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Abstract

The foremost aim of this paper is to reveal the extent of the controllability of the semilinear evolution integrodifferential impulse

system with delayed impulses and non local conditions. This paper begins with the grit of the control formula for the same

impulse system in Banach space. Moreover, As a result, is extended to controllability. The sufficient conditions are introduced

by utilizing the Hausdorff measure of noncompactness, Sadovskii fixed point theorem, and operator semigroups in appropriate

dropping compactness of the operator. Sequentially, an example is provided to show our results.
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1 Introduction

Recent days, functional differential equations or evolution equations work as an abstract

formulations of various partial differential equations which exist in problems related with

heat-flow in materials with memory, viscoelasticity, and many other physical phenomena.

The theory of differential equations in abstract spaces is a captivating field with significant

applications to several areas of analysis and other branches of mathematics. Depending

on the nature of the problems, these equations may adopt many forms such as ordinary

differential equations, functional differential equations, partial differential equations, and

sometimes a mixture of combining systems of ordinary and partial differential equations.

Further control theory is a branch of application-oriented mathematics that contracts

with the fundamental sources carrying the analysis and study of control systems. To control

an object indicates the importance of its performance so as to achieve the desired goal. In

order to complete this rule, practitioners make tools and their communication with the

object being controlled is the subject of control theory. Many papers have performed on

∗b Department of Mathematics, PSG College of Technology, Coimbatore 641004, TamilNadu, India.
∗Corresponding author e-mail: brk.maths@psgtech.ac.in
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the problem of controllability of semilinear integrodifferential evolution systems in Banach

spaces [1–4, 11, 12]. Xue [5] examined the nonlinear differential equation inseparable and

uniformly smooth Banach spaces with nonlocal initial conditions and find the solution via

the Hausdorff measure of non compactness. The controllability and local controllability of

neutral functional differential systems with unbounded delay by using the theory of evolution

families and Sadovskii fixed point theorem proved by Fu [6]. By using local Lipschitz

continuity of a nonlinear function Surendra kumar at el [10] proved the exact controllability

of semilinear systems with a single constant point delay in control. By using semigroup

theory and functional analysis methods Sakthivel at el. [22] proved sufficient conditions for

approximate controllability of impulsive differential equations with state dependent delay.

The investigation of impulsive systems has grown extra prominent in modern times as

various evolutionary methods that happen in physics, chemistry, biology, population dy-

namics, engineering, information science, etc. [7,9] are described by the point that, at some

moments of times, the state function experiences a sudden change, that is, in the form

of impulses. There has been a notable improvement in the impulsive theory in the past

three decades. For a full study on impulsive differential equations refer Lakshmikantham et

al. [20]. Consequently impulsive control in dynamical systems has gained significant recog-

nition and it has been extensively used in several areas such as dosage supply in economics,

mechanics, electronics, medicine and biology, pharmacokinetics, orbital transfer of satellite,

ecosystems management, synchronization in chaotic secure communication systems. In nu-

merous cases, a real system may meet some sudden changes at some time moments and

cannot be counted continuously. This unexpected change is called the impulsive event, and

it has been largely examined based on impulsive differential equations in the earlier days.

Really, the study of control with impulse systems can be followed back to the beginning

of modern control theory. Numerous control with impulse systems were strongly promoted

under the framework of optimal control and were occasionally called impulsive control. Its

necessity and importance lie in that, the main idea of impulsive control is to change the

states immediately at some instants. Therefore, impulsive control can reduce control costs

and the amount of transmitted information drastically. In addition, in many cases, impulsive

control can give an efficient way to deal with systems that cannot endure continuous control

inputs. For various control systems in real life, impulses and delays are essential features

that do not change their controllability. So that under specific conditions the unexpected

changes and delays as disturbances of a system do not modify certain properties such as

controllability. In additional words, controllability is sound by looking at the impulses and

delays as perturbations.

Further, the Controllability for semilinear impulsive control systems with multiple time
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delays in control has been studied by Vijayakumar at el [13]. Yuming and Zou [14, 16]

discussed the stability of an impulsive control system with impulse time windows and im-

pulsive control of nonlinear systems with impulse time window. Controllability of impulsive

system was well studied by George [17]. Controllability of switched time delay systems was

studied by Wang [18].Further the detailed study of impulsive control theory refer in [19].

The different faces of control with impulse systems like Lyapunov stability, input-to-state

stability, finite-time control, and state-dependent impulses were investigated by Yang at

el. [15].

From these points, our main contributions are highlighted as follows:

• Most of the available literature, for the first time semilinear evolution integrodiffer-

ential impulse system with non local delayed impulses in abstract spaces, has been

reviewed.

• A new set of sufficient conditions are implemented for finding the controllability result

of the semilinear system with delayed impulse and non local.

• Sadovskii’s fixed point theorem is effectively used to prove the controllability result.

Best of our knowledge, an investigation concerning the semilinear evolution of integrodiffer-

ential impulsive systems with delayed impulses and nonlocal Condition in abstract spaces

has not been established yet. Thus, it will make an effort to analyze such results in this

paper. In this spirit, inspired by the efforts contributed up to here, the necessity and im-

portance of the realization of a work that will contribute to the controllability of non local

semilinear evolution integrodifferential system with delayed impulse has been studied. The

present work is created as, the basic definitions are discussed in second section. In section

3 control formula for the system (2.1) is studied. Fourth section deals the controllability

result. Finally, an example is presented to illustrate our obtained result in fifth section.

2 System Description and Basic concepts

Let (E, ‖ · ‖) be a real Banach space and C([0,∞), E) be the space of continuous functions

with the norm ‖x‖∞ = sup{‖x(t)‖ : t ∈ [0,∞)}. Consider

dv

dt
= G(t)x(t) +Bu(t) + F

(
t, v(t),

∫ t

0
C(t, v(s))ds

)
, t 6= tn,

v(t+0 ) = v0 + a(x), t0 ≥ 0,

∆v(t) = In(t, v(t− τ)) t = tn,


(2.1)
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where the state variable v(·) takes values in the Banach space E with norm ‖ · ‖ and the

control function u(·) is given in L2(J ,U), a Banach space of admissible control functions

with U as a Banach space and J = {(t, s) : 0 ≤ s ≤ t ≤ b}. B is a bounded linear operator

from U into E and G(t) is the closed bounded linear operator defined on the common domain

D(E) which is dense in E. The nonlinear operators F : J ×E×E → E and C : J ×E → E

are continuous. The non local function a : PC([0, b], E) → E is a given function. In :

J × E → E, ∆v(t) = v(t+)− v(t−), where v(t+) = lim
h→0

v(t+ h), v(t−) = lim
h→0

v(t− h). The

impulse times [tk, k ∈ Z+] satisfy 0 ≤ t0 < t1 < ... < tn → +∞ as n→ +∞.
Consider the linear non-autonomous system

z′ = A(t)z(t)

z(s) = x ∈ E

has associated evolution family of operators U(t, s) : 0 ≤ s ≤ t ≤ b. In the following defini-

tion, L(E) is a space of bounded linear operators from into E endowed with the uniform

convergence topology.

Definition 2.1 [8] A two parameter family of bounded linear operator U(t, s), 0 ≤ s ≤
t ≤ b on E is called a evolution operator of (2.1) if the following conditions are satisfied,

(a) U(t, t)x = x, for every t ∈ [0, b] and U(t, s)U(t, τ) = U(t, τ), for every s ≤ τ ≤ t and

all x ∈ E.

(b) For each x ∈ E, the functions for (t, s) → U(t, s)x is continuous and U(t, s) ∈ L(E)

for every t ≥ s and

(c) For 0 ≤ s ≤ t ≤ b, the function t → U(t, s)x is continuous, for (s, t] ∈ L(E) is

differentiable with

∂U(t, s)

∂t
= A(t)U(t, s).

Definition 2.2 A solution v(·) ∈ PC([0, b], E) is said to be a mild solution of the system

(2.1) if the following integral equation

v(t) = U(t, t0)
m−1∏
j=0

(I + cm−jE
(τ)
m−j)[v0 + a(x)] +

m−1∏
j=0

(I + cm−jE
(τ)
m−j)

∫ t1−τ

t0

U(t, s)Bu(s)ds

+
m−1∏
j=0

(I + cm−jE
(τ)
m−j)

∫ t1−τ

t0

U(t, s)F

(
t, v(t),

∫ s

0
C(r, v(r))dr

)
ds

+

m−1∑
i=1

m−i−1∏
j=0

(I + cm−jE
(τ)
m−j)

∫ ti+1−τ

ti−τ
U(t, s)Bu(s)ds+

∫ t

tm−τ
U(t, s)Bu(s)ds

4



+

m−1∑
i=1

m−i−1∏
j=0

(I + cm−jE
(τ)
m−j)

∫ ti+1−τ

ti−τ
U(t, s)F

(
t, v(t),

∫ s

0
C(r, v(r))dr

)
ds

+

∫ t

tm−τ
U(t, s)F

(
t, v(t),

∫ s

0
C(r, v(r))dr

)
ds

is satisfied.

To prove the controllability result via the fixed point of a condensing operator to recall

Kuratowskii’s measure of non-compactness which will be used in the following section. The

measure for a bounded set D with norm ‖ · ‖ of a Banach space E or Kuratowskii’s measure

of non compactness is defined as

α(D) = inf{d > 0| D}

can be covered with a finite number of sets of diameter small than d. Throughout this work

consider the impulse times [tk, k ∈ Z+] on the interval satisfy t0 < t1 < ... < tm < tb < tm+1,

m > 0 is an integer.

The following operators are needed to prove the controllability result

(H1) The linear operators W τ
m−1u,W

τ
mu,W

τ
0 u : L2(J, U)→ X is defined by

W
(τ)
0 u =

∫ t1−τ

t0

U(b, s)Bu(s)ds.

W
(τ)
m−1u =

∫ tm+1−τ

tm−τ
U(b, s)Bu(s)ds,

W (τ)
m u =

∫ b

tm−τ
U(b, s)Bu(s)ds.

has an inverse operator (W
(τ)
e )−1, e = 0,m−1,m.Which takes values in L2(J , U)/kerW

and there exists a positive constant.

3 Control formula

Theorem 3.1 For xb ∈ X, define the control

u(t) = (W
(τ)
e )−1

{
vb − U(b, t0)

m−1∏
j=0

(I + cm−jE
(τ)
m−j)[v0 + a(x)] +

m−1∏
j=0

(I + cm−jE
(τ)
m−j)

×
∫ t1−τ

t0

U(b, s)F

(
t, v(t),

∫ s

0
C(r, v(r))dr

)
ds+

m−1∑
i=1

m−1∏
j=0

(I + cm−jE
(τ)
m−j)

×
∫ ti+1−τ

ti−τ
U(b, s)F

(
t, v(t),

∫ s

0
C(r, v(r))dr

)
ds

+

∫ t

tm−τ
U(b, s)F

(
t, v(t),

∫ s

0
C(r, v(r))dr

)
ds

}
e = m− 1,m, 0.



(3.1)
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transfers initial state v0 to

v(t) = U(t, t0)

m−1∏
j=0

(I + cm−jE
(τ)
m−j)[v0 + a(x)] +

m−1∏
j=0

(I + cm−jE
(τ)
m−j)

∫ t1−τ

t0

U(t, s)

×Bu(s)ds+
m−1∏
j=0

(I + cm−jE
(τ)
m−j)

∫ t1−τ

t0

U(t, s)F

(
t, v(t),

∫ s

0
C(r, v(r))dr

)
ds

+
m−1∑
i=1

m−i−1∏
j=0

(I + cm−jE
(τ)
m−j)

∫ ti+1−τ

ti−τ
U(t, s)Bu(s)ds+

∫ t

tm−τ
U(t, s)

Bu(s)ds+
m−1∑
i=1

m−i−1∏
j=0

(I + cm−jE
(τ)
m−j)

∫ ti+1−τ

ti−τ
U(t, s)

×F
(
t, v(t),

∫ s

0
C(r, v(r))dr

)
ds+

∫ t

tm−τ
U(t, s)F

(
t, v(t),

∫ s

0
C(r, v(r))dr

)
ds



(3.2)

final state vb.

Proof : Let I1 = c1v(t1 − τ) and tn − tn−1 > τ. Suppose that there exists an l ∈ 0, 1, ...,m

then (W τ
e )−1 is invertible. The following proof is divided into three cases. By substituting

this control (3.1) in equation (3.2), the following equations are obtained at b.

Case 1: If l1 ∈ 1, ...,m− 1, then

v(t) = U(t, t0)
m−1∏
j=0

(I + cm−jE
(τ)
m−j)[v0 + a(x)] +

m−1∑
i=1

m−i−1∏
j=0

(I + cm−jE
(τ)
m−j)

×
∫ ti+1−τ

ti−τ
U(t, s)Bu(s)ds+

m−1∑
i=1

m−i−1∏
j=0

(I + cm−jE
(τ)
m−j)

∫ ti+1−τ

ti−τ
U(t, s)

×F
(
t, v(t),

∫ s

0
C(r, v(r))dr

)
ds


(3.3)

the control law is designed as,

u(t) =

(m−1∑
i=1

m−i−1∏
j=0

(I + cm−jE
(τ)
m−j)

)−1
(W

(τ)
l2

)−1
[
v(b)

−U(t, t0)

m−1∏
j=0

(I + cm−jE
(τ)
m−j)[v0 + a(x)]−

m−1∑
i=1

m−i−1∏
j=0

(I + cm−jE
(τ)
m−j)

×
∫ ti+1−τ

ti−τ
U(t0, s)F

(
t, v(t),

∫ s

0
C(r, v(r))dr

)
ds

]
.


(3.4)

Now substitute (3.4) in (3.3),

v(b) = U(t, t0)

m−1∏
j=0

(I + cm−jE
(τ)
m−j)[v0 + a(x)] +

m−1∑
i=1

m−i−1∏
j=0

(I + cm−jE
(τ)
m−j)

×
∫ ti+1−τ

ti−τ
U(t, s)B

(m−1∑
i=1

m−i−1∏
j=0

(I + cm−jE
(τ)
m−j)

)−1
(W

(τ)
l1

)−1
[
v(b)

6



−U(b, s)

m−1∏
j=0

(I + cm−jE
(τ)
m−j)[v0 + a(x)]−

m−1∑
i=1

m−i−1∏
j=0

(I + cm−jE
(τ)
m−j)

×
∫ ti+1−τ

ti−τ
U(b, s)F

(
t, v(t),

∫ s

0
C(r, v(r))dr

)]
(s)ds+

m−1∑
i=1

m−i−1∏
j=0

(I + cm−jE
(τ)
m−j)

×
∫ ti+1−τ

ti−τ
U(t, s)F

(
t, v(t),

∫ s

0
C(r, v(r))dr

)
ds

v(b) = U(t, t0)
m−1∏
j=0

(I + cm−jE
(τ)
m−j)[v0 + a(x)] +

m−1∑
i=1

m−i−1∏
j=0

(I + cm−jE
(τ)
m−j)

×(W
(τ)
l1

)

(m−1∑
i=1

m−i−1∏
j=0

(I + cm−jE
(τ)
m−j)

)−1
(W

(τ)
l1

)−1

×
[
v(b)− U(b, t0)

m−1∏
j=0

(I + cm−jE
(τ)
m−j)[v0 + a(x)]−

m−1∑
i=1

m−i−1∏
j=0

(I + cm−jE
(τ)
m−j)

×
∫ ti+1−τ

ti−τ
U(b, s)F

(
t, v(t),

∫ s

0
C(r, v(r))dr

)]
(s)ds+

m−1∑
i=1

m−i−1∏
j=0

(I + cm−jE
(τ)
m−j)

×
∫ ti+1−τ

ti−τ
U(t, s)F

(
t, v(t),

∫ s

0
C(r, v(r))dr

)
ds = vb.

Case 2: If l2 ∈ 1, ...,m, then

v(t) = U(t, t0)
m−1∏
j=0

(I + cm−jE
(τ)
m−j)[v0 + a(x)] +

∫ t

tm−τ
U(t, s)Bu(s)ds

+

∫ t

tm−τ
U(t, s)F

(
t, v(t),

∫ s

0
C(r, v(r))dr

)
ds

 (3.5)

the control law is designed as,

u(t) = (W
(τ)
l2

)−1
[
v(b)− U(b, s)

m−1∏
j=0

(I + cm−jE
(τ)
m−j)[v0 + a(x)]

−
∫ t

tm−τ
U(b, s)F

(
t, v(t),

∫ s

0
C(r, v(r))dr

)]
ds.

 (3.6)

Now substitute (3.6) in (3.5),

v(b) = U(b, t0)

m−1∏
j=0

(I + cm−jE
(τ)
m−j)[v0 + a(x)] + (W

(τ)
l2

)(W
(τ)
l2

)−1
[
vb − U(b, t0)

×
m−1∏
j=0

(I + cm−jE
(τ)
m−j)v0 −

∫ t

tm−τ
U(t0, s)F

(
t, v(t),

∫ s

0
C(r, v(r))dr

)
ds

]
(s)ds

+

∫ t

tm−τ
U(t0, s)F

(
t, v(t),

∫ s

0
C(r, v(r))dr

)
ds = vb.

7



Case 3: If l = 0, then

v(t) = U(t, t0)
m−1∏
j=0

(I + cm−jE
(τ)
m−j)[v0 + a(x)] +

m−1∏
j=0

(I + cm−jE
(τ)
m−j)

∫ t1−τ

t0

U(t, s)

×Bu(s)ds+

m−1∏
j=0

(I + cm−jE
(τ)
m−j)

∫ t1−τ

t0

U(t, s)F

(
t, v(t),

∫ s

0
C(r, v(r))dr

)
ds


(3.7)

the control law is designed as,

u(t) =

(m−1∏
j=0

(I + cm−jE
(τ)
m−j)

)−1
(W

(τ)
0 )−1

[
v(b)− U(b, t0)

×
m−1∏
j=0

(I + cm−jE
(τ)
m−j)[v0 + a(x)]−

m−1∏
j=0

(I + cm−jE
(τ)
m−j)

∫ t1−τ

t0

U(b, s)

×F
(
t, v(t),

∫ s

0
C(r, v(r))dr

)
ds

]
.


(3.8)

Now substitute (3.8) in (3.7),

v(b) = U(b, t0)

m−1∏
j=0

(I + cm−jE
(τ)
m−j)x0 +

(m−1∏
j=0

(I + cm−jE
(τ)
m−j)

)
(W

(τ)
0 )

×
(m−1∏

j=0

(I + cm−jE
(τ)
m−j)

)−1
(W

(τ)
0 )−1

[
v(b)− U(b, t0)

m−1∏
j=0

(I + cm−jE
(τ)
m−j

×[v0 + a(x)]−
m−1∏
j=0

(I + cm−jE
(τ)
m−j)

∫ t1−τ

t0

U(b, s)

×F
(
t, v(t),

∫ s

0
C(r, v(r))dr

)
ds

]
+
m−1∏
j=0

(I + cm−jE
(τ)
m−j)

∫ t1−τ

t0

U(t0, s)F

(
t, v(t),

∫ s

0
C(r, v(r))dr

)
ds

v(b) = U(b, t0)
m−1∏
j=0

(I + cm−jE
(τ)
m−j)[v0 + a(v)] +

m−1∏
j=0

(I + cm−jE
(τ)
m−j)W

(τ)
0

×
(m−1∏

j=0

(I + cm−jE
(τ)
m−j)

)−1
(W

(τ)
0 )−1

[
vb − U(b, t0)

×
m−1∏
j=0

(I + cm−jE
(τ)
m−j)[v0 + a(v)]−

m−1∏
j=0

(I + cm−jE
(τ)
m−j)

∫ t1−τ

t0

U(b, s)

×F
(
t, v(t),

∫ s

0
C(r, v(r))dr

)
ds

]
+

m−1∏
j=0

(I + cm−jE
(τ)
m−j)

×
∫ t1−τ

t0

U(t0, s)

∫ s

0
C(r, v(r))drds = vb.

The proof is complete.
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Definition 3.2 The given system (2.1) is said to be controllable on the interval J , if for

every initial function v0 ∈ E and v1 ∈ E, there exists a control u ∈ L2(J , U) such that the

solution v(·) to (2.1) satisfies v(b) = v1.

4 Controllability Result

To establish our results, the following assumptions are introduced on system (2.1). Consider

the interval J ′ = [tm − τ, tm+1 − τ ].

(H2) G(t) generates family of the strongly continuous semi group of bounded linear oper-

ators U(t, s) is compact when t > s > 0 and there exist constants M1 > 0 such that

‖U(t, s)‖ ≤M1.

(H3) The linear operator W
(τ)
m−1 : L(J ′,U)→ E defined by

W
(τ)
m−1u =

∫ b

0
U(b, s)Bu(s)ds, t ∈ J ′,

has an inverse operator (W
(τ)
m−1)

−1 which takes values in L2(J ′,U)/kerW and there

exist positive constants M2,M3 > 0 such that ‖(W (τ)
m−1)

−1‖ ≤M2 and ‖B‖ ≤M3.

(H4) For each t, s ∈ J ′, the function C(t, s, ·) : E → E is continuous and for each x ∈ E,
the function C(·, ·, v) : Λ→ E is strongly measurable.

(H5) The function C(·) : E → E is continuous and there exist a constants M4 > 0 such

that there exists an integrable function Kc : J ′ × J ′ → [0,∞)

‖C(t, ψ)‖ ≤M4,

‖C(t, η1)− C(t, η2)‖ ≤ Kc(t, s)‖η1 − η2‖, t, s ∈ J ′, η1, η2 ∈ E.

(H6) For each t ∈ J ′, the function function F(t, ·, ·) : E × E → E is continuous and for

each (θ, v) ∈ E × E, the function F(·, η1, η2) : J ′ → E is strongly measurable.

(H7) There exists a function Kf (·) ∈ L1(J ′,R+) such that

‖F(t, v1, q1)− F(t, v2, q2)‖ ≤ Kf (‖v1 − v2‖+ ‖q1 − q2),

for any t ∈ J ′, v1v2, q1, q2 ∈ E. (ii) The function F : J ′ × E × E → E is compact.

(H8) The function a : PC(J ′, E)→ E is Lipschitz continuous in the following sense: there

exists a constants Ka > 0 such that

‖a(x)− a(y)‖ ≤ Ka‖x− y‖, for x, y ∈ E.
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For convenience take,
m−1∏
j=0

(I + cm−jE
(τ)
m−j) = C1,

M1C1‖x0‖+ C1M1M3C2M2t+ [‖xb‖ −M1C1‖x0‖] + C1M1M2[(M5b−M5(s)] < 1.

To prove the controllability result via the fixed points of a condensing operator Kuratowskiis

measure of non-compactness will be used in the following section. Kuratowskiis measure of

non compactness or the measure for a bounded set D of a Banach space E with norm ‖ · ‖
is defined as

(G) = inf{α > 0},

G can be covered with a finite number of sets of diameter small than α.

Lemma 4.1 (Sadovskii fixed point theorem) [21] Let T be the condensing operator on a

Banach space E, that is T is continuous and takes bounded sets into bounded sets and

α(T (D)) < α(D), for every bounded set D of E with α(D) > 0. If T (S) ⊂ S for a convex,

closed and bounded set S of E, then T has a fixed point in S.

Let us consider the case 1 for this section.

Theorem 4.2 Assume that the impulse times {ti, i ∈ Z+} on the interval J ′. If the as-

sumption (H1)− (H4) are satisfied then the system (2.1) is controllable on E.

Proof. Using (H3) for an arbitrary function v(·) ∈ PC(J ′, E), define the control

u(t) =

(m−1∑
i=1

m−i−1∏
j=0

(I + cm−jE
(τ)
m−j)

)−1
(W

(τ)
l2

)−1
[
v(b)

−U(t, t0)

m−1∏
j=0

(I + cm−jE
(τ)
m−j)[v0 + a(x)]−

m−1∑
i=1

m−i−1∏
j=0

(I + cm−jE
(τ)
m−j)

×
∫ ti+1−τ

ti−τ
U(t0, s)F

(
t, v(t),

∫ s

0
C(r, v(r))dr

)
ds

]
.

Consider the Banach space Y = PC(J ′, E) with the norm ‖v‖ = sup{‖v(t)‖ : t ∈ J ′}.
Using (H2) for an arbitrary function v(·) ∈ C(J ′, E), and define an operator Φ : Y→ Y.

(Φv)(t) = U(t, t0)
m−1∏
j=0

(I + cm−jE
(τ)
m−j)[v0 + a(x)] +

m−1∑
i=1

m−i−1∏
j=0

(I + cm−jE
(τ)
m−j)

×
∫ ti+1−τ

ti−τ
U(t, s)B(s)

(m−1∑
i=1

m−i−1∏
j=0

(I + cm−jE
(τ)
m−j)

)−1
(W

(τ)
l1

)−1
[
v(b)

−U(b, s)

m−1∏
j=0

(I + cm−jE
(τ)
m−j)[v0 + a(x)]−

m−1∑
i=1

m−i−1∏
j=0

(I + cm−jE
(τ)
m−j)
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×
∫ ti+1−τ

ti−τ
U(b, s)F

(
s, v(s),

∫ s

0
C(r, v(r))dr

)]
(s)ds+

m−1∑
i=1

m−i−1∏
j=0

(I + cm−jE
(τ)
m−j)

×
∫ ti+1−τ

ti−τ
U(t, s)F

(
s, v(s),

∫ s

0
C(r, v(r))dr

)
ds

has a fixed point X(·). This fixed point is the mild solution to system 2.1, which is implies

that the system is controllable on J ′. To prove that operator Φ is a completely continuous

operator. Set Bρ = {v ∈ C[0, b] : ‖v‖C ≤ ρ} for some ρ ≥ 1. For each ρ, Bρ is a bounded

closed convex set in Y.

Step 1. To claim that there exists a positive constant r such that Φ(Bρ) ⊂ Bρ. If this is

not true, then for each positive number ρ, there exists a function vρ ∈ Bρ, does not belong

to Bρ, that is ‖(Φvρ)(t)‖ > ρ for some t ∈ J ′ . Next we have

ρ < ‖(Φvρ)(t)‖

≤
∥∥∥U(t, t0)

m−1∏
j=0

(I + cm−jE
(τ)
m−j)[v0 + a(vρ)] +

m−1∑
i=1

m−i−1∏
j=0

(I + cm−jE
(τ)
m−j)

×
∫ ti+1−τ

ti−τ
U(t, s)B(s)

[
v(b)− U(b, s)

m−1∏
j=0

(I + cm−jE
(τ)
m−j)[v0 + a(vρ)]

−
m−1∑
i=1

m−i−1∏
j=0

(I + cm−jE
(τ)
m−j)

×
∫ ti+1−τ

ti−τ
U(b, s)F

(
s, vρ(s),

∫ s

0
C(r, vρ(r))dr

)]
(s)ds+

m−1∑
i=1

m−i−1∏
j=0

(I + cm−jE
(τ)
m−j)

×
∫ ti+1−τ

ti−τ
U(t, s)F

(
s, vρ(s),

∫ s

0
C(r, vρ(r))dr

)
ds
∥∥∥

≤ M1C1‖v0‖N1 + C1M1M2(ti+1 − ti)
[
‖vb‖ −M1C1‖v0‖N1 − C1M1

×
∫ ti+1−τ

ti−τ
F

(
s, vρ(s),

∫ s

0
C(r, vρ(r))dr

)]
+C1

∫ ti+1−τ

ti−τ
M1‖F

(
s, vρ(s),

∫ s

0
C(r, vρ(r))dr

)
‖ds

Since

≤
∫ ti+1−τ

ti−τ
‖F(s, vρ(s),

∫ s

0
C(r, vρ(r))dr‖ds

≤
∫ ti+1−τ

ti−τ
[‖F(s, vρ(s),

∫ s

0
C(r, vρ(r))dr)− F(s, 0, 0)‖+ ‖F(s, 0, 0)‖]ds

≤
∫ ti+1−τ

ti−τ
[Kf (‖vr(s)‖+ ‖

∫ s

0
C(r, vρ(r))dr)‖+ ‖F(s, 0, 0)‖)]ds
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≤
∫ ti+1−τ

ti−τ
[Kf (‖vr(s)‖+ ‖

∫ s

0
{‖C(r, vρ(r))− C(r, ρ, 0))‖+ ‖C(r, ρ, 0)‖}dr + ‖F(s, 0, 0)‖)]ds

≤
∫ ti+1−τ

ti−τ

[
Kf

(
‖vr(s)‖+

∫ s

0
[Kc‖vρ(s)‖+ ‖C(r, ρ, 0)‖]dr + ‖F(s, 0, 0)‖

)]
ds

≤ Kf (ti+1 − ti)[
(
‖vr(s)‖+ s[Kc‖vρ(s)‖+ ‖C(r, ρ, 0)‖] + ‖F(s, 0, 0)‖

)]
≤ M1C1d1M2M3

[
‖v0‖+ ‖v(b)‖+M1C1‖v0‖+M1‖Kc‖L1‖‖C(r, ρ, 0)‖

+M1C1‖F(s, 0, 0)‖
]

+M1C1Kfd2[‖C(r, ρ, 0)‖+ ‖F(s, 0, 0)‖]

+‖ρ‖
[
M1C1(1 +M1C1d1M2M3) +M1C1d1Kf (M2M3M1C1d2Kc + 1)

]
.

Dividing both side of ρ and taking the limit as ρ→∞, we have[
M1C1(1 +M1C1d1M2M3) +M1C1d1Kf (1 +M2M3M1C1d2Kc)

]
≥ 1.

This contradicts to our assumption [H(5)]. Hence for some positive number ρ, Φ(B) ⊆ Bρ.
Now to prove that the operator Φ is a condensing operator,and introduce the decompo-

sition Φ = Φ1 + Φ2, where

(Φ1v)(t) = U(t, t0)
m−1∏
j=0

(I + cm−jE
(τ)
m−j)[v0 + a(x)] +

m−1∑
i=1

m−i−1∏
j=0

(I + cm−jE
(τ)
m−j)

×
∫ ti+1−τ

ti−τ
U(t, s)B(s)

(m−1∑
i=1

m−i−1∏
j=0

(I + cm−jE
(τ)
m−j)

)−1
(W

(τ)
l1

)−1
[
v(b)

−U(b, s)

m−1∏
j=0

(I + cm−jE
(τ)
m−j)[v0 + a(x)]−

m−1∑
i=1

m−i−1∏
j=0

(I + cm−jE
(τ)
m−j)

×
∫ ti+1−τ

ti−τ
U(b, s)F

(
s, v(s),

∫ s

0
C(r, v(r))dr

)]
(s)ds

(Φ2v)(t) =
m−1∑
i=1

m−i−1∏
j=0

(I + cm−jE
(τ)
m−j)

∫ ti+1−τ

ti−τ
U(t, s)

×[F

(
s, x(s),

∫ s

0
C(r, v(r))dr − F

(
s, ys),

∫ s

0
C(r, v(r))dr

)
]ds.

Now to show that when using this control u(t), the operator Φ = Φ1 + Φ2 has a fixed

point x(·). This fixed point is the solution to system (2.1), in implying that the system is

controllable.

Step 2. Now t ∈ J ′, x1, y1 ∈ Bρ, then

‖(Φ1x1)(t)− (Φ1y1)(t)‖

≤ ‖U(t, t0)‖‖
m−1∏
j=0

(I + cm−jE
(τ)
m−j)‖a(x1)− a(y1)‖
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+‖
m−1∑
i=1

m−i−1∏
j=0

(I + cm−jE
(τ)
m−j)‖

∫ ti+1−τ

ti−τ
‖U(t, s)‖

×‖B(s)‖‖
(m−1∑

i=1

m−i−1∏
j=0

(I + cm−jE
(τ)
m−j)

)−1
‖

×‖(W (τ)
l1

)−1‖
[
‖U(b, s)‖‖

m−1∏
j=0

(I + cm−jE
(τ)
m−j)‖[a(x1)− a(y1)‖]

−‖
m−1∑
i=1

m−i−1∏
j=0

(I + cm−jE
(τ)
m−j)‖

∫ ti+1−τ

ti−τ
‖U(b, s)‖

×‖F
(
s, x1(s),

∫ s

0
C(r, v(r))dr − F

(
s, y1(s),

∫ s

0
C(r, v(r))dr

)]
(s)‖ds

≤ ‖x1 − y1‖[M1C1Ka + c1(ti+1 − ti)M1M3M1C!Ka − C1(ti+1 − ti)M1Kf + Kc].

Therefore Φ1(·) is a contraction on Bρ. Next to show that Φ2 is completely continuous from

Bρ into Bρ.
Step 3. To prove that Φ2 is completely continuous. First, to prove that Φ2(·) is continuous

on Bρ. Let vn(t)∞0 ⊂ Bρ, with vn → v in Bρ. Then there exists a number ρ > 0 such that

‖vn(t)‖ ≤ ρ for all n and a.e. t ∈ J ′, so vn ∈ Bρ. From the dominated convergence theorem,

we obtain

‖(Φ2vn)(t)− Φ2v(t)‖ ≤ ‖
m−1∑
i=1

m−i−1∏
j=0

(I + cm−jE
(τ)
m−j)

∫ ti+1−τ

ti−τ
‖U(t, s)‖

×‖F
(
s, vn(s),

∫ s

0
C(r, vn(r))dr

)
ds− F

(
s, v(s),

∫ s

0
C(r, v(r))dr

)
ds‖

≤ C1M1(ti+1 − ti)(Kf‖vn − v‖[1 + Kc‖vn − v‖])

→ 0 as n→∞.

Hence Φ2 is continuous on Bρ. Next to prove that Φ2 is relatively compact as well as

equicontinuous on E. From the Ascoli-Arzela theorem, to show that the compactness of Φ2.

We need to prove that Φ2(Bρ) ⊂ PC(J ′, E) is equi continuous and Φ2(Bρ)(t) is precompact.

For any v ∈ Bρ with t+ h ∈ J ′, we have

‖(Φ2vn)(t+ h)− Φ2v(t)‖

≤ ‖
m−1∑
i=1

m−i−1∏
j=0

(I + cm−jE
(τ)
m−j)

∫ ti+1+h−τ
−ti − τ‖U(t+ h, s)− U(t, s)‖

× ‖F
(
s, vn(s),

∫ s

0
C(r, vn(r))dr

)
ds− F

(
s, v(s),

∫ s

0
C(r, v(r))dr

)
ds‖

≤ C1M1[U(t+ h, t)− I]‖F
(
s, vn(s),

∫ s

0
C(r, vn(r))dr

)
ds

−F
(
s, v(s),

∫ s

0
C(r, v(r))dr

)
ds.
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Since F is compact,

[U(t+ h, t)− I]‖F
(
s, v(s),

∫ s

0
C(r, v(r))dr

)
ds→ 0 as h→ 0

Finally, Φ2 maps (Bρ)(t) into precompact set in E as

Φ2(Bρ)(t) ⊂ t conv{U(t, s)F

(
s, vn(s),

∫ s

0
C(r, vn(r))drds}, for all t ∈ J ′.

Hence by the above steps 1− 3, we conclude that Φ = Φ1 + Φ2 is a condensing operator on

(Bρ). By Lemma 4.1, there exists a fixed point v(·) ∈ (Bρ) such that (Φv)(t) = v(t) and this

point v(·) is a mild solution to system (2.1). Clearly, (Φv)(b) = v(b) = v(b), which implies

that system (2.1) is controllable. Hence the proof.

5 Application

Example Consider the partial differential equation of the form

∂

∂t
e(t, w) = α1(t, w)

∂2

∂w2
e(t, w) + µ(t, w) + α2(t, e(t, w)) +

∫ t

0
α3(t, s, e(t, w))ds,

e(t, 0) = e(t, π) = 0, t ≥ 0, t ∈ J,

e(t, w) = e0(w) +
∑n

i=1 hiφ(si, w), φ ∈ PC(J′, E),

∆e = In = 0.1,


(5.1)

where et−α1(t, w)eww is a uniform parabolic differential operator with α1(t, w) continuous

on 0 ≤ w ≤ π, 0 ≤ t ≤ b and is uniformly Holder continuous in t, and constant hi is small

and α2, α3 are continuous. Let us take E = U = L2[0, π] endowed with the usual norm

| · |2L. Put v(t) = e(t, w) and u(t) = µ(t, w) where λ(t, w) : J × [0, π] is continuous. Define

the operators F, Ii by

F(t, λ1, λ2)(w) = α1(t, λ1(t, w)) + K(λ2).

where

K(λ2)(w) =

∫ t

0
α3(t, s, λ2(t, w))ds

and

Ii(λ)(w) = civ(ti − τ).

In particular, set E = R+, J′ = [0, 1],

F(t, v) = α1 =
x

15 + t3
, (t, v) ∈ J′ × E,
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Gx(t) =

∫ t

0
α1(t, s, v)ds = α3 =

∫ t

0
e
−1
18 x(s)ds,

a(v) =

n∑
t=1

hiφ =
2

18
sinx, x ∈ E.

With this choice G(t), F and B = I the identity operator, we see that (5.1) can be written

in the abstract formulation of (2.1). Let p1, p2 ∈ E and t ∈ J′. Then

‖Gp1(t)− Gp2(t)‖ = ‖
∫ t

0
e
−1
18 p1(s)ds−

∫ t

0
e
−1
18 p2(s)ds‖

≤ −1

18
‖p1 − p2‖.

Hence the condition (H5) holds with Kc = −1
18 . Let q1, q2 ∈ E and t ∈ J′. Then

‖a(q1)− a(q2)‖ = ‖ 2

18
sin(q1)−

2

18
sin(q2)‖

≤ 2

18
‖q1 − q2‖.

Hence, the condition (H4) holds with Ka = 2
18 . Let p3, p4 ∈∈ E and t ∈ J′. Then

‖Fp3 − Fp4‖ = ‖ p3
15 + t3

− p4
15 + t3

‖

≤ 1

15
‖p3 − p4‖.

Hence, the condition (H6) holds with Kf = 1
15 . Therefore, all the conditions of the Theorem

4.2 is satisfied. Hence the given system (5.1) is controllable.
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