
P
os
te
d
on

31
J
an

20
24

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
70
66
68
90
.0
31
77
44
4/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
a
n
d
h
as

n
o
t
b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Existence of a global attractor governed by differential

hemivariational inequalities with parabolic type and its applications

xiuwen li1, Zhenhai Liu1, and Nikolaos Papageorgiou2

1Guangxi University for Nationalities
2National Technical University

March 07, 2024

Abstract

In this paper, we consider an abstract system which consists of a hemivariational inequality of parabolic type combined with a

nonlinear differential inclusion (DPHVI, for short) in the framework of Banach spaces. The objective of this paper is fourfold.

The first one is to deal with the existence of solutions and the properties of the solution set for parabolic hemivariational

inequalities (PHVIs, for short). The second aim is to investigate the existence of mild solutions for DPHVI by means of a fixed

point technique. The third target is to study the existence of a global attractor for the $m$-semiflow governed by DPHVI.

Finally, the fourth goal is to illustrate an application of our abstract results.
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Abstract

In this paper, we consider an abstract system which consists of a hemivaria-
tional inequality of parabolic type combined with a nonlinear differential inclusion
(DPHVI, for short) in the framework of Banach spaces. The objective of this paper
is fourfold. The first one is to deal with the existence of solutions and the properties
of the solution set for parabolic hemivariational inequalities (PHVIs, for short). The
second aim is to investigate the existence of mild solutions for DPHVI by means of a
fixed point technique. The third target is to study the existence of a global attractor
for the m-semiflow governed by DPHVI. Finally, the fourth goal is to illustrate an
application of our abstract results.
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1 Introduction and problem formulation

The goal of this paper is to investigate an abstract system which represents a class
of parabolic hemivariational inequalities driven by the nonlinear differential inclusions
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(DPHVIs, for short) in the framework of Banach spaces. Let E be a Banach space and
(U,H,U∗) an evolution triple (Gelfand triple) of spaces. Let A : D(A) ⊆ E → E be
the infinitesimal generator of a C0−semigroup T (t) (t ≥ 0) on E and let ∂J denotes the
Clarke subdifferential of a locally Lipschitz function J : H → R. F, B are two set-valued
maps and g is a nonlinear map which will be specified in Section 4. With these data, the
formulation of our problem is:

x′(t) ∈ Ax(t) + F (t, x(t), u(t)), a.e. t > 0, (1.1)

u′(t) +B(t, u(t)) + ∂J(u(t)) 3 g(x(t)) a.e. t > 0, (1.2)

x(0) = x0, and u(0) = u0. (1.3)

The study of variational inequalities, which was initially developed to deal with equi-
librium problems, is closely related to the convexity of the energy functionals. It should
be mentioned that there are growing papers on the mathematical models for mechanical
problems with nonconvex and nonsmooth energy functions. The lack of convexity and d-
ifferentiability in mechanics and engineering leads to new types of variational formulation
called hemivariational inequalities (HVIs, for short) which was first introduced and stud-
ied by P.D. Panagiotopoulos in the early 1980’s. Such an expression allows one to deal
with many practical problems involving nonmonotone and multivalued relations. Conse-
quently, for the description of various mechanical problems which can be formulated as
HVIs as well as applications, we refer to [12, 20, 22–24, 26, 28, 29].

It is well known that differential variational inequalities (DVIs, for short) are systems
which couple differential or partial differential equations with a time-dependent variational
inequality. DVIs were systematically discussed by Pang–Stewart [30] in the framework
of Euclidean spaces. From now on, a large number of works have been dedicated to the
development of theory associated to DVIs and their applications, we refer the reader to [1,
3, 4, 13–15, 17, 18, 27]. The notion of differential hemivariational inequalities (DHVIs, for
short) was firstly introduced by Liu et al. [16]. DHVIs represent an important extension
of DVIs, which couple differential or partial differential equations with a hemivariational
inequality or a variational-hemivariational inequality. The DHVIs appear in a variety of
mechanical problems such as unilateral contact problems in nonlinear elasticity, adhesive
and friction effects, nonconvex semipermeability, masonry structures, and delamination in
multilayered composites. In the last few years the study of DHVIs has emerged as a new
and interesting branch of applied mathematics. For more details we refer to [10, 11, 16].

It is worth mentioning here that, qualitative studies on DPHVIs like our system (1.1)-
(1.3) have been less known. Very recently, a version of DPHVIs was studied for the first
time in Migórski and Zeng [25] and they established a solvability result by the Rothe
method. In comparison with Migórski and Zeng [25], the main novelties of this paper is
that we aim at studying behavior of the dynamics generated by the solution set to DPHVI
(1.1)-(1.3). In our present paper, by applying the framework developed in [8, 19, 27], we
prove the existence of a global attractor for the aforementioned m-semiflow. To the best of
our knowledge, there is still little information known for the longtime behavior of solutions
to the DPHVIs and this fact is the motivation of the present work.

The rest of the manuscript is structured as follows. In Section 2 we recall some
basic definitions and results needed throughout this paper. In Section 3, the existence
of solutions and the properties of the solution set for PHVIs is presented. In Section
4, the existence of mild solutions associated to DPHVI (1.1)-(1.3) is obtained by means
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of a fixed point technique. In Section 5, the existence of a global attractor for the m-
semiflow governed by DPHVIs (1.1)-(1.3) is also devoted. Finally, a mathematical model
is provided to illustrate our abstract results.

2 Background material

In this section, we review some necessary prerequisites. First, a triple of spaces
(U,H,U∗) is called an “evolution triple”, if: (a) U is a separable reflexive Banach s-
pace; (b) H is a separable Hilbert space; (c) U ⊆ H ⊆ U∗, the embedding of U into H is
continuous and U is dense in H. We denote this embedding operator by γ.

In the sequel, by ‖·‖U (respectively, |·|H , ‖·‖U∗) we denote the norm of U (respectively,
H,U∗). By 〈·, ·〉, we denote the duality brackets of the pair (U,U∗). And (·, ·) is the inner
product of H. The two are compatible in the sense that 〈·, ·〉U×H = (·, ·). Here U∗

denotes the dual space of U . We also introduce the following function spaces: U =
L2(0, b;U), U∗ = L2(0, b;U∗) and H = L2(0, b;H). The pairing of U and U∗ is denoted by
〈〈·, ·〉〉. Let Lp(0, b;R)(1 ≤ p < ∞) denote the Banach space of all Lebesgue measurable

functions from [0, b] into R equipped with the norm ‖ϕ‖Lp := (
∫ b

0
|ϕ(t)|pdt)1/p < ∞. By

CE = C([0, b];E) we denote the Banach space of continuous functions from [0, b] into E
with ‖x‖CE = supt∈[0,b]‖x(t)‖E. Similarly, denote CH = C([0, b];H). W = {u ∈ U : u′ ∈
U∗} (here, the time derivative of u is understood in the sense of vectorial distributions)
endowed with the norm ‖u‖W = ‖u‖U + ‖u′‖U∗ is a Banach space. It is well known that
the space W is embedded continuously in CH . Moreover, if U is embedded compactly
in H, then so is W into H. In the remainder of this paper, we will assume that U is
embedded compactly in H.

Next, following Clarke [5], we present the generalization of the gradient operator for
functionals which are no longer convex, but are locally Lipschitz.

Definition 2.1. Let J : U → R be a locally Lipschitz function. The generalized (Clarke)
directional derivative of J at x ∈ U in the direction v ∈ U is defined by

J0(x; v) := lim sup
λ→0+, ξ→x

J(ξ + λv)− J(ξ)

λ
.

The generalized gradient of J : U → R at x ∈ U is the subset of U∗ given by

∂J(x) := {ξ ∈ U∗ : J0(x; v) ≥ 〈ξ, v〉, ∀v ∈ U}.

In the sequel, we proceed with the definition of some classes of operators.

Definition 2.2. [24, Definition 9] A multivalued operator B : U → 2U
∗

is said to be:

(a) monotone, if for all (u, u∗), (v, v∗) ∈ Gr(B), we have 〈u∗ − v∗, u− v〉 ≥ 0;

(b) pseudomonotone, if B has values which are nonempty, bounded, closed, and convex;
B is u.s.c. from each finite-dimensional subspace of U to U∗ endowed with the weak
topology; if {un} ⊂ U with un → u weakly in U and u∗n ∈ Bun is such that

lim sup〈u∗n, un − u〉 ≤ 0,

then for ∀y ∈ U , there exists u∗(y) ∈ Bu such that 〈u∗(y), u−y〉 ≤ lim inf〈u∗n, un−y〉;
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(c) generalized pseudomonotone, if {un} ⊂ U, {u∗n} ⊂ U∗ with u∗n ∈ Bun, un → u
weakly in U , u∗n → u∗ weakly in U∗ and

lim sup〈u∗n, un − u〉 ≤ 0,

we have u∗ ∈ Bu and 〈u∗n, un〉 → 〈u∗, u〉.

Next, by P(E) [Pcl(E), Pb(E), Pcv(E), P(w)cp(E)], we denote the collections of all
nonempty [respectively, closed, bounded, convex, (weakly) compact] subsets of the Banach
space E. Now, we list the following definition.

Definition 2.3. [7, 9] A multimap F : E → P(U) is said to be:

(i) upper semicontinuous (u.s.c., for short), if for every open subset O ⊂ U the set

F+(O) = {x ∈ E : F (x) ⊂ O}

is open in E;

(ii) closed if its graph
{(x, y) : x ∈ E, y ∈ F (x)}

is a closed subset of E × U ;

(iii) compact, if its range F (E) is relatively compact in U , i.e. F (E) is compact in U ;

(iv) quasicompact, if its restriction to any compact subset K ⊂ E is compact.

We will use the following Proposition to get our main results.

Proposition 2.4. [7, 9]. Let E, U be two metric spaces and F : E → Pcp(U) a closed
quasicompact multimap. Then F is u.s.c.

Now, we focus on a few facts about the measure of noncompactness (cf. [9]).

Definition 2.5. Let E be a Banach space. A map β : Pb(E) → R+ is called a measure
of noncompactness (MNC, for short) in E if β(coΩ) = β(Ω) for every Ω ∈ Pb(E).

In particular, a MNC β is called:

(i) monotone, if Ω1, Ω2 ∈ Pb(E), Ω1 ⊆ Ω2 implies β(Ω1) ≤ β(Ω2);

(ii) nonsingular, if β({a} ∪ Ω) = β(Ω) for every a ∈ E, Ω ∈ Pb(E);

(iii) invariant with respect to flection through the origin, if β(−Ω) = β(Ω) for every
Ω ∈ Pb(E);

(iv) algebraically semiadditive, if β(Ω1 +Ω2) ≤ β(Ω1)+β(Ω2) for every Ω1, Ω2 ∈ Pb(E);

(v) regular, if β(Ω) = 0 is equivalent to the relative compactness of Ω.
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An important example of the MNC possessing all of above properties is the Hausdorff
MNCχ which can be defined by:

χ(Ω) = inf{ε > 0 : Ω has a finite ε-net}, ∀Ω ∈ Pb(E).

Next, we also recall the concept of χ-norm of a bounded linear operator T (T ∈ L(E))
as follows

‖T ‖χ = inf{λ > 0 : χ(T (Ω)) ≤ λ · χ(Ω) for all bounded set Ω ⊂ E}.

It is clear that χ(T (Ω)) ≤ ‖T ‖χ ·χ(Ω). Moreover, ‖T ‖χ ≤ ‖T ‖, where ‖T ‖ is the operator
norm in L(E) of T . Obviously, T is a compact operator iff ‖T ‖χ = 0.

We now briefly focus on the following notion. A multimap F : I → P(E) is called
integrably bounded, if there exists a function δ ∈ L1(I;R+) such that

‖f(t)‖E := sup{‖f(t)‖E : f(t) ∈ F (t)} ≤ δ(t), for a.e. t ∈ I.

We have the following statement.

Proposition 2.6. [9, Proposition 2.5] Let D ⊂ L1(0, b;E) such that

(1) ‖ϕ(t)‖ ≤ σ(t), for all ϕ ∈ D and for a.e. t ∈ [0, b],

(2) χ(D(t)) ≤ q(t) for a.e. t ∈ [0, b],

where σ, q ∈ L1(0, b;R). Then

χ

(∫ t

0

D(s)ds

)
≤ 4

∫ t

0

q(s)ds,

here
∫ t

0
D(s)ds = {

∫ t
0
ϕ(s)ds : ϕ ∈ D}.

We will also use the following definition in this paper.

Definition 2.7. [9, Definition 2.12] The sequence {fn}∞n=1 ⊂ L1(0, b;E) is said to be
semicompact if it is integrably bounded and the set {fn(t)}∞n=1 is relatively compact in E
for a.e. t ∈ [0, b].

To get our main results, we make use of the following fixed point theorem, which is a
version of Bohnenblust-Karlin fixed point principle for multivalued mappings.

Theorem 2.8. ([2, Theorem 4]). Let E be a Banach space and D ⊂ E be a nonempty
compact convex subset. If the multimap F : D → P (D) has closed graph and convex
values, then F has a fixed point.

We now recall some formulations regarding m-semiflow and global attractors (see [19]).
Let Γ be a nontrivial subgroup of the additive group of real numbers R and Γ+ = Γ∩[0,∞).
In the many applicable situations, Γ+ can be chosen to be a half-line R+.

Definition 2.9. The mapping G : Γ+×E → P(E) is called an m-semiflow if the following
conditions are satisfied

(i) G(0, w) = {w}, for all w ∈ E,
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(ii) G(t1 + t2, x) ⊂ G(t1, G(t2, x)), for all t1, t2 ∈ Γ+, x ∈ E,

where G(t,D) = ∪x∈DG(t, x), D ⊂ E.

It is called a strict m-semiflow if G(t1 + t2, w) = G(t1, G(t2, w)) for all w ∈ E and
t1, t2 ∈ Γ+. G is said to be eventually bounded if for each bounded set D ⊂ E, there is
a number τ(D) > 0 such that γ+

τ(D)(D) is bounded. Here γ+
τ(D)(D) is the orbit after time

τ(D) : γ+
τ(D)(D) =

⋃
t≥τ(D) G(t,D).

Definition 2.10. A bounded set D1 ⊂ E is called an absorbing set for m-semiflow G if
for any bounded set D ⊂ E, there exists τ = τ(D) ≥ 0 such that γ+

τ(D)(D) ⊂ D1.

Definition 2.11. The subset A ⊂ E is called a global attractors of the m-semiflow G if
it satisfies the following conditions:

(i) A attracts any D ∈ Pb(E), i.e. dist(G(t,D),A)→ 0 as t→∞, for all bounded set
D ⊂ E, where dist(·, ·) is the Hausdorff semi-distance of two subsets in E;

(ii) A is negatively semi-invariant, i.e. A ⊂ G(t,A), ∀t ∈ Γ+.

The following theorem gives a sufficient condition for the existence of a global attractor
for m-semiflow G.

Theorem 2.12. Assume that the m-semiflow G has the following properties:

(i) G(t, ·) is u.s.c and has closed values for each t ∈ Γ+;

(ii) G admits an absorbing set;

(iii) G is asymptotically upper semicompact, i.e. if D is a bounded set in E such that
for some τ(D) > 0, γ+

τ(D)(D) is bounded, any sequence ξn ∈ G(tn, D) with tn →∞
is precompact in E.

If G is eventually bounded, then it possesses a compact global attractor A in E. Moreover,
if G is a strict m-semiflow, then A is invariant, that is A = G(t,A) for any t ∈ Γ+.

3 Parabolic hemivariational inequalities

In this section, we consider the existence of solutions and the properties of the solu-
tions set for parabolic hemivariational inequalities (PHVIs, for short). Before stating and
proving the main results of this section, we consider the following hypotheses.

H(B) B : [0, b]× U → 2U
∗

is a multimap such that the following hold:

(1) t 7→ B(t, u) is graph measurable for all u ∈ U ;

(2) GrB(t, ·) is sequentially closed in Uw × U∗w and u 7→ B(t, u) is a generalized
pseudomonotone multivalued operator with weakly compact and convex values;

(3) there exist ι ≥ 0 and a1 ∈ L2(0, b;R+) such that

‖B(t, u)‖U∗ = sup{‖β‖U∗ , β ∈ B(t, u)} ≤ a1(t) + ι‖u‖U , for all t ∈ [0, b], u ∈ U ;

(4) there are αB > 0 and a2 ∈ L1(0, b;R+) such that

〈β, u〉 ≥ αB‖u‖2
U − a2(t), for all t ∈ [0, b], u ∈ U, β ∈ B(t, u).
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H(J) : The locally Lipschitz functional J : H → R is such that

(1) there exists κ0, κ1 ≥ 0 such that

‖∂J(v)‖H ≤ κ0 + κ1|v|H for all v ∈ H;

(2) there exists αJ ≥ 0 such that

J0(u;−u) ≤ αJ(1 + |u|H), for all t ∈ [0, b], u ∈ U.

H(g) g : E → H is a continuous function and there are a constant ` ≥ 0 and a function

ξ ∈ L2(0, b;R+) such that

‖g(x)(t)‖ ≤ ξ(t) + `‖x‖
1
2
E, for a.e. t ∈ [0, b], all x ∈ E.

Let Q : H → 2CH be the set of solutions for PHVIs defined by

Q(g) = {u ∈ CH : u′(t) +B(t, u(t)) + ∂J(u(t)) 3 g(t), a.e. t ∈ [0, b], u(0) = u0}.

It follows from the theory developed in [12, 20] that Q(g) 6= ∅ for each g ∈ H. Now,
we are concerned with the solutions set Q(g(x)) of PHVI (1.2).

Lemma 3.1. For a given x ∈ CE, let H(B), H(J) and H(g) be satisfied, then there exists
a constant % > 0 such that

‖u‖W ≤ %.

Proof. Let u(·) be a solution to the system (1.2) with the initial condition u(0) = u0.
Multiplying (1.2) by u(t) and integrating on I, we have∫

I

〈u′(t), u(t)〉dt+

∫
I

〈β(t), u(t)〉dt+

∫
I

〈η(t), u(t)〉dt =

∫
I

〈g(x(t)), u(t)〉dt. (3.1)

with β(t) ∈ B(t, u(t)), η(t) ∈ ∂J(u(t)) a.e. t ∈ I. It follows from the integration-by-parts
formula (see [33, Proposition 23.23(iv)]) that∫

I

〈u′(t), u(t)〉dt =
1

2
(|u(b)|2H − |u(0)|2H). (3.2)

By H(g), Hölder inequality and Young’s inequality with ε (see [23, Lemma 2.6]), we get∫
I

〈g(t), u(t)〉dt ≤
∫
I

(ξ(t) + `‖x(t)‖
1
2
E)|u(t)|Hds

≤
‖γ‖‖ξ‖2

L2

2ε2
+
ε2‖γ‖

2
‖u‖2

U + `‖x‖
1
2

C(I;E)

√
b‖γ‖‖u‖U . (3.3)

Since η(t) ∈ ∂J(u(t)), it follows from H(J)(2) that

−(η(t), u(t)) ≤ J0(u(t);−u(t)) ≤ αJ(1 + |u(t)|H).

Therefore, we have∫
I

〈η(t), u(t)〉dt ≥ −
∫
I

αJ(1 + |u(t)|H)dt ≥ −αJb− αJ
∫
I

|u(t)|Hdt. (3.4)
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Combining H(B)(4), (3.2), (3.3) and (3.4) with (3.1), we obtain

1

2
|u(b)|2H −

1

2
|u(0)|2H +

∫
I

[
αB‖u(t)‖2

U − a2(t)

]
dt

≤
∫
I

〈u′(t), u(t)〉dt+

∫
I

〈β(t), u(t)〉dt

= −
∫
I

〈η(t), u(t)〉dt+

∫
I

〈g(x(t)), u(t)〉dt

≤ αJb+
‖γ‖‖ξ‖2

L2

2ε2
+
ε2‖γ‖

2
‖u‖2

U + (`‖x‖
1
2

C(I;E) + αJ)
√
b‖γ‖‖u‖U .

Hence, we get

1

2
|u(b)|2H +

(
αB −

ε2‖γ‖
2

)
‖u‖2

U

≤ 1

2
|u0|2H + ‖a2‖2

L2 + αJb+
‖γ‖‖ξ‖2

L2

2ε2
+ (`‖x‖

1
2

C(I;E) + αJ)
√
b‖γ‖‖u‖U . (3.5)

Choose ε > 0 such that αB > ε2‖γ‖
2

. For such ε, it follows from (3.5) that there is a
constant %1 > 0 such that ‖u‖U ≤ %1.

Next, from equation (1.2) and the hypotheses H(B)(3), H(J)(2) and H(g), we have

|u′(t)|U∗ ≤ a1(t) + ι‖u(t)‖U + κ0 + κ1‖γ‖‖u(t)‖U + ξ(t) + `‖x(t)‖
1
2
E. (3.6)

By (3.5) and (3.6), it is obvious that ‖u′‖U∗ ≤ %2 for some constants %2 > 0. Hence
there exists a constant % > 0 such that ‖u‖W ≤ %. The proof is complete.

Now, let us take

NB(u) = {β ∈ U∗ : β(t) ∈ B(t, u(t)) a.e. t ∈ [0, b]}, for all u ∈ U ,
N∂J(u) = {η ∈ H : η(t) ∈ ∂J(u(t)) a.e. t ∈ [0, b]}, for all u ∈ H.

In the sequel, we list the compactness of solutions set Q(g(x)) for PHVIs as follows.

Proposition 3.2. For a given x ∈ CE, suppose that hypotheses H(B), H(J), H(g) hold.
Then Q(g(x)) is compact in CH .

Proof. Let {un}n≥1 ⊆ Q(g(x)). Then

u′n + βn + ηn = g(x), βn ∈ NB(un), ηn ∈ N∂J(un), for all n ∈ N. (3.7)

It follows from Lemma 3.1 that {un}n≥1 ⊆ W is bounded. So, by passing to a subsequence
if necessary, we may assume that un ⇀ u inW , un → u inH, un(t)→ u(t) in H for all t ∈
[0, b]\∆, m(∆) = 0 (the Lebesgue measure of ∆). The sequence {〈u′n(t), un(t)−u(t)〉}n≥1

is uniformly integrable. Therefore, given ε > 0 we can find t ∈ [0, b]\∆ such that∫ b

t

|〈u′n(s), un(s)− u(s)〉|ds < ε. (3.8)

Let 〈〈·, ·〉〉t denote the duality brackets for the pair (L2([0, t];U), L2([0, t];U∗)) for any
t ∈ [0, b]. Using the integration-by-parts formula, we have

〈〈u′n, un − u〉〉t =
1

2
|un(t)− u(t)|2H + 〈〈u′, un − u〉〉t.
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Note that |un(t)−u(t)|H → 0 (since t ∈ [0, b]\∆) and 〈〈u′, un−u〉〉t → 0 (since un → u
weakly in L2([0, t];U)). Hence, we have

〈〈u′n, un − u〉〉t → 0, as n→∞. (3.9)

We know that

〈〈u′n, un − u〉〉 = 〈〈u′n, un − u〉〉t +

∫ b

t

〈u′n(s), un(s)− u(s)〉ds.

By the above equation and (3.9), we have

〈〈u′n, un − u〉〉 ≥ 〈〈u′n, un − u〉〉t − ε and 〈〈u′n, un − u〉〉 ≥ 〈〈u′n, un − u〉〉t + ε.

Since ε > 0 was arbitrary and using (3.9), we get

lim inf〈〈u′n, un − u〉〉 ≥ 0 and lim sup〈〈u′n, un − u〉〉 ≥ 0. (3.10)

Hence we can infer that

〈〈u′n, un − u〉〉 → 0. (3.11)

From the boundedness of {un}n≥1 in U and condition H(J), we can assume that

ηn ⇀ η in H with η ∈ H. (3.12)

From (3.11), (3.12) and [22, Lemma 11], we know that η ∈ N∂J(u).
Clearly, from hypothesis H(B)(3), we may suppose that βn ⇀ β in U∗. Hence, it

follows from (3.7), (3.10) and (3.12) that lim sup〈〈βn, un − u〉〉 ≤ 0, and thus β ∈ NB(u).
From the above proof, we obtain

u′ + β + η = g(x), β ∈ NB(u), η ∈ N∂J(u), (3.13)

which means that u ∈ Q(g(x)).
Subtracting (3.13) from (3.7), then multiplying by (un−u) and using the integration-

by-parts formula, we obtain, for every t ∈ [0, b],

1

2
|un(t)− u(t)|2H + 〈〈βn − β, un − u〉〉 = 〈〈ηn − η, un − u〉〉. (3.14)

⇒ 1

2
|un(t)− u(t)|2H

≤
∫ b

0

|〈βn(s)− β(s), un(s)− u(s)〉|ds

+

∫ b

0

|〈ηn(s)− η(s), un(s)− u(s)〉|ds.

Since ηn ⇀ η inH, un → u inH and βn ⇀ β in U∗, we can conclude that ‖un−u‖CH →
0. The proof is complete.
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Lemma 3.3. Suppose that the conditions H(B), H(J) and H(g) hold. In addition, if B
is monotone and ∂J(·) satisfies the relaxed monotonicity, i.e., there exists ρ > 0 such that

〈η1 − η2, u1 − u2〉 ≥ −ρ‖u1 − u2‖2
H , ∀u1, u2 ∈ H, η1 ∈ ∂J(u1), η2 ∈ ∂J(u2),

then the set Q(g(x)) is a singleton. Moreover, u(·) = Q(g(x)) satisfies the following
integral equation

|u(t)|H ≤ L+ αJ

(
t+

∫ t

0

|u(s)|Hds
)

+
`

2ε2

∫ t

0

‖x(s)‖Eds,

where L = 1
2
(|u0|2H + 1) + ‖a2‖L1 +

‖ξ‖2
L2

2ε2
.

Proof. Let ui(i = 1, 2) be solutions to PHVIs (1.2). Then there exist βi ∈ U∗, ηi ∈ H
such that

ui(t) + βi(t) + ηi(t) = g(x(t)), u(0) = u0, βi(t) ∈ B(t, ui(t)), ηi(t) ∈ ∂J(ui(t)).

Subtracting these two equations, multiplying the result by u1(t)−u2(t) and integrating
by parts, we obtain, for t ∈ [0, b],

1

2
|u1(t)− u2(t)|2H +

∫ t

0

〈β1(s)− β2(s), u1(s)− u2(s)〉ds

+

∫ t

0

〈η1(s)− η2(s), u1(s)− u2(s)〉ds = 0.

Using the hypotheses, we have

|u1(t)− u2(t)|2H ≤ 2ρ

∫ t

0

|u1(s)− u2(s)|2Hds

It follows from Gronwall inequality that u1(t) = u2(t) on [0, b].
Next, let u(·) be the unique solution to the system (1.2) with the initial condition

u(0) = u0. Multiplying (1.2) by u(s) and integrating on [0, t], we have∫ t

0

〈u′(s), u(s)〉ds+

∫ t

0

〈β(s), u(s)〉ds+

∫ t

0

〈η(s), u(s)〉ds =

∫ t

0

〈g(x(s)), u(s)〉ds. (3.15)

with β(s) ∈ B(s, u(s)), η(s) ∈ ∂J(u(s)) a.e. s ∈ [0, b]. It follows from the integration-by-
parts formula (see [33, Proposition 23.23(iv)]) that∫ t

0

〈u′(s), u(s)〉ds =
1

2
(|u(t)|2H − |u(0)|2H). (3.16)

By H(g) and using Young’s inequality with ε (see [23, Lemma 2.6]), we obtain∫ t

0

〈g(s), u(s)〉ds ≤
∫ t

0

(ξ(s) + `‖x(s)‖
1
2
E)|u(s)|Hds

≤
‖ξ‖2

L2

2ε2
+

(`+ 1)ε2

2

∫ t

0

|u(s)|2Hds+
`

2ε2

∫ t

0

‖x(s)‖Eds. (3.17)

Since η(t) ∈ ∂J(u(t)), it follows from H(J)(2) that

−(η(t), u(t)) ≤ J0(u(t);−u(t)) ≤ αJ(1 + |u(t)|H).
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Therefore, we obtain∫ t

0

〈η(s), u(s)〉ds ≥ −
∫ t

0

αJ(1 + |u(s)|H)ds ≥ −αJt− αJ
∫ t

0

|u(s)|Hds. (3.18)

Combining H(B), (3.16), (3.17) and (3.18) with (3.15), we obtain

1

2
|u(t)|2H −

1

2
|u(0)|2H +

∫ t

0

[
αB
‖γ‖2

|u(s)|2H − a2(s)

]
ds

≤ 1

2
|u(t)|2H −

1

2
|u(0)|2H +

∫ t

0

[
αB‖u(s)‖2

U − a2(s)

]
ds

≤
∫ t

0

〈u′(s), u(s)〉ds+

∫ t

0

〈β(s), u(s)〉ds

= −
∫ t

0

〈η(s), u(s)〉ds+

∫ t

0

〈g(x(s)), u(s)〉ds

≤
‖ξ‖2

L2

2ε2
+ αJ

(
t+

∫ t

0

|u(s)|Hds
)

+
(`+ 1)ε2

2

∫ t

0

|u(s)|2Hds+
`

2ε2

∫ t

0

‖x(s)‖Eds. (3.19)

Choose ε > 0 such that (`+ 1)‖γ‖2ε2 = 2αB. For such ε, it follows from (3.19) that

1

2
|u(t)|2H ≤

1

2
|u0|2H + ‖a2‖L1 +

‖ξ‖2
L2

2ε2
+ αJ

(
t+

∫ t

0

|u(s)|Hds
)

+
`

2ε2

∫ t

0

‖x(s)‖Eds.(3.20)

Let L = 1
2
(|u0|2H + 1) + ‖a2‖L1 +

‖ξ‖2
L2

2ε2
. From (3.20) and |u(t)|H ≤

|u(t)|2H+1

2
, we get

|u(t)|H ≤ L+ αJ

(
t+

∫ t

0

|u(s)|Hds
)
s+

`

2ε2

∫ t

0

‖x(s)‖Eds,

which concludes the second claim. The proof is complete.

4 Existence of mild solutions for DPHVIs

The goal of this section is to consider the existence of mild solutions for DPHVIs under
some appropriate sufficient conditions by a well known fixed point theorem. To obtain
our main results, we suppose that:

H(A)1 The closed linear operator A is the infinitesimal generator of a C0-semigroup T (t)
on Banach space E.

H(F ) F : [0, b]× E ×H → Pcv,cp(E) is such that

(1) for all (x, u) ∈ E ×H, t→ F (t, x, u) is measurable;

(2) for a.e. t ∈ [0, b], F (t, ·, ·) has a strongly-weakly closed graph;

(3) there are a function a ∈ L1(0, b;R+) and constant c1, c2 > 0 such that

‖F (t, x, u)‖ := sup{‖f‖E : f ∈ F (t, x, u)} ≤ a(t) + c1‖x‖E + c2|u|H ,
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for a.e. t ∈ [0, b], all (x, u) ∈ E ×H;

(4) for every bounded subsets Ω1 ⊂ E, Ω2 ⊂ H, there are two constants ω1, ω2 > 0
such that

χ(F (t,Ω1,Ω2)) ≤ ω1χE(Ω1) + ω2χH(Ω2), for a.e. t ∈ [0, b],

where χE, χH stand for the Hausdorff MNC in the space E and H, respectively.

First, following the terminology in [10, 11, 14, 15], the solution of DPHVI is understood
in the following mild sense.

Definition 4.1. A pair of functions (x, u) ∈ CE × CH is said to be a mild solution of
DPHVI (1.1)-(1.3) if there exists f ∈ L1(0, b;E) such that f(t) ∈ F (t, x(t), u(t)) for a.e.
t ∈ [0, b] and

x(t) = T (t)x0 +

t∫
0

T (t− s)f(s)ds, a.e. t ∈ [0, b].

u′(t) +B(t, u(t)) + ∂J(u(t)) 3 g(x(t)) a.e. t ∈ [0, b], u(0) = u0, (4.1)

Now, let us denote

NF : CE×CH → P(L1(0, b;E)), NF = {f ∈ L1(0, b;E) : f(t) ∈ F (t, x(t), u(t)), a.e. t ∈ [0, b]}.

Proposition 4.2. [23, Lemma 5.3] Under assumption H(F ), NF is well-defined and
weakly u.s.c. with weakly compact and convex values.

In the sequel, we introduce the solution operator for given (x0, u0):

Φ : CE × CH → P(CE × CH)

Φ(x, u) =

[
Υ(x, u) = T (·)x0 +

∫ t
0
T (t− s)f(s)ds, f ∈ NF (x, u)
Q(g(x(·)))

]
. (4.2)

Consider the Cauchy operator

Ψ : L1((0, b);E)→ CE, Ψ(f)(t) =

∫ t

0

T (t− s)f(s)ds.

Then the solution operator Φ is rewritten by

Φ(x, u) =

[
Υ(x, u) = T (·)x0 + Ψ ◦ NF (x, u)

Q(g(x(·)))

]
(4.3)

The following proposition is important for obtaining our main results.

Proposition 4.3. [6, p.150] Let hypotheses H(A)1 and H(F ) hold. If Ω ⊂ L1(0, b;E) is
semicompact, then Ψ(D) is relatively compact in CE. In particular, if sequence {fn} is
semicompact and fn → f in L1(0, b;E) then Ψ(fn)→ Ψ(f) in CE.

Now, we are in the position to present the main result concerning the mild solutions
set S(x0, u0) of DPHVI (1.1)-(1.3).
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Theorem 4.4. If the hypotheses H(A)1, H(F ) and the conditions of Lemma 3.3 are
satisfied, then the solutions set S(x0, u0) of DPHVI (1.1)-(1.3) is nonempty.

Proof. For ∀(x, u) ∈ CE×CH , if the multi-valued map Φ admits a fixed point, then DPHVI
(1.1)-(1.3) has a mild solution. We now subdivided our proof into three steps.

STEP 1. Φ has compact convex values.
For ∀(x, u) ∈ CE×CH , NF (x, u) is a weakly compact set in L1(0, b;E) due to Proposi-

tion 4.2. So it follows from Proposition 4.3 that Ψ◦NF (x, u) is compact in CE. In addition,
because NF (x, u) is convex, Υ(x, u) is convex as well. On the other hand Q(g(x)) is sin-
gleton. That is, the multimap Φ has compact and convex values.

STEP 2. There exists a nonempty compact convex subset D ⊂ CE × CH
such that Φ(D) ⊂ D.

First, we prove that there exists a nonempty convex subset M0 ⊂ CE × CH such that
Φ(M0) ⊂M0.

For any (y, v) ∈ Φ(x, u), It follows from hypotheses H(A)1, H(F ) and Lemma 3.3 that

‖y(t)‖E + |v(t)|H ≤ ‖T (t)x0‖E +

∫ t

0

‖T (t− s)‖‖f(s)‖Eds

+L+ αJb+ αJ

∫ t

0

|u(s)|Hds+
`

2ε2

∫ t

0

‖x(s)‖Eds

≤ M‖x0‖E +M

∫ t

0

[
a(s) + c1‖x(s)‖E + c2|u(s)|H

]
ds

+L+ αJb+ αJ

∫ t

0

|u(s)|Hds+
`

2ε2

∫ t

0

‖x(s)‖Eds

≤ M(‖x0‖E + ‖a‖L1) + L+ αJb

+

[
M(c1 + c2) + αJ +

`

2ε2

] ∫ t

0

[
‖x(s)‖E + |u(s)|H

]
ds.

Denote

M0 = {(x, u) ∈ CE × CH : ‖x(t)‖E + |u(t)|H ≤ δ(t), ∀t ∈ [0, b]},

here δ is the unique solution of the integral equation

δ(t) ≤M(‖x0‖E + ‖a‖L1) + L+ αJb+

[
M(c1 + c2) + αJ +

`

2ε2

] ∫ t

0

δ(s)ds.

It is obvious that M0 is a closed convex set of CE × CH and Φ(M0) ⊂M0. Set

Mk+1 = coΦ(Mk), k = 0, 1, 2, · · ·

where, the notation co stands for the closure of convex hull of a subset in CE × CH . We

see that Mk is a closed convex set and Mk+1 ⊂ Mk for all k ∈ N. Let M =
∞⋂
k=0

Mk,

then M is a bounded closed convex subset of CE × CH and Φ(M) ⊂M.
Next, for each k ≥ 0, it is easy to know that NF (Mk) is integrably bounded by

assumption H(F ). Thus M is also integrably bounded.
Now, we check that M(t) is relativelly compact for each t ≥ 0. By the regularity of

the Hausdorff MNC, this will be done if µk(t) = χ∗(Mk(t)) → 0 as k → ∞, where χ∗ is
the Hausdorff MNC in E ×H defined by χ∗(C,D) = χE(C) + χH(D).
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LetM(t) =

[
ME(t)
MH(t)

]
, µk(t) = µEk (t) + µHk (t) = χE(ME

k (t)) + χH(MH
k (t)). Because

ME
k (t) is bounded in E and by H(g), the set {g(x) : x ∈ ME

k } is bounded in H. Due to
the compactness of Q, we have

µHk (t) = χH(Q(g(ME
k (t)))) = 0.

Next, it follows from hypothesis H(F )(4) that

µEk+1(t) ≤ χE

(∫ t

0

T (t− s)NF (ME
k ,MH

k )(s)ds

)
≤ 4M

∫ t

0

χE(NF (ME
k ,MH

k )(s)ds

≤ 4M

∫ t

0

[ω1χE(ME
k (s)) + ω2χH(MH

k (s))]ds

≤ 4Mω1

∫ t

0

χE(ME
k (s))ds.

Hence, we get

µEk+1(t) ≤ 4Mω1

∫ t

0

µEk (s)ds.

Putting µ∞(t) = lim
k→∞

µk(t) and passing the limit we get

µ∞(t) ≤ 4Mω1

∫ t

0

µ∞(s)ds.

By using the Gronwall inequality, we deduce that µ∞(t) = 0 for all t ∈ [0, b]. Hence,M(t)
is relatively compact for all t ∈ [0, b]. By Proposition 4.3, Ψ(ME) is a relatively compact
in CE. Then Φ(M) is a relatively compact subset in CE × CH .

Now, let us denote
D = coΦ(M).

It is easy to see that D is a nonempty compact convex subset of CE × CH and

Φ(D) = Φ(coΦ(M)) ⊂ Φ(M) ⊂ coΦ(M) = D,

which comes the conclusion.
STEP 3. Φ has a closed graph.
First, we claim that if {(xn, un)} ⊂ CE × CH with xn → x, un → u, fn ∈ NF (xn, un)

and fn → f weakly in L1(0, b;E), then f ∈ NF (x, u). In fact, it follows from condition
H(F ) that {fn(t)} ⊂ K(t) := F (t, {xn(t), un(t)}) is a compact set for a.e. t ∈ [0, b].
Hypothesis H(F ) implies that {fn} is bounded by an L1-integrable function. Thus, the
sequence {fn} is semi-compact (see Definition 2.7) and by [7, Theorem 3.34], it is weakly
compact in L1(0, b;E). So we can assume that fn → f weakly in L1(0, b;E). According

to Mazur’s lemma, there exists a sequence f̃n ∈ co{fi : i ≥ n} such that f̃n → f in

L1(0, b;E) and so f̃n(t) → f(t) for a.e. t ∈ [0, b]. Assumption H(F ) infer that F has
compact values and is u.s.c., this means that for ε > 0

F (t, xn(t), un(t)) ⊂ F (t, x(t), u(t)) +Bε
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for all sufficiently large n, here Bε is the ball in E centered at origin with radius ε. So

fn(t) ⊂ F (t, x(t), u(t)) +Bε, for a.e. t ∈ [0, b].

Due to the convexity of F (t, x(t), u(t)) + Bε, we replace fn(t) by f̃n(t), the last inclusion
still holds. Hence, f ∈ F (t, x(t), u(t)) + Bε for a.e. t ∈ [0, b]. Since ε is arbitrary, we get
f ∈ F (t, x(t), u(t)) for a.e. t ∈ [0, b]. and so f ∈ NF (x, u).

Next, let xn → x∗, un → u∗ and (yn, vn) ∈ Φ(xn, un) with yn → y∗ in CE, vn → v∗
in CH . Then there exists fn ∈ NF (xn, un) such that yn(t) = T (t)x0 +

∫ t
0
T (t − s)fn(s)ds

and vn(t) = Q(g(xn(t))). Because NF is weakly u.s.c., by passing to a subsequence if
necessary, we may assume that fn ⇀ f∗. By Proposition 4.3 and the compactness of the
operator Q we can pass to the limit to get that y∗(t) = T (t)x0 +

∫ t
0
T (t − s)f∗(s)ds and

v∗(t) = Q(g(x∗(t))).
So we have shown the validity of all the conditions required in Theorem 2.8. Then

applying Theorem 2.8 we conclude that Φ has a fixed point (x̂, û) ∈ CE×CH . Consequently,
(x̂, û) is a solution of DPHVIs (1.1)-(1.3), which implies that S(x0, u0) is nonempty. The
proof is complete.

5 Existence of a global attractor

The aim of this section is to present the existence of a grobal attractor for DPHVIs
under some appropriate sufficient conditions. In this section, we replace H(A)1 by the
following assumption:

H(A)2 The C0-semigroup T (t) generated by A is exponentially stable with exponential ς,
that is

‖T (t)‖L(E) ≤ λe−ςt, ∀t > 0, with ς > 0, λ ≥ 1.

Now, let us put Z = E×H. We observe the DPHVIs (1.1)-(1.3) in the universal phase
space Z. We are in a position to define the m-semiflow associated with DPHVIs (1.1)-(1.3)
as follows G : R+ × Z → P(Z), G(t, x0, u0) = {(x(t), u(t)) : (x(t), u(t)) is a solution of
(1.1)-(1.3), x(0) = x0, u(0) = u0}. Denote by Σ(x0, u0, b) the set of all solutions on
[0, b] with initial condition (x0, u0) and let Σ(x0, u0) =

⋃
b>0

Σ(x0, u0, b). It is easy to see

that G(t, x0, u0) = {(x(t), u(t)) : (x(·), u(·)) ∈ Σ(x0, u0), (x0, u0) ∈ Z}. We prove some
properties of the solution set, which will be used to get our main result of this section.

Proposition 5.1. Suppose that {(ξn, ηn)} ⊂ Z such that ξn → ξ in E and ηn → η in
H, respectively. Then Σ({(ξn, ηn, b)}) ⊂ C([0, b];E)× C([0, b];H) is a relatively compact
set in C([0, b];E)× C([0, b];H). In particular, Σ(ξ, η, b) ⊂ C([0, b];E)× C([0, b];H) is a
compact set for each (ξ, η) ∈ Z.

Proof. Let (xn, un) ∈ Σ({(ξn, ηn, b)}). Then we have

xn(t) = T (t)ξn + Ψ ◦ SF (xn, un)(t),

un(t) = Q(g(xn(t))),

un(0) = ηn.

15



Now, we prove that {xn} is relatively compact in C([0, b];E) and {un} is relatively
compact in C([0, b];H). By the same estimate as in the proof of Step 2 in Theorem 4.4,
we have

‖xn(t)‖E + |un(t)|H ≤ M(‖x0‖H + ‖a‖L1) + L+ αJb

+

[
M(c1 + c2) + αJ +

`

2ε2

] ∫ t

0

[
‖xn(s)‖E + |un(s)|H)

]
ds.

So the Gronwall inequality ensures the boundedness of {(xn, un)} in C([0, b];E)×C([0, b];H).
Next, let fn ∈ NF (xn, un) such that xn = T (·)ξn + Ψ(fn). Because {(xn, un)} is

bounded and by H(F ) we see that {fn} is integrably bounded. Using the compactness
of Q (see Lemma 3.2), we deduce that un = Q(g(xn)) is a relatively compact sequence.
Regarding sequence {xn}, it follows from hypothesis H(F )(4) that

χE({xn(t)}) ≤ χE({Ψ(fn)(t)})

≤ 4

∫ t

0

χE({T (t− s)(fn)(s)})ds

≤ 4M

∫ t

0

χE({fn(s)})ds

≤ 4M

∫ t

0

[ω1χE({xn(s)}+ ω2χH({un(s)}]ds

= 4Mω1

∫ t

0

χE({xn(s)}ds.

By using the Gronwall inequality, we deduce that χE({xn(t)} = 0. Hence, we know that
χE({fn(t)}) = 0, for all t ∈ [0, b]. Thus {fn} is semicompact in L1(0, b;E) and {xn} is
relatively compact in C([0, b];E).

The last statement is testified if we show that the set Σ(ξ, η, b) is closed in C([0, b];E)×
C([0, b];H). Assume that (xn, un) ∈ Σ(ξ, η, b), xn → x∗ in E and un → u∗ in H. By the
same arguments as in the proof of step 3 of Theorem 4.4, we get (x∗, u∗) ∈ Σ(ξ, η, b). The
proof is complete.

We obtain the following corollary by using Proposition 5.1.

Corollary 5.2. The multimap G has compact values in E ×H.

We will show that G is a strict m-semiflow generated by DPHVIs (1.1)-(1.3).

Lemma 5.3. G is a strict m-semiflow, that is, G(t1 + t2, x0, u0) = G(t2, G(t1, x0, u0)).

Proof. Take (y, v) ∈ G(t1 + t2, x0, u0) be arbitrary. So y = x(t1 + t2), v = u(t1 + t2),
where (x(·), u(·)) ∈ Σ(x0, u0, b), b ≥ t1 + t2. It follows from Definition 4.1 that there are
selections f ∈ NF (x, u), β(t) ∈ B(t, u(t)), η(t) ∈ ∂J(u(t)), t ∈ [0, b] such that

x(t) = T (t)x0 +

∫ t

0

T (t− s)f(s)ds, t ∈ [0, b],

u′(t) + β(t) + η(t) = g(x(t)), a.e. t ∈ [0, b],

u(0) = u0.
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Now, we define x̂(t) = x(t+ t1), û(t) = u(t+ t1), one can obtain

x̂(t) = T (t)x(t1) +

∫ t

0

T (t− s)f̂(s)ds,

f̂(s) = f(s+ t1), f̂(s) ∈ NF (x̂, û)(s+ t1), t ∈ [0, b− t1]

û′(t) + β̂(t) + η̂(t) = g(x̂(t)), β̂(t) = β(t+ t1) ∈ B(t+ t1, u(t+ t1)),

η̂(t) = η(t+ t1) ∈ ∂J(u(t+ t1)),

û(0) = u(t1).

Therefore, we have (x̂(·), û(·)) ∈ Σ(x(t1), u(t1)) and
(y, v) = (x̂(t2), û(t2)) ∈ G(t2, x̂(t1), û(t1)) ⊂ G(t2, G(t1, x0, u0)).
Since (y, v) is arbitrary, we obtain G(t1 + t2, x0, u0) ⊂ G(t2, G(t1, x0, u0)).
Next, we check that G(t2, G(t1, x0, u0)) ⊂ G(t1 + t2, x0, u0). In fact, for any (y, v) ∈

G(t2, G(t1, x0, u0)), we have y = x2(t2), v = u2(t2), where (x2(·), u2(·)) ∈ Σ(x2(0), u2(0), b2),
b2 ≥ t2, and (x2(0), u2(0)) ∈ G(t1, x0, u0). Obviously, we have x2(0) = x1(t1), u2(0) =
u1(t1) with (x1(·), u1(·)) ∈ Σ(x0, u0, b1), b1 ≥ t1. We define

x(t) =

{
x1(t), if 0 ≤ t ≤ t1,

x2(t− t1), if t1 ≤ t ≤ t1 + b2.

u(t) =

{
u1(t), if 0 ≤ t ≤ t1,

u2(t− t1), if t1 ≤ t ≤ t1 + b2.

f(t) =

{
f1(t), if 0 ≤ t ≤ t1,

f2(t− t1), if t1 ≤ t ≤ t1 + b2.

where f1(t) ∈ NF (x1, u1)(t) and f2(t) ∈ NF (x2, u2)(t) are the selections corresponding to
x1, x2, respectively. Put

β(t) =

{
β1(t), if 0 ≤ t ≤ t1,

β2(t− t1), if t1 ≤ t ≤ t1 + b2,

η(t) =

{
η1(t), if 0 ≤ t ≤ t1,

η2(t− t1), if t1 ≤ t ≤ t1 + b2,

where β1(t) ∈ B(t, u1(t)), η1(t) ∈ ∂J(u1(t)) and β2(t) ∈ B(t, u2(t)), β2(t) ∈ ∂J(u2(t)),
respectively. Then we deduce that (x(·), u(·)) satisfies

x(t) = T (t)x0 +

∫ t

0

T (t− s)f(s)ds, 0 ≤ t ≤ t1 + b2,

u′(t) + β(t) + η(t) = g(x(t)), 0 ≤ t ≤ t1 + b2,

u(0) = u0.

It implies that (x(·), u(·)) ∈ Σ(x0, u0) and (y, v) = (x(t1 + t2), u(t1 + t2)) ∈ G(t1 +
t2, x0, u0). Therefore, G(t2, G(t1, x0, u0)) ⊂ G(t1 + t2, x0, u0). The proof is complete.
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We first prove a condensing property of G(b, ·, ·), which will be used to deduce that
the m-semiflow G is asymptotically upper semicompact.

Lemma 5.4. Assume that H(A)2, H(F ) and the hypotheses of Lemma 3.3 hold for all
b > 0. Then, there exists b0 > 0 and a number ρ ∈ [0, 1) such that for all b ≥ b0, we have

χ∗(G(b, C,D)) ≤ ρχE(C),

for all bounded set (C,D) ∈ Z, provided that ς > 4λω1.

Proof. Let (C,D) ∈ Z be a bounded set. Putting Γ = Σ(C,D), we have

Γ(t) =

[
Γ1(t)
Γ2(t)

]
⊂
[
T (t)C +

∫ t
0
T (t− s)NF (Γ1,Γ2)(s)ds
Q(g(Γ1(t)))

]
. (5.1)

According to the assumption H(g), we have g(Γ1(t)) is bounded in H. By the com-
pactness of Q, we know that Q(g(Γ1(t))) is relatively compact in H.

In the sequel, in terms of Γ2(t), it follows from hypothesis H(F )(4) that

χE(Γ1(t)) ≤ λe−ςtχE(C) + 4λ

∫ t

0

e−ς(t−s)χE(NF (Γ1(s),Γ2(s)))ds

≤ λe−ςtχE(C) + 4λ

∫ t

0

e−ς(t−s)[ω1χE(Γ1(s)) + ω2χH(Γ2(s))]ds

≤ λe−ςtχE(C) + 4λω1

∫ t

0

e−ς(t−s)χE(Γ1(s))ds.

Therefore, we get

eςtχE(Γ1(t)) ≤ λχE(C) + 4λω1

∫ t

0

eςsχE(Γ1(s))ds.

By using the Gronwall inequality, we obtain

eςtχE(Γ1(t)) ≤ λχE(C)e4λω1t.

χE(Γ1(t)) ≤ λχE(C)e−(ς−4λω1)t.

Since ς > 4λω1, choosing b0 >
lnλ

ς−4λω1
, we obtain the conclusion of the lemma. The proof

is complete.

Lemma 5.5. Let the assumptions of Lemma 5.4 hold. Then, G is asymptotically upper
semicompact.

Proof. By using Lemma 5.4 and by the statements as [19, Proposition 1], we get the proof
of the lemma.

Lemma 5.6. Suppose that the hypotheses of Lemma 5.4 hold. Then, for each t > 0 the
m-semiflow G(t, ·, ·) is u.s.c.
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Proof. Since G(t, ·, ·) has compact values due to Corollary 5.2. By Proposition 2.4 it
remains to show that G(t, ·, ·) is quasi-compact and has a closed graph.

First, we check that G(t, ·, ·) is quasi-compact. For this reason, we assume that K ⊂ Z
is a compact set. Let {(yn, vn)} ⊂ G(t,K), then one can find a sequence {(ξn, ηn)} ⊂ K
such that ξn → ξ in E, ηn → η in H.

Let (xn, un) ∈ Σ(ξn, ηn) such that xn(0) = ξn, un(0) = ηn, xn(t) = yn, un(t) = vn. By
Proposition 5.1, Σ({(ξn, ηn, t)}) is a relatively compact set in C([0, t];E) × C([0, t];H).
Then, there is a subsequence of {(xn, un)} (denoted again by {(xn, un)} such that πt(xn)→
x in C([0, t];E), πt(un) → u in C([0, t];H), where πt is the truncation operator to [0, t]
acting on C([0,∞);E) and C([0,∞);H). Therefore, (yn, vn) converges to (x(t), u(t)) in
Z and (x(0), u(0)) = (ξ, η). It implies the quasi-compactness of G(t, ·, ·).

We now prove that G(t, ·, ·) has a closed graph. Let {(ξn, ηn)} be a sequence in Z and
(ξn, ηn) converges to (ξ, η). Choose (yn, vn) ∈ G(t, ξn, ηn) such that yn → y in E, vn → v
in H. It suffices to show that (y, v) ∈ G(t, ξ, η).

Let (xn, un) ∈ Σ(ξn, ηn) be such that xn(t) = yn, un(t) = vn. By Proposition 5.1,
{(xn, un)} has a convergent subsequence (denoted again by {(xn, un)}. Assume that
limxn = x in C([0, t];E), limun = u in C([0, t];H). We obtain that y = x(t), v = u(t).
Let fn ∈ SF (xn, un) be such that

xn = T (·)ξn + Ψ(fn), (5.2)

un = Q(g(xn)), (5.3)

un(0) = u0.

Because {(xn, un)} is bounded, we obtain that {fn} ∈ L1(0, t, E) is integrably bound-
ed, thanks to H(F )(3). Moreover, {fn(r)} ⊂ K(r) = F ({xn(r), un(r)}), r ∈ [0, t] is
compact. Thus {fn} is a semicompact sequence. By [13, Proposition 4.2.1], we have {fn}
weakly converges to f and Ψ(fn) → Ψ(f). Then one can pass to the limit in equality
(5.3) to get x = T (·)ξ + Ψ(f). Since NF is weakly u.s.c., one has f ∈ NF (x, u). Due
to the compactness of Q, one can pass to the limit again in equalities (5.4) to obtain
u = Q(g(x)), u(0) = η. So (x, u) ∈ πt(ξ, η). The proof is complete.

Lemma 5.7. Assume that the conditions of Lemma 5.4 hold. Then the m-semiflow G
admits an absorbing set, provided that αJ = ` = 0 and ς > max{c1, c2}.

Proof. Let (C,D) be a bounded set in Z. For each (x(·), u(·)) ∈ (C,D), x(0) = x0, u(0) =
u0, (x0, u0) ∈ (C,D), it follows from condition H(A)2 and H(F )(3) that

‖x(t)‖E ≤ ‖T (t)x0‖E +

∫ t

0

‖T (t− s)f(s)‖Eds

≤ e−ςt‖x0‖E +

∫ t

0

e−ς(t−s)
[
a(s) + c1‖x(s)‖E + c2|u(s)|H

]
ds

≤ e−ςt‖x0‖E + ‖a‖L1 + c

∫ t

0

e−ς(t−s)(‖x(s)‖E + |u(s)|H)ds,

here c = max{c1, c2}. Since αJ = ` = 0, it follows from Lemma 3.3 that

|u(t)|H ≤ L,
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where L = 1
2
(|u0|2H + 1) + ‖a2‖L1 +

‖ξ‖2
L2

2ε2
, which is independent of t. From above two

inequalities, we obtain

eςt(‖x(t)‖E + |u(t)|H) ≤ ‖x0‖E + eςt(‖a‖L1 + L) + c

∫ t

0

eςs(‖x(s)‖E + |u(s)|H)ds,

Applying the Gronwall inequality, we have

eςt(‖x(t)‖E + |u(t)|H)

≤ ‖x0‖E + eςt(‖a‖L1 + L) + c

∫ t

0

[‖x0‖E + eςs(‖a‖L1 + L)]ec(t−s)ds

≤ ‖x0‖E + eςt(‖a‖L1 + L) + ‖x0‖E(ect − 1) +
c(‖a‖L1 + L)(eςt − ect)

ς − c
,

which is equal to the following inequality

‖x(t)‖E + |u(t)|H

≤ e−ςt‖x0‖E + (‖a‖L1 + L) + ‖x0‖E(e−(ς−c)t − e−ςt) +
c(‖a‖L1 + L)(1− e−(ς−c)t)

ς − c
,

It follows from the hypothesis ς > max{c1, c2} that the last inequality ensures that
the ball centered at origin with radius

R = ‖a‖L1 + L+
c(‖a‖L1 + L)

ς − c
+ 1

becomes an absorbing set for the m-semiflow G. The proof is complete.

Combining Lemma 5.5, 5.6 and 5.7, we arrive at the main result of this section.

Theorem 5.8. Let the assumptions of Lemma 5.4 hold. Then the m-semiflow G generated
by DPHVIs (1.1)-(1.3) admits a compact global attractor provided that αJ = ` = 0,
ς > max{4λω1, c1, c2}.

6 A dynamic thermoviscoelasticity problem

In recent years, dynamic contact problems with or without thermal effects for vis-
coelastic bodies have become an active area of investigation in the field of applications.
For more details, we refer to [20, 22–24, 26, 28, 29, 32] and the references therein. How-
ever, to the best of our knowledge, there is still little information known for the existence
of solutions to the system about hemivariational inequalities in dynamic thermoviscoelas-
ticity has studied in a few papers [11, 21, 25]. In this section we introduce and study a
mathematical model for which the results of Section 4 and Section 5 can be applied.

Let Sd be the space of second order symmetric tensors on Rd. The inner product and
norm on Rd and Sd are defined by

u · v = uivi, ‖u‖ = (u · u)
1
2 , ∀u = (ui), v = (vi) ∈ Rd,

σ : τ = σijτij, ‖τ‖ = (τ : τ)
1
2 , ∀σ = (σij), τ = (τij) ∈ Rd.

For brevity, we suppress the explicit dependence of the quantities on the spatial variable
x, or both x and t. By ν = (νi) the outward unit normal on the boundary, and by ε(u) =
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(εij(u)) the linearized strain tensor whose components are given by εij(u) = 1
2
(ui,j + uj,i),

where ui,j = ∂ui/∂xj. For a vector field, we use the notation uν and uτ for the normal and
tangential components of u on Γ given by uν = u · ν and uτ = u− uνν. The normal and
tangential components of the stress field σ on the boundary are defined by σν = (σν) · ν
and στ = σν − σνν, respectively.

For the dynamic thermoviscoelasticity problem we study in this section the physical
setting can be described as follows. Suppose that a viscoelastic body occupies a bounded
domain Ω ⊂ Rd (d = 2, 3) with a Lipschitz boundary Γ which consists of parts sets
ΓD, ΓN , ΓC and m(ΓD) > 0. The body is clamped on ΓD, the volume forces of density f0

act in Ω and the surface tractions of density fN are applied on ΓN . We also suppose that
the body is subjected to a heat source term per unit volume of the domain Ω. To give
the classical formulation of our dynamic contact problem, we need to use the notations
Ωb = Ω× (0, b), ΣD = ΓD × (0, b), ΣN = ΓN × (0, b) and ΣC = ΓC × (0, b). With these
data, we consider the following problem.

Problem P . Find a displacement field u : Ωb → Rd, a stress field σ : Ωb → Sd and a
temperature θ : Ωb → R such that for all t ∈ (0, b),

u′′(t) = Divσ(t) + f0(t), in Ωb, (6.1)

σ(t) = B(t, εu′(t)) + C(t, θ(t)), in Ωb, (6.2)

θ′(t)−∆θ =
m∑
i=1

ξi(t)ϕi(t, θ(t), u
′(t)), in Ωb, (6.3)

u(t) = 0, on ΣD, (6.4)

σ(t)ν = fN(t), on ΣN , (6.5)

−σν(t) = ∂jν(u
′
ν(t)), on ΣC , (6.6)

στ (t)ν = 0, on ΣC , (6.7)

θ(t) = 0, on ∂Ω× (0, b), (6.8)

u(0) = u0, u
′(0) = ω0, θ(0) = θ0, in Ω. (6.9)

We briefly comment on Problem P . Formulation (6.1) represents the motion equation.
Equation (6.2) expresses the constitutive law for viscoelastic materials in which B is
a nonlinear viscosity operator and C denotes a nonlinear thermal expansion operator.
Relation (6.3) is the equation of heat transfer with the thermal conductivity functions ξi
characterized by m external heat sources whose properties are depending on the state of
the system and nonlinear functions ϕi depending on the velocity. We have the clamped
boundary condition (6.4) on ΓD and the surface traction boundary condition (6.5) on
ΓN . Relation (6.6) is the multivalued contact condition with normal damped response
in which ∂jν denotes the Clarke subdifferential of a given function jν . For simplicity, we
assume that (6.7) is the frictionless condition and in (6.8), the temperature vanishes on
the boundary ∂Ω × (0, b). Finally, conditions (6.9) are the initial condition in which u0

and ω0 represent the initial displacement and the initial velocity, respectively.
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In the study of Problem P , we use the spaces V, Q and Q∞ defined in [32, Section
3.1]. We also use notation ‖γ‖ for the norm of the trace operator γ : V → L2(ΓC ;Rd).
Moreover, choose H = L2(Ω;Rd). Clearly, (V ;H;V ∗) forms an evolution triple of spaces.
We also introduce the spaces

V = L2(0, b;V ); V∗ = L2(0, b;V ∗); W = {w ∈ V|w′ ∈ V∗},

where the time derivative w′ is in the sense of vector-valued distributions. Note that,
actually, V∗ is the dual of the space V .

We now turn to the analysis of Problem P . To this end, for equation (6.3), we define
the operator A : D(A) ⊂ L2(Ω)→ L2(Ω) as follows

A = ∆, D(A) = H2(Ω) ∩H1
0 (Ω). (6.10)

It is well know from [31] that A satisfies assumption H(A)1 on the space E = L2(Ω).
Moreover, the semigroup T (t) generated by A is exponential stable, that is,

‖T (t)‖L(E) ≤ e−λ1t for all t ≥ 0, (6.11)

where λ1 = inf{‖∇θ‖2
E : ‖θ‖E = 1}. This shows that assumption H(A)2 holds, too.

Suppose that the thermal conductivity functions ξi : [0, b] → R(i = 1, · · · ,m) are
measurable and satisfy the feedback condition

ξ(t) = (ξ1(t), · · · , ξm(t)) ∈ G(z(t, ·), r(t, ·)), t ∈ [0, b],

where G : E × V → Rm is u.s.c. with convex closed values and satisfies:

‖G(z, r)‖ ≤ K, for all z ∈ E, r ∈ V, where K > 0.

We suppose that functions ϕi(i = 1, · · · ,m) satisfy the following conditions:

(1) ϕi(·, z, r) : [0, b]→ R is measurable for all z ∈ R, r ∈ Rd;

(2) |ϕi(t, z1, r1)−ϕi(t, z2, r2)| ≤ ki|z1−z2|+li‖r1−r2‖Rd , ∀ t ∈ [0, b], z1, z2 ∈ R, r1, r2 ∈
Rd, and ϕi(t, 0, 0) ≡ 0.

Then it is easy to see that the map h : E × V × BK(Rm) → E, where BK(Rm) = {ζ ∈
Rm : ‖ζ‖ ≤ K}, defined by

h(t, z, r) =
m∑
i=1

ξi(t)ϕi(t, z(t), r(t))

is (k, l)-Lipschitz in (z, r) with

k = K

√√√√ m∑
i=1

k2
i , l = K

√√√√ m∑
i=1

l2i ,

and compact in (z, r), i.e., the set h(z, r, BK(Rm) is relatively compact in (z, r) for each
(z, r) ∈ E × V .
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Now, define the multi-valued function

F : [0, b]× E × V → P(E), F (t, z, r)(x) = h(t, z, r, G(z, r)). (6.12)

Similar to the work [27], we can check that the multi-valued function F is fulfilled the
hypotheses H(F ) and equations (6.3) and (6.8) can be reformulated as

θ′(t) ∈ Aθ(t) + F (t, θ(t), u′(t)), t ∈ [0, b].

In the sequel, to derive a variational formulation of Problem P , we now consider the
following assumptions on the data.

H(B) B : Ωb × Sd → Sd is such that

(1) B(·, ·, ε) is measurable on Ωb for all ε ∈ Sd;
(2) B(x, t, ·) is continuous on Sd for a.e. (x, t) ∈ Ωb;

(3) ‖B(x, t, ε)‖Sd ≤ b0(x, t) + b1‖ε‖Sd for all ε ∈ Sd, a.e. (x, t) ∈ Ωb with b0 ∈ L2(Ωb)
and b0, b1 ≥ 0;

(4) B(x, t, ε) : ε ≥ αB‖ε‖2
Sd − b2(x, t) for all ε ∈ Sd, a.e. (x, t) ∈ Ωb with b2 ∈ L1(Ωb)

and αB > 0, b2 ≥ 0;

(5) (B(x, t, ε1)− B(x, t, ε2)) : (ε1 − ε2) ≥ 0 for all ε1, ε2 ∈ Sd, a.e. (x, t) ∈ Ωb.

H(C) C : Ωb × R→ Sd is such that

(1) C(·, ·, r) is measurable on Ωb for all r ∈ R;

(2) C(x, t, ·) is continuous for a.e. (x, t) ∈ Ωb;

(3) ‖C(x, t, r)‖Sd ≤ c0(x, t) + c1|r|
1
2 for all r ∈ R, a.e. (x, t) ∈ Ωb with c0 ∈ L2(Ωb)

and c0, c1 ≥ 0.

H(jν) jν : ΓCR→ R is such that

(1) jν(·, r) is measurable on ΓC for all r ∈ R and there is e ∈ L2(ΓC) such that
jν(·, e(·)) ∈ L2(ΓC);

(2) jν(x, ·) is locally Lipchitz continuous on R for a.e. x ∈ ΓC ;

(3) there exists κ0, κ1 ≥ 0 such that |∂jν(x, r)| ≤ κ0 + κ1|r| for all r ∈ R, a.e.
x ∈ ΓC ;

(4) j0
ν(x, r;−r) ≤ αjν (1 + |r|2) for all r ∈ R, a.e. x ∈ ΓC with αjν ≥ 0;

(5) (ζ1 − ζ2)(r1 − r2) ≥ −mjν |r1 − r2|2 for all r1, r2 ∈ R, ζ1 ∈ ∂jν(x, r1), ζ2 ∈
∂jν(x, r2), a.e. x ∈ ΓC with mjν ≥ 0;

H(0) f0 ∈ L2(0, b;L2(Ω,Rd)), fN ∈ L2(0, b;L2(ΓN ; ,Rd)), u0, w0 ∈ V, θ0 ∈ E.

We now turn to the variational formulation of Problem P . Let v ∈ V and t ∈ [0, b].
We use Green’s formula, decompose the resulting surface integral on three integrals on
ΓD, ΓN and ΓC and then we use the boundary conditions (6.3), (6.4) and equation (6.2)
to obtain the following variational formulation of Problem P , in terms of displacement.
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(PHVI)P . Find a displacement field u : (0, b)→ V such that for all t ∈ (0, b),

〈u′′(t), v − u′(t)〉V ∗×V + (B(t, ε(u′(t)) + C(t, θ(t)), ε(v − u′(t)))H (6.13)∫
ΓC

j0
ν(u
′
ν(t); vν − u′ν(t))dΓ ≥ 〈h(t), v − u′(t)〉V ∗×V ,

where h ∈ L2(0, b;V ∗) is defined by

〈h(t), v〉V ∗×V = 〈f0(t), v〉H + 〈fN(t), v〉L2(ΓN ;Rd), for v ∈ V, t ∈ (0, b).

Next, define the operator B : (0, b)× V → V ∗, J : V → R, g : (0, b)× V by

〈B(t, u), ζ〉V ∗×V = (B(t, ε(u), ε(ζ))H, for all u, ζ ∈ V, t ∈ (0, b), (6.14)

J(u) =

∫
ΓC

j0
ν(uν))dΓ, for all u ∈ V, t ∈ (0, b), (6.15)

g(t, θ) = h(t)− C(t, θ(t)) for all θ ∈ E, a.e. t ∈ (0, b). (6.16)

We denote w = u′, i.e.,

u(t) =

∫ t

0

w(s)ds+ u0, for all t ∈ [0, b].

With the notation and using the definition (6.10) of the operator A, we deduce
that Problem P can be formulated, equivalently, in a form of the following differential
variational-hemivariational inequality.

(DPHVI)P . Find the velocity w ∈ W and the temperature θ ∈ CE such that

w′(t) +B(t, w(t)) + ∂J(w(t)) 3 g(t, θ(t)), a.e. t ∈ [0, b], (6.17)

θ′(t) ∈ Aθ(t) + F (t, θ(t), w(t)), a.e. t ∈ [0, b], (6.18)

w(0) = w0, θ(0) = θ0. (6.19)

The existence of mild solution for the system (6.17)–(6.19) is provided by the following.

Theorem 6.1. Assume that H(B), H(C), H(jν) and H(0) hold. Then, Problem (6.17)–
(6.19) has a mild solution (x, u) ∈ CE × CV .

Proof. The proof of is based on Theorem 4.4. At this end we check in what follows the
validity of the conditions of the theorem.

First, note that as already mentioned, the operator A satisfies condition H(A). More-
over, conditions of functions ξi, ϕi imply that the mutivalued function F defined by
(6.12) satisfy conditions H(F . Next, from condition H(B) of the function B, we see that
the operator B given by (6.14) satisfies assumption H(B). Moreover, using the standard
arguments on subdifferential calculus, the function J defined by (6.15) satisfies the hy-
pothesis H(J). Finally, we note that assumption H(C) on the function C guarantees that
the function g defined by (6.16) satisfies condition H(g). Hence, we are now in a position
to apply Theorem 4.4 to conclude the proof. �

Now, we also proceed with the following results about the existence of a grobal at-
tractor for problem (6.17)–(6.19).
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Theorem 6.2. Suppose that H(B), H(C), H(jν) and H(0) hold. Then the problem (6.17)–
(6.19) admits a compact global attractor provided that αjν = c1 = 0 and λ1 > max{4k, l}.

Proof. Theorem 6.2 is a direct consequence of Theorem 5.8. So, we can apply Theorem
5.8 and obtain that the system (6.17)–(6.19) admits a compact global attractor. �

References

[1] N.T.V. Anh, T.D. Ke, On the differential variational inequalities of parabolic-elliptic
type,Math. Meth. Appl. Sci., 40 (2017), 4683–4695.

[2] H.F. Bohnenblust, S. Karlin, On a theorem of ville. In: Contributions to the Theory
of Games, Princeton University Press, Princeton, 1950.

[3] X.J. Chen, Z.Y. Wang, Differential variational inequality approach to dynamic games
with shared constraints, Math. Program., 146 (2014), 379–408.

[4] C. Christof, Sensitivity analysis and optimal control of obstacle-type evolution vari-
ational inequalities, SIAM J. Control Optim., 57(1) (2019), 192–218.

[5] F.H. Clarke, Optimization and nonsmooth analysis, Wiley, New York, 1983.
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[24] S. Migórski, A. Ochal, M. Sofonea, A class of variational-hemivariational inequalities
in reflexive Banach spaces, J. Elast., 127 (2017), 151–178.
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