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Abstract

Integration of community ecology with disease biology is viewed as a promising avenue for uncovering determinants of pathogen
diversity, and for predicting disease risks. Plant-infecting viruses represent a vastly underestimated component of biodiversity
with potentially important ecological and evolutionary roles. We performed hierarchal spatial analysis of wild plant populations
to characterise the diversity and coexistence structure of within-host virus communities, and their predictors. Our results
show that these virus communities are characterised by single infections of few, dominating virus taxa as well as diverse, non-
random coinfections. Using a novel graphical modelling framework we demonstrate that after accounting for environmental
heterogeneity at the level of both individual host plants and populations, most virus co-occurrence patterns can be attributed to
virus-virus associations. Moreover, we show that conditioning variables changed virus association networks especially through
their indirect effects. This highlights a previously underestimated mechanism of how human-driven environmental change can
influence disease risks.

Introduction

Viruses, like all organisms, occur as communities with other species (Dı́az-Muñoz 2017). Importantly, the
diversity of co-occurring viruses may have profound impact on virus evolution and epidemiology (Alcaideet
al. 2020). Hence, understanding the conditions and scales at which virus communities vary is critical when
predicting how virus communities respond to environmental change or to disease control measures (Gilman et
al. 2010; Malmstrom et al. 2011; Massart et al. 2017; Halliday et al. 2020). Over the past decade metagenomic
surveys exploring virus diversity in wild hosts ranging from plants to insects and mammals (Wren et al. 2006;
Roossinck 2010, 2012; Ng et al. 2011; Letko et al. 2020) have revealed a tremendous, largely undescribed,
virus diversity across environments. It is becoming clear that the diversity of virus taxa even within the
same host can be highly variable, and that viral co-occurrences are common in nature (Roux et al. 2015;
Dı́az-Muñoz 2017; Munson-Mcgee et al. 2018; Alcaide et al. 2020).

Predicting how pathogen communities respond to environmental change requires a principled community
ecology framework to disentangle possible drivers of coexistence patterns (Johnson et al. 2015; Seabloom et
al. 2015). As Popovic et al. (2019) recently outlined, there are three main drivers of observed species co-
occurrence patterns (Figure 1). First, two species might share similar responses to environmental variables
such as temperature (Suzuki et al. 2014; Obrępalska-Stęplowska et al. 2015; Alcaide et al. 2021). Second, two
species may exhibit similar responses to the occurrence of a third species: for example, some viruses require
another virus species to mediate their replication within a host (Pirone & Blanc 1996; Syller 2012), resulting
in an indirect association between the dependent species. Third, two species might exhibit a direct, biotic
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association: a virus can for example facilitate the establishment of another (Six & Klug 1973; Waterhouse
& Murant 1983). Hence, the sequence of arrival (Fukami 2015), can have far reaching implications for the
structure of pathogen communities (Karvonen et al. 2019).

Spatial structure and abiotic habitat conditions are considered important for structuring pathogen commu-
nities (Bergner et al.2020) via their effect on both hosts and pathogens (Makiola et al. 2019) (Figure 1).
While demographic stochasticity is important at smaller spatial scales (Tilman 2004), abiotic environmental
heterogeneity increases with increasing spatial scale, promoting greater coexistence through species-specific
environmental responses (Chase & Leibold 2003). Dispersal presumably decreases coexistence by forcing
species to interact and by homogenising intra- and interspecific interactions (Snyder & Chesson 2003). Most
plant viruses are vector-dispersed, and thus the distribution of vectors can also influence the structure of
plant pathogen communities (Schröder et al. 2017). A special characteristic of pathogen communities is that
their immediate environment is a living organism in itself, and hence the influence of the abiotic environ-
ment (e.g. weather) on pathogens can be either direct or mediated by the host and/or vectors (Figure 1).
Moreover, the distinction between abiotic and biotic effects becomes blurred, as the interaction between a
host and a pathogen can be considered both an environmental effect as well as a biotic association (Figure
1). Pathogens can only occur where they have susceptible hosts and thus spatial variation in resistance is
expected to have direct impacts on pathogen (co-)occurrence patterns (Jousimo et al.2014; Carlsson-Granér
& Thrall 2015).

Ecological knowledge often relies on observational methods, but inferring signals of biotic interactions from
co-occurrence data is challenging (Blanchet et al. 2020). However, studying species associations through the
perspective of conditional probabilities helps to overcome some of these challenges. Conditional probability
refers to the probability that two species will be found together aftercontrolling for the other species in
the network. Implementations for ecological applications have been recently developed (Harris 2016; Clarket
al. 2018; Popovic et al. 2019). Markov random fields (MRFs) are a group of graphical network models
which enable the estimation of conditional dependencies from networks of interacting variables (Sutton &
McCallum 2011; Clark et al. 2018). In addition to analysing conditionally dependent species co-occurrence
patterns after accounting for the occurrences of all other species in the community, also additional covariates
can be included, resulting inconditional random fields (CRFs) (Azaele et al. 2010; Harris 2016; Clark et al.
2018; Popovic et al. 2019). MRFs and CRFs allow us to discover how species are associated with each other
and their environment, and importantly also how the environment influences these associations (Clark et al.
2020).

Here, we aim to determine the relative roles of spatial environmental heterogeneity and both direct and
indirect virus-virus associations in determining the coexistence structure of within-host virus communities
of naturally occurring Plantago lanceolata populations, identified via deep sequencing of small RNAs from
field collected plant samples (Kreuze et al. 2009). To overcome the challenges of inferring signals of biotic
interactions from co-occurrence data (Blanchet et al. 2020), we incorporate relevant environmental covariates
at the scale of both viruses and the hosts, analyse co-occurrence patterns through conditional probabilities,
and use a reasonably-sized data set of 400 plants, sampled hierarchically at biologically relevant scales (across
a population network and within populations), covering a wide environmental range. Specifically, we ask:

Q1. What are the relevant spatial scales of virus diversity and co-occurrences, and can we detect signals of
coexistence mechanisms influencing the relationship between viral diversity and co-occurrence at different
spatial scales? Q2. Do host and habitat characteristics, and spatial structure of the host populations influence
virus community structure, or can we explain the structure solely using the direct and indirect associations
between the viruses? Q3. After accounting for the effects of the host and habitat characteristics, and spatial
patterns on virus distributions, are there any remaining non-random negative or positive direct associations
between viruses? Q4. Do associations between viruses change when comparing conditional network models
(CRFs) with only host- and/or habitat-related and/or spatial explanatory variables included in the model,
demonstrating how these different sources of environmental heterogeneity explain the structure of the virus
community?
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Our results demonstrate that there are non-random co-occurrence patterns between viruses, which are only
partly resolved by the host and habitat characteristics and spatial structure. We find that the majority of
the explained virus co-occurrence patterns can be attributed to direct and indirect associations among the
viruses.

Material and Methods

Study system and sampling

Our study focused on viruses infecting natural populations ofPlantago lanceolata in the Åland Island, SW of
Finland. These populations have been monitored since 1993, and they form a highly fragmented network of
~4000 populations (Ojanen et al. 2013). We used a stratification process to select 20 focal populations that
were sampled in early June 2017 for their virus communities. We collected leaf samples from 20 randomly
selected plants in each population, resulting in altogether 400 samples for small RNA sequencing. For more
details on the study system and sampling, see Supplementary Material and Methods.

VIRUS DETECTION

For virus identification, RNA was extracted from the samples using phenol-chloroform-isoamylalcohol extrac-
tion (Chang et al. 1993). The small RNA (sRNA) was sequenced using Illumina Hiseq (2009). After quality
check and adaptor removal, the obtained reads were analysed using the VirusDetect pipeline (Zheng et al.
2017) to obtain Operational Taxonomical Units (OTUs). The OTUs were classified according to their host
range and plant associated OTUs were selected for our analysis (Hulo et al. 2011). The OTUs were named at
the virus family level and are henceforward referred to as “viruses”. We compiled a presence-absence matrix
describing the virus community in each host individual and host population.

EXPLANATORY VARIABLES

Host- and habitat-related variables

During sampling we recorded the locations of the plants with GPS and measured the size of the plants (Table
1). We recorded signs of herbivore damage, and surveyed surrounding vascular plant communities between
1930 June 2017 by counting the number of vascular plant species within multiple one-square-meter quadrats
in each population. We used the vegetation data to calculate the Shannon diversity index (Shannon 1948)
for each population (Table 1).

We estimated the proportion of agricultural area surrounding each study population from Corine Land Cover
(CLC, version 2020_20u1) with QGIS (QGIS Development Team 2019) by creating a one-kilometre buffer
zone around each study population following the patch borders and calculating the proportion of 20 m × 20
m pixels falling under agricultural land use category within this buffer zone (Table 1). We also estimated the
coverage of P. lanceolata foliage in square meters in each population. We quantified the connectivity of a host
population with respect to other populations by calculating the Euclidian distances between populations and
calibrating these measures by the species dispersal capacity (Hanski 1999).

We obtained weather observations for the study populations from the Finnish Meteorological Institute (Aalto
et al. 2016). We calculated the number of severe winter days during the winter before the sampling season
(2016-2017), and the sum of temperatures of the effective summer days during previous summer (2016). See
Table 1 and Supplementary Material and Methods for more details, including biological justification for the
selected variables.

Spatial variables

We included spatial variables implemented as Moran’s eigenvector maps (MEMs, Dray et al. 2006). We
calculated MEMs based on the GPS coordinates of the sampled host plants, with the assumption of positive
autocorrelation. We estimated the significance of individual eigenvectors with a permutation test for the
Moran’s I statistic and included all the eigenvectors with Moran’s I >0.7, as well as the last significant
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one, thus representing both coarse and fine scale signal of significant spatial autocorrelation. We used the R
environment (R Core Team 2020) and packages ‘spdep’ and ‘adespatial’.

STATISTICAL METHODS

Descriptive analyses

We began with descriptive analyses and illustration of the virus co-occurrence structure. We assessed the
nestedness of the data by organising the virus community matrix based on overlap in virus presences among
plants and decreasing fill (Almeida-Neto et al.2008). We calculated C-scores (Stone & Roberts 1990) for
the virus community at the level of individual host plants and populations (Figure 2). We calculated the
numbers of pairwise virus co-occurrence combinations in host plants, as well as the pairs of viruses that
never co-occur. We used the full dataset of 25 viruses (See Results) for these descriptive analyses.

We quantified the relationship between the cumulative virus richness and co-occurrence patterns with respect
to increasing area sampled by calculating the mean species–area–curve and mean coexistence–curve (Hart et
al. 2017). Both curves were constructed by randomly selecting one sampled host plant, and then increasing
the spatial scale and sample by including the next closest plant to the species richness or co-occurrence
calculation. We calculated the mean curves by repeating this 100 times, selecting a different initial plant for
each round. We also calculated the maximum number of co-occurring virus pairs from the number of taxa
observed thus far. For more details, see Supplementary Material and Methods and Supplementary Results
Figure S2-3.

Markov Random Field networks

To understand the role of host- and habitat-related variables and spatial configuration of the hosts, as well
as virus interactions (Figure1, Table 1) in explaining the network structure, we fitted both Unconditional
(MRF) and Conditional Markov Random Field models (CRF) to the virus community data (Clark et al.
2018). Markov Random Fields (MRFs) are graphical models, which can represent complex distributions
as network graphs. These networks consist of nodesand edges , corresponding to the observed variables
within the data, and to the probabilistic interactions between variables that need to be estimated. The edge
associations are undirected, meaning that the effect of one node on another is reciprocal. If there is no edge
between two nodes in the estimated graph, these nodes are conditionally independent from one another,
whereas if there is an edge, these nodes are conditionally dependent, after accounting for the other node
effects in the graph model (Cheng et al. 2014). Conditional Random Fields allow for these dependencies
among nodes to be further conditional on other covariates (Cheng et al. 2014; Clarket al. 2018). Hence, the
values for the edge associations can change in the presence of these covariates, and the resulting graph model
illustrates the pairwise associations between viruses in host plants, conditional not only on the rest of the
virus community, but also on the covariates included in the model (Table 1).

The modelling framework is described in detail by Clark et al.(2018). Briefly, we modelled the log-odds of
detecting virus igiven covariate x and occurrence of virus j with

log

(
P
(
yi = 1

∣∣y\i, x)
1− P

(
yi = 1

∣∣y\i, x)
)

= αi0 + βT
i x+

∑
j:j 6=i

(
αij0 + βT

ij x
)
yj ,

where yi is the vector of presences and absences of virusi ; y\i denotes the presences and absences of all
other viruses except i ; αi0 is the virus-level intercept; and βT

i is the effect of covariate x on the occurrence
probability of virus i . Parameters αij0and βT

ij represent the associations between viruses, conditional on the
occurrences of all the non-focal viruses (other than the focal virus i ).

We used data on viruses with at least 10 occurrences (16 viruses) in the entire virus community matrix
(i.e. minimum prevalence of 2.5% of sampling units). To understand how environmental characteristics
and the host affect the virus community, we included several explanatory, conditioning variables in the
model (Table 1), describing: 1) The level of spatial autocorrelation of the host populations (implemented

4



P
os

te
d

on
31

Ja
n

20
24

|T
he

co
py

ri
gh

t
ho

ld
er

is
th

e
au

th
or

/f
un

de
r.

A
ll

ri
gh

ts
re

se
rv

ed
.

N
o

re
us

e
w

it
ho

ut
pe

rm
is

si
on

.
|h

tt
ps

:/
/d

oi
.o

rg
/1

0.
22

54
1/

au
.1

70
66

69
53

.3
64

99
81

3/
v1

|T
hi

s
is

a
pr

ep
ri

nt
an

d
ha

s
no

t
be

en
pe

er
-r

ev
ie

w
ed

.
D

at
a

m
ay

be
pr

el
im

in
ar

y.

as Moran’s eigenvectors) 2) habitat-related characteristics, namely the quality of the habitat of the host
plants (the connectedness (S ) of the focal P. lanceolata population to other populations, agricultural land
use (percentage of the surrounding landscape) and the Shannon diversity of the local plant community,
which have been demonstrated to influence virus occurrences in this system (Susi & Laine 2020), and as
the weather conditions of local populations (severity of the previous winter and temperature sum over the
effective summer days during previous summer); as well as 4)host-related characteristics of the focal host
plants (host population size, host plant size and signs of herbivory). See Table 1 for full details.

Altogether our dataset used for modelling consisted of 16 virus taxa and 16 explanatory variables (Table
1), resulting in 272 coefficients in each regression. To avoid overfitting, regularisation has been implemented
in the method through least absolute shrinkage and selection operator (LASSO), forcing some regression
coefficients to zero, and thus performing variable selection and reducing the risk of overfitting (Clark et al.
2018). To achieve an undirected network and symmetry within the coefficients of conditional dependence
(i.e.αij0 = αji0 andβT

ij = βT
ji ) we take the mean of the corresponding estimates, which is the default setting

of the applied algorithm (Clark et al. 2018).

We fitted six model variants in total: 1) an Unconditional Markov Random Field model (referred to as
‘MRF’), with only virus occurrences included, 2) a Conditional Markov Random Field model (CRF) with
only habitat- and host-related (collectively referred as ‘environmental’, see Table 1) variables included as
additional constrains (‘CRFenv’), 3) a CRF model with only host-related variables included as additional
constraints (‘CRFhost’), 4) a CRF model with only spatial variables and variables related to habitat (quality
and weather) included as additional constraints (‘CRFhabitat’), 5) a CRF model with only spatial variables
included as additional constrains (‘CRFspat’), 6) a Conditional Markov Random Field model with both all
environmental as well as spatial variables included as additional constrains (‘CRFfull’). We will refer to the
variants (2-6) collectively as ‘CRF models’ or ‘CRFs’.

We evaluated the model fit by calculating the Area Under Curve values (Hanley & Mcneil 1982) using
the full data set. We used cross validation (with four folds) to estimate model generality by comparing
predicted and observed outcomes simultaneously for all taxa. To account for parameter uncertainty of
the final model, we modelled 100 bootstrapped replicates for the model. If the 90% confidence interval
of bootstrapped coefficients did not overlap with zero, we considered the variable to have a statistically
significant effect. To test whether the viral associations were phylogenetically conservative, we compared
the direct associations drawn from all our network models to the phylogenetic relationships of the viruses,
constructed from taxonomy, by conducting a Mantel test between the matrices.

All results were produced with R (version 4.0.2, R Core Team 2020), and packages ‘vegan’ (Oksanen et
al. 2019), ‘MFRcov’ (Clark et al. 2018), ‘igraph’ (Csardi & Nepusz 2006), along with their dependencies.
An R package called ‘meta17-network’ including the analytical pipeline, data, and documentation for full
reproduction of the results can be found in Github (aminorberg/meta17network-pkg).

Results

Description of the data

The plant small RNA sequencing yielded on average 18 222 557 reads (min 11148864, max 63 508 829 and sd
3 944 297) per sample. VirusDetect assembled 512 908 contigs in total (min 39 nt, mean 63 nt, max 5408 nt
and sd 45 nt). There were 5504 contigs (min 40 nt, mean 90 nt, max 1232 nt) with hits to known virus taxa
(Gorbalenyai & Siddell 2021) with average sequence similarity of 82% (min 23%, max 100%). Our analyses
are focused on the 25 identified plant-associated viruses.

Out of the 400 sampled host plants, four samples were discarded due to missing explanatory variable data.
Thus, we had 396 sampled plants, resulting in 9 900 unique virus observations. The prevalence of the
individual viruses varied from 0.5 to 36% in the whole data. Of the 396 plants, 29% were uninfected, 32%
hosted a single infection, and 39% of the plants hosted multiple infections, of which 7% consisted of five or
more viruses (Figure 2A).
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Descriptive analyses

The virus communities exhibit a significantly nested structure: the mean C-score over the viruses was 290.52
at the individual plant level (with the maximum of 87155 possible checkerboard units); and 2.97 at the
population level (with the maximum of 890 possible checkerboard units) (Figure 2B). Almost all viruses (24
OTUs) were present in the most virus-rich host population (population 861; Figure 2B and 2D), while other
populations hosted smaller subset of the viruses, with the simplest metacommunity consisting of six viruses
(population 3222; Figure 2B and 2C).

All the viruses co-occurred with another virus at least once (Figure 3A). The most abundant viruses, Clos-
teroviridae and Caulimoviridae, occurred as single infections in 39 and 33 host plants, respectively, which
made up nearly one third of their total occurrences (133 and 122, respectively). The number of unique virus
co-occurrence combinations (of two viruses or more) in the whole data set was 111. Only Avsunoviroidae and
Alphasatellitidae never co-occurred (of which the latter was so rare that it was not included in the network
models, see below).

The species-area curve shows that all 25 viruses have been encountered when on average 264 plants have
been sampled (Figure 3B). The difference between the species-area and coexistence-area curves shows how
the cumulative sum of co-occurring viruses is lower than the cumulative viral richness would predict, until
the coexistence curve reaches its maximum at 387 sampled host plants. For example, when 100 host plants
have been sampled, the number of viruses observed was 20, which would enable 190 co-occurring pairs of
viruses while the average number of observed co-occurring virus pairs at that point was 168.

Markov Random Field networks

The CRF models (with additional conditioning variables) clearly outperformed the MRF (with only virus
occurrences included): the AUC for MRF was 0.69 while for the CRFs it varied between 0.87 and 0.89.
Based on cross-validation, there were no pronounced discrepancies between the different CRFs, but the
overall performance of the CRFs was better than that of the MRF model: the 50% quantile for the mean
for predicting both true positives and negatives correctly for the MRF was 0.76, whereas the corresponding
value for the CRF variants was around 0.91. The MRF predicted more false positives, whereas the CRFs
predicted more false negatives. The mean values for different performance measures are reported in the
Supplementary Results Table S1.

To understand the changes in the network resulting from the addition of conditioning variables, we compared
the virus-virus-associations between viruses based on the MRF and the different CRF variants. The MRF
revealed mostly positive associations between the viruses (Figure 4A). After including spatial, habitat and
host-related variables (Table 1), some of the associations between the viruses diminished or disappeared, and
all of the conditional associations were positive (Figure 4B). The number of significant virus co-occurrences
captured by the MRF model was 50 (Figure 4A). The corresponding number for the CRFfull model was 16
(Figure 4B). The CRFs incorporating subsets of conditioning variables identified intermediate amounts of
associations: 30 for CRFhost, 38 for CRFspat, 28 for CRFhabitat, and 18 for CRFenv.

Although several associations could be explained exchangeably with habitat- or host-related variables, many
associations were also explained solely by either habitat- or host-related variables (Figure 4C-D). For example,
Bromoviridae showed a high number of associations with other viruses (Figure 4A), but was not explained
by host-related or spatial variables (Figure 4C and E). However, several of its strong associations with
other viruses were explained by the habitat-related effects (Figure 4D). The 11 association links captured
by the CRFfull model were captured by all the other conditional and unconditional model variants as well
(Figure 4B). We will refer to these associations as ‘permanent’. In this network, Bromoviridae and especially
Secoviridae appeared as hubs, with five association links to other viruses. These permanent associations
represented direct interactions between viruses that could not be explained with indirect effects of the rest
of the virus community nor any combination of additional conditioning variables.

Next, to understand how host- and habitat-related variables and spatial configuration of the hosts influence

6
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virus community structure, we investigated the direct effects of the additional conditioning variables. All
the significant direct effects of the environmental and spatial variables were for either Caulimoviridae or
Geminiviridae (Table 2): e.g., increasing agricultural land use in the surrounding landscape increased the
occurrence probability of Caulimoviridae, and host population size predicted higher occurrence probability
for Geminiviridae.

None of the indirect effects of the additional conditioning variables influenced the associations between viruses
so that the direction of the direct virus-virus association would change from positive to negative or vice versa.
However, all conditioning variables except host plant size and agricultural land use had some effect(s) on
some viral associations (Table 2). In terms of the number of virus-virus-associations influenced, the most
influential indirect effects were the spatial structure of the host populations (MEMs) and host population
connectivity. All the effects of the first, coarse scale spatial variable (MEM1) were positive, whereas the effects
of the spatial variables at increasingly finer scales (MEM2-4) were all negative. Increasing connectivity of the
host population had both negative and positive effects on the virus-virus associations: for example, higher
connectivity lowered the occurrence probability of Avsunoviridae in the presence of Bromoviridae (and vice
versa, symmetrically). There were altogether eight significant herbivory-related effect, all of them positive
(Table 2).

Discussion

Here, we use community modelling to uncover determinants of wild plant virus diversity, a vastly unexplored
component of biodiversity (Roossinck 2011). We show that virus communities exhibit a clear nested struc-
ture with abundant co-occurrences, both pairwise and higher-order. The observed coexistence patterns are
mediated by host plant characteristics, abiotic environment and spatial structure, as well as associations
among the viruses. Many present-day threats posed by infectious diseases involve interactions that are man-
ifested across nested scales of biological organisation (Johnson et al. 2015), and our findings shed light on
how plant virus coexistence is maintained at different spatial scales.

The simplest within-host viral communities detected in our data consisted of single infections, but nearly
half (46%) of the infected plants hosted multiple infections. Single infections were typically observed only
for the few most common viruses, and half of all the viruses never occurred as single infections. Our findings
are in line with other studies that have found high levels of coinfection (Al Rwahnih et al. 2009; Rey et
al. 2012; Tugume et al.2016). However, our approach enabled the detection of virus communities in a
substantial number of host individuals, with capacity to detect viromes consisting of up to 24 distinct taxa.
This suggests that virus communities are highly variable within and among hosts.

From the difference between species-area and coexistence curves, we see that a larger number of hosts is
needed to maintain the coexistence patterns that could be derived from the overall virus richness. Indeed,
increasing environmental heterogeneity and varying responses of viruses to this heterogeneity promote co-
existence by reducing competition, as predicted by the classic species sorting paradigm, which has been
shown to be influential for microbial communities (see e.g. Székely & Langenheder 2014 and refs. within).
Combined with the weakening effects of demographic stochasticity and the homogenising effects of dispersal,
these mechanisms lead to more stable coexistence at increasing spatial scales (Hart et al. 2017; Levine &
Hart 2020).

We found that the conditional network models (CRFs), outperformed the model incorporating only asso-
ciations between viruses (MRF) in explaining virus community structure. The differences between the CRF
model variants were less pronounced, as seen from their equal model fit and performance. Hence, we conclude
that there is environmental variation and processes operating at different spatial scales that influence the
wild virus community coexistence structure both directly and indirectly. The environmental characteristics
and the spatial variables explain community structure almost interchangeably. Previously, e.g. within-host
diversity of pathogens has been shown to increase with latitude, while pathogen turnover follows an opposite
trajectory, suggesting limited transmission in lower latitudes (Seabloomet al. 2010).

Our analysis revealed spatial variables to influence associations between viruses, resulting in indirect effects
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on their co-occurrence. These viruses are vector-dispersed, and most likely dispersal-limited at larger spatial
scales (Pleydell et al. 2018), leading to less homogenisation at these scales. However, at the scale of a host
populations, variation among host genotypes (Sallinen et al.2020) and demographic stochasticity (through
e.g. herbivory, as seen from the indirect effects of herbivore damage on the associations between viruses) are
expected to be important, as well as abiotic interactions mediating coexistence (Kozanitas et al. 2017).

After accounting for the effects of the host and habitat characteristics, as well as spatial structure on virus
distributions, non-random, significant positive associations between viruses remain. Although these associati-
ons are based on purely observational co-occurrence patterns, given the spatial scale of our sampling and our
method for detection that targets the host’s defence response (Kreuzeet al. 2009), we consider these indicati-
ve of biotic interactions between the viruses within a host plant (Wintermantel et al.2008). The interactions
among coinfecting viruses may involve positive effects on replication (Pruss et al. 1997; Taiwo et al.2007),
or even obligate dependencies as some viruses require their specific helper virus in order to complete their
lifecycle (DaPalmaet al. 2010). Viruses may also suppress host immunity allowing subsequent infections to
escape recognition by host immunity (González-Jara et al. 2005). As expected, the inclusion of explanatory
variables reduced the number of direct associations between viruses identified by the models, suggesting
that shared environmental responses play an important role in the assembly of the communities (see e.g.
Leathwick et al. 2006; Ovaskainen & Soininen 2011). After accounting for host- or habitat-related or spati-
al variables, support for several direct associations (e.g. Tombusviridae-Alphaflexiviridae, Betaflexiviridae-
Potyviridae and Tombusviridae-Betaflexiviridae) was no longer detected.

Importantly, we found that the inclusion of the additional conditioning variables changed the association
networks especially through their indirect effects. For example, we found a significant indirect effect of the
coarsest-scale spatial variable (MEM1) on the association between Fimoviridae and Alphaflexiviridae, while
the direct effect of this spatial variable was not significant. Hence, the occurrence probability of Alphafle-
xiviridae is jointly affected by the occurrence of Fimoviridae as well as spatial structure. Due to symmetry,
Fimoviridae is similarly affected jointly by the occurrence of Alphaflexiviridae and spatial structure. These
indirect significant effects were more frequent (in total 32 effects) in comparison to direct effects (in total
10). The indirect links can be indicative of either biotic interactions between viruses only manifesting under
certain environmental conditions, or these environmental conditions having an effect only in interaction with
the other virus (Kozanitas et al. 2017). Such indirect effects have traditionally been challenging to detect, yet
not accounting for them can lead to over- or underestimation of signals of biotic interactions in co-occurrence
data (Blanchet et al. 2020).

Although our virus community data set along with its environmental explanatory variables is extensive and
of high quality, our results are limited by our sample size and its effects on the parameter estimation of our
modelling method. We use regularisation to avoid overfitting, but we note that the estimated parameters
could in theory change with more data included. However, as seen from the species-area and coexistence-area
curves, our sampling effort captures the detected virus diversity already before all the samples have been
included, indicating a promising sample size.

Our results demonstrate that natural plant virus communities are characterised by single infections of few,
dominating virus taxa as well as diverse, non-random coinfections. Virus diversity can be explained by
coexistence-promoting mechanisms, some of which we could tease apart with our modelling. We show that
host and habitat characteristics, as well as spatial structure, resolve some of the observed co-occurrence
patterns, to some degree interchangeably. Importantly, we find that some virus-virus associations are me-
diated by either host or habitat characteristics, or the spatial structure of the host populations. However, a
substantial part of the explained virus co-occurrence patterns can be attributed to positive, direct associati-
ons among the viruses. Moreover, we show that additional conditioning variables changed virus association
networks especially through their indirect effects. Thus, our study contributes to increasing understanding
on how plant virus coexistence and thus biodiversity is maintained at different spatial scales. Our results
highlight a previously underestimated mechanism of how human-driven environmental change can influence
disease risks by changing biotic associations between viruses that are conditional on their environment.
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Figure and table legends

Figure 1. A schematic representation of direct and indirect associations between viruses in
the context of their hosts and environment. Within plant populations, individual plants host viruses.
The viruses have associations with each other, either through direct mutualistic or antagonistic interactions
(bold font), or indirect associations mediated by another virus, shared vector, and/or host immunological
responses (small font). The environment can influence the (co-)occurrences either directly or through host
effects at the level of host populations or individuals, or via the vectors (capital font). The solid bold arrow
represents the direct association between two viruses, whereas the dashed arrows show the confounding
indirect associations. The additional conditioning explanatory variables included in our constrained models
are illustrated. The indirect effects (mediator species, changes and variation in host immune response) are
included in the models implicitly through spatial variables and the model structure.

Figure 2 . Virus communities by population. In A, each pie chart represents the virus community of a
host plant population, overlayed on the map of Åland. Infection load is shown with greyscale, as indicated in
the legend. Sliced portions of same shade of grey show plants with equal number of viruses, but in different
combinations. B) Nestedness of the virus communities when aggregated to host population level. Two most
contrasting communities are shown in more detail in C and D. In these barplots, the within-host virus
community composition of a virus-rich plant host population 861 (D) and virus-poor population 3222 (C) is
shown with different colours indicating different virus taxa, as shown in legend.

Figure 3. Viral co-occurrence structure. A) Virus occurrences (diagonal) and co-occurrences (off-
diagonals), organised according to the first principal component of the incidence matrix. The colouring of
the font intensifies with the value. The diagonal elements show the overall number of occurrences of the focal
virus, whereas the off-diagonal elements show the numbers of host plants where the two viruses co-occur. The
numbers inside brackets next to virus names indicate the number of single infections. B) Species-area curve
and coexistence curves. The uppermost black dotted line indicates the species-area curve, the grey dashed
line indicates the maximum amount of possibly coexisting pairs (calculated from the species-area-curve),
and the black solid line shows the actual average coexistence curve.

Figure 4. Virus networks. A) Markov random field co-occurrence network, representing direct pairwi-
se associations between viruses, after accounting for the rest of the community (MRF). B) Constrained
Markov random field co-occurrence network, representing direct pairwise associations between viruses, af-
ter accounting for the rest of the community as well as all environmental and spatial effects (CRFfull).
C) Direct associations explained by host-related variables (CRFhost); D) direct associations explained by
habitat-related variables (CRFhabitat); and E) direct associations explained by spatial variables (CRFspat).
The viruses closer in space have stronger positive associations with each other and edge thickness is scaled
by the strength of association. In summary, when the associations in panels C-D are subtracted from all
the associations in panel A, the associations in panel B are left. Hence, the dashed lines in C-D represent
associations that disappear from panel A after adding the explanatory variable group in question, resulting
in the permanent associations illustrated with solid lines in panel B.

Table 1. Explanatory conditioning variables. See Supplementary Material and Methods for more tho-
rough description and justification of the explanatory variables.

Table 2. The direct effects of the additional explanatory variables on the virus occurrence
probabilities and the indirect effects of the additional explanatory variables through their
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influence on the association between a focal pair of viruses. Effects≥ |0.25| are highlighted with
bold font. All mean coefficient estimates are significant (based on bootstrapping and a 90% confidence
interval).

References
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