eQ(s−ξ)
∞∏
k=1

(
1− s−ξ

iτk

)
e(s−ξ)/σk ,

and σk = ξ + iτk run though all zeros of S̄ (s) for ξ ∈ R\ {0} and τk ∈ R\ {0}, which are
the required results. �
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