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Abstract

In this study, we use quantum calculus to prove Hermite-Hadamard and Ostrowski type inequalities for s-convex functions in

the second sense. The newly proven results are also shown to be an extension of comparable results in the literature, like the

results of [1, 12, 16]. Furthermore, it is provided that how the newly discovered inequalities can be applied to special means of

real numbers.
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QUANTUM HERMITE-HADAMARD AND QUANTUM OSTROWSKI TYPE
INEQUALITIES FOR s-CONVEX FUNCTIONS WITH APPLICATIONS

MUHAMMAD AAMIR ALI1, HÜSEYIN BUDAK2, SOTIRIS K. NTOUYAS3;4, AND JESSADA TARIBOON5

Abstract. In this study, we use quantum calculus to prove Hermite-Hadamard and Ostrowski type
inequalities for s-convex functions in the second sense. The newly proven results are also shown to
be an extension of comparable results in the literature, like the results of [1,12,16]. Furthermore, it is
provided that how the newly discovered inequalities can be applied to special means of real numbers.

1. Introduction

In convex functions theory, Hermite-Hadamard (HH) inequality is very important which was dis-
covered by C. Hermite and J. Hadamard independently (see, also [19], and [35, p.137]),

(1.1) f

�
a+ b

2

�
� 1

b� a

bZ
a

f(x)dx � f (a) + f (b)

2

where f is a convex function. In the case of concave mappings, the above inequality is satis�ed in
reverse order.
Hudzik and Maligranda de�ned s-convex functions in the second sense in [24], which may be ex-

pressed as: a mapping f : R+ ! R, where R+ = [0;1) is called s-convex in the second sense if
f (tx+ (1� t) y) � tsf (x) + (1� t)s f (y)

for all x; y 2 R+ and t 2 [0; 1] : After that, Dragomir and Fitzpatrick [18] used this newly class of
functions and proved the following HH inequality:

(1.2) 2s�1f

�
a+ b

2

�
� 1

b� a

Z b

a

f (x) dx � f (a) + f (b)

s+ 1
:

For more recent integral inequalities for the class of s-convex functions and its generalizations via
di¤erent integral opertaors, one can consult [11,17,20,21,28,30,34].
On the other hand, several studies have been carried out in the domain of q-analysis, beginning with

Euler, in order to achieve pro�ciency in mathematics that constructs quantum computing q-calculus,
which is considered a relationship between physics and mathematics. It has a wide range of applications
in mathematics, including combinatorics, simple hypergeometric functions, number theory, orthogonal
polynomials, and other sciences, as well as mechanics, relativity theory, and quantum theory [23, 27].
Euler is thought to be the inventor of this signi�cant branch of mathematics. He used the q-parameter
in Newton�s work on in�nite series. Later, Jackson presented the q-calculus, which knew no limits
calculus, in a methodical manner [22, 25]. In 1966, Al-Salam [10] introduced a q-analogue of the q-
fractional integral and q-Riemann-Liouville fractional. Since then, the related research has gradually
increased. In particular, in 2013, Tariboon and Ntouyas introduced aDq-di¤erence operator and qa-
integral in [36]. In 2020, Bermudo et al. introduced the notion of bDq derivative and qb-integral
in [12].
Many integral inequalities have been studied using quantum integrals for various types of functions.

For example, in [3, 6, 8, 9, 12�14, 26, 31], the authors used aDq;
bDq-derivatives and qa; qb-integrals

to prove HH integral inequalities and their left-right estimates for convex and coordinated convex
functions. In [32], Noor et al. presented a generalized version of quantum HH integral inequalities.

Key words and phrases. Hermite-Hadamard inequality, Ostrowski inequality, q-integral, quantum calculus, s-convex
functions.

2010 Mathematics Subject Classi�cation 26D10, 26A51, 26D15.
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2 M.A. ALI, H. BUDAK, S.K. NTOUYAS, AND J. TARIBOON

For generalized quasi-convex functions, Nwaeze et al. proved certain parameterized quantum integral
inequalities in [33]. Khan et al. proved quantum HH inequality using the green function in [29]. Budak
et al. [15], Ali et al. [2,4] and Vivas-Cortez et al. [37] developed new quantum Simpson�s and quantum
Newton�s type inequalities for convex and coordinated convex functions. For quantum Ostrowski�s
inequalities for convex and co-ordinated convex functions one can consult [5, 7, 16].

Inspired by this ongoing studies, we o¤er some new quantum HH type inequalities and Ostrowski
type inequalities for s-convex functions in the second sense.
The following is the structure of this paper: A brief overview of the concepts of q-calculus, as well

as some related works, is given in Section 2. In Section 3, we show the relationship between the
results presented here and comparable results in the literature by proving quantum HH inequalities for
s-convex functions in the second sense. Quantum Ostrowski type inequalities for s-convex functions
in the second are presented in Section 4. Section 5 concludes with some recommendations for future
studies.

2. Preliminaries of q-Calculus and Some Inequalities

In this section, we recollect some formerly regarded concepts. Also, here and further we use q 2 (0; 1)
and the following notation(see [27]):

[n]q =
1� qn
1� q = 1 + q + q2 + : : :+ qn�1; q 2 (0; 1) :

In [25], Jackson gave the q-Jackson integral from 0 to b as follows:

(2.1)

bZ
0

f (x) dqx = (1� q) b
1X
n=0

qnf (bqn)

provided the sum converge absolutely.

De�nition 1. [36] The qa-derivative of a mapping f : [a; b]! R at x 2 [a; b] is de�ned as:

(2.2) aDqf (x) =
f (x)� f (qx+ (1� q) a)

(1� q) (x� a) ; x 6= a:

If x = a, we de�ne aDqf (a) = limx!a aDqf (x) if it exists and it is �nite.

De�nition 2. [12] The qb-derivative of a mapping f : [a; b]! R at x 2 [a; b] is de�ned as:

bDqf (x) =
f (qx+ (1� q) b)� f (x)

(1� q) (b� x) ; x 6= b:

If x = b, we de�ne bDqf (b) = limx!b
bDqf (x) if it exists and it is �nite.

De�nition 3. [36] The qa-integral of a mapping f : [a; b]! R is de�ned as:
xZ
a

f (t) adqt = (1� q) (x� a)
1X
n=0

qnf (qnx+ (1� qn) a) ;

where x 2 [a; b] :
De�nition 4. [12] The qb-integral of a mapping f : [a; b]! R is de�ned as:

bZ
x

f (t) bdqt = (1� q) (b� x)
1X
n=0

qnf (qnx+ (1� qn) b) ;

where x 2 [a; b] :
In [12], Bermudo et al. established the following quantum HH type inequality:

Theorem 1. For the convex mapping f : [a; b]! R, the following inequality holds

(2.3) f

�
a+ b

2

�
� 1

2 (b� a)

24 bZ
a

f (x) adqx +

bZ
a

f (x) bdqx

35 � f (a) + f (b)

2
:
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In [16], Budak et al. proved the following Ostrowski inequality by using the concepts of quantum
derivatives and integrals:

Theorem 2. Let f : [a; b] � R! R be a function and bDqf and aDqf be two continuous and integrable
functions on [a; b] : If jbDqf (t) j; jaDqf (t) j �M for all t 2 [a; b] ; then we have the following quantum
Ostrowski inequality ������f (x)� 1

b� a

24 xZ
a

f (t) adqt +

bZ
x

f (t) bdqt

35������(2.4)

� qM

(b� a)

"
(x� a)2 + (b� x)2

[2]q

#
3. Hermite-Hadamard Inequalities

In this section, we prove HH inequalities for s-convex functions in the second sense using the
quantum integrals.

Theorem 3. Assume that the mapping f : R+ ! R is s-convex in the second sense and a; b 2 R+
with a < b: Then the following inequality holds for s 2 (0; 1]:

2s�1f

�
a+ b

2

�
� 1

2 (b� a)

"Z b

a

f (x) adqx+

Z b

a

f (x) bdqx

#
(3.1)

� f (a) + f (b)

[s+ 1]q
:

Proof. As f is s-convex in the second sense on R+ we have
f (tx+ (1� t) y) � tsf (x) + (1� t)s f (y) ;

for all x; y 2 R+ and t 2 [0; 1]:
Obverse that

(3.2) 2sf

�
x+ y

2

�
� f (x) + f (y) :

We get the following, by putting x = tb+ (1� t) a and y = ta+ (1� t) b in (3.2)

2sf

�
a+ b

2

�
� f (tb+ (1� t) a) + f (ta+ (1� t) b) :

From De�nitions 3 and 4, we have

2s�1f

�
a+ b

2

�
� 1

2 (b� a)

"Z b

a

f (x) adqx+

Z b

a

f (x) bdqx

#
and the �rst inequality in (3.1) is proved.
To proved the second inequality, we use the s-convexity and we have

(3.3) f (tb+ (1� t) a) � tsf (b) + (1� t)s f (a)
and

(3.4) f (ta+ (1� t) b) � tsf (a) + (1� t)s f (b) :
By adding (3.3) and (3.4), from De�nition 3 and 4, we have

1

2 (b� a)

"Z b

a

f (x) adqx+

Z b

a

f (x) bdqx

#
� f (a) + f (b)

[s+ 1]q

and the proof is completed. �
Remark 1. If we set s = 1 in Theorem 3, then we recapture the inequality (2.3).

Remark 2. In Theorem 3, if we take the limit as q ! 1�, then inequality (3.1) becomes the inequality
(1.2).
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4. Ostrowski�s Inequalities

In this section, we prove Ostrowski�s type inequalities for s-convex functions in the second sense.
We use the following lemma to prove the new results.

Lemma 1. [16] Let f : [a; b] � R ! R be a function. If bDqf and aDqf are two continuous and
integrable functions on [a; b], then for all x 2 [a; b] we have

f (x)� 1

b� a

24 xZ
a

f (t) adqt +

bZ
x

f (t) bdqt

35(4.1)

=
q (x� a)2

b� a

1Z
0

t aDq f (tx+ (1� t) a) dqt

�q (b� x)
2

b� a

1Z
0

t bDq f (tx+ (1� t) b) dqt:

Theorem 4. Assume that the mapping f : I � R+ ! R is di¤erentiable and a; b 2 I with a < b: If
jaDqf j and jbDqf j are s-convex mappings in the second sense, then the following inequality holds:������f (x)� 1

b� a

24 xZ
a

f (t) adqt +

bZ
x

f (t) bdqt

35������(4.2)

� q (x� a)2

b� a

"
1

[s+ 2]q

��
aDq f (x)

��+�1 �� aDq f (a)��#

+
q (b� x)2

b� a

"
1

[s+ 2]q

�� bDq f (x)��+�1 �� bDq f (b)��#
where

�1 =

Z 1

0

t (1� t)s dqt:

Proof. From Lemma 1 and properties of the modulus, we have������f (x)� 1

b� a

24 xZ
a

f (t) adqt +

bZ
x

f (t) bdqt

35������(4.3)

� q (x� a)2

b� a

1Z
0

t
��
aDq f (tx+ (1� t) a)

�� dqt+ q (b� x)2
b� a

1Z
0

t
�� bDq f (tx+ (1� t) b)�� dqt:

Since the mappings jaDqf j and jbDqf j are s-convex in the second sense, therefore
1Z
0

t
��
aDq f (tx+ (1� t) a)

�� dqt �
Z 1

0

ts+1
��
aDq f (x)

�� dqt+ Z 1

0

t (1� t)s
��
aDq f (a)

�� dqt(4.4)

=
1

[s+ 2]q

��
aDq f (x)

��+�1 �� aDq f (a)��
and

1Z
0

t
�� bDq f (tx+ (1� t) b)�� dqt �

Z 1

0

ts+1
�� bDq f (x)�� dqt+ Z 1

0

t (1� t)s
�� bDq f (b)�� dqt(4.5)

=
1

[s+ 2]q

�� bDq f (x)��+�1 �� bDq f (b)�� :
We obtain the resultant inequality (4.2) by putting (4.4) and (4.5) in (4.3). �
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Remark 3. If we set s = 1 in Theorem 4, then we obtain the following inequality

������f (x)� 1

b� a

24 xZ
a

f (t) adqt +

bZ
x

f (t) bdqt

35������
� q

(b� a) (1 + q) (1 + q + q2)

h
(x� a)2

�
(1 + q)

��
aDq f (x)

��+ q2 �� aDq f (a)���
+(b� x)2

�
(1 + q)

�� bDq f (x)��+ q2 �� bDq f (b)���i
which is given by Budak et al. in [16].

Corollary 1. If we assume jaDqf (x) j, jaDqf (a) j �M in Theorem 4, then we have following quantum
Ostrowski�s type inequality for s-convex functions in the second sense:������f (x)� 1

b� a

24 xZ
a

f (t) adqt +

bZ
x

f (t) bdqt

35������(4.6)

� Mq

b� a

 
1

[s+ 2]q
+�1

!h
(x� a)2 + (b� x)2

i
:

Remark 4. If we set s = 1 in Corollary 1, then we recapture inequality (2.4).

Remark 5. In Corollary 1, if we take the limit as q ! 1�, then Corollary 1 reduces to [1, Theorem
2].

Theorem 5. Assume that the mapping f : I � R+ ! R is di¤erentiable and a; b 2 I with a < b: If
jaDqf jp1 and jbDqf jp1 , p1 � 1 are s-convex mappings in the second sense, then the following inequality
holds: ������f (x)� 1

b� a

24 xZ
a

f (t) adqt +

bZ
x

f (t) bdqt

35������(4.7)

� q

b� a

 
1

[2]q

!1� 1
p1

24(x� a)2 1

[s+ 2]q

��
aDq f (x)

��p1 +�1 �� aDq f (a)��p1!
1
p1

+(b� x)2
 

1

[s+ 2]q

�� bDq f (x)��p1 +�1 �� bDq f (b)��p1!
1
p1

35 :
Proof. From Lemma 1, using properties of the modulus and power mean inequality, we have������f (x)� 1

b� a

24 xZ
a

f (t) adqt +

bZ
x

f (t) bdqt

35������(4.8)

� q (x� a)2

b� a

1Z
0

t
��
aDq f (tx+ (1� t) a)

�� dqt+ q (b� x)2
b� a

1Z
0

t
�� bDq f (tx+ (1� t) b)�� dqt

� q (x� a)2

b� a

0@ 1Z
0

tdqt

1A1� 1
p1
0@ 1Z
0

t
��
aDq f (tx+ (1� t) a)

��p1 dqt
1A

1
p1

+
q (b� x)2

b� a

0@ 1Z
0

tdqt

1A1� 1
p1
0@ 1Z
0

t
�� bDq f (tx+ (1� t) b)��p1 dqt

1A
1
p1

:
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Since the mappings jaDqf jp1 and jbDqf jp1 are s-convex in the second sense, therefore

0@ 1Z
0

tdqt

1A1� 1
p1
0@ 1Z
0

t
��
aDq f (tx+ (1� t) a)

��p1 dqt
1A

1
p1

(4.9)

�
 
1

[2]q

!1� 1
p1
 

1

[s+ 2]q

��
aDq f (x)

��p1 +�1 �� aDq f (a)��p1!
1
p1

and

0@ 1Z
0

tdqt

1A1� 1
p1
0@ 1Z
0

t
�� bDq f (tx+ (1� t) b)��p1 dqt

1A
1
p1

(4.10)

�
 
1

[2]q

!1� 1
p1
 

1

[s+ 2]q

�� bDq f (x)��p1 +�1 �� bDq f (b)��p1!
1
p1

:

We obtain the resultant inequality (4.7) by putting (4.9) and (4.10) in (4.8). �

Remark 6. If we set s = 1 in Theorem 5, then we obtain the following inequality

������f (x)� 1

b� a

24 xZ
a

f (t) adqt +

bZ
x

f (t) bdqt

35������
� q

(b� a) [2]q

24(x� a)2 [2]q �� aDq f (x)��p1 + q2 �� aDq f (a)��p1
[3]q

! 1
p1

+(b� x)2
 
[2]q

�� bDq f (x)��p1 + q2 �� bDq f (b)��p1
[3]q

! 1
p1

35
which is proved by Budak et al. in [16].

Corollary 2. If we assume jaDqf (x), jaDqf (a) j �M in Theorem 5, then we have following quantum
Ostrowski�s type inequality for s-convex functions in the second sense:

������f (x)� 1

b� a

24 xZ
a

f (t) adqt +

bZ
x

f (t) bdqt

35������
� Mq

b� a

 
1

[2]q

!1� 1
p1
 

1

[s+ 2]q
+�1

! 1
p1 h

(x� a)2 + (b� x)2
i
:

Remark 7. In Corollary 2, if we take the limit as q ! 1�, then Corollary 2 reduces to [1, Theorem
4].

Theorem 6. Assume that the mapping f : I � R+ ! R is di¤erentiable and a; b 2 I with a < b: If
jaDqf jp1 and jbDqf jp1 , p1 > 1 are s-convex mappings in the second sense, then the following inequality
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holds: ������f (x)� 1

b� a

24 xZ
a

f (t) adqt +

bZ
x

f (t) bdqt

35������(4.11)

� q

b� a

 
1

[r1 + 1]q

! 1
r1

24(x� a)2 1

[s+ 1]q

���
aDq f (x)

��p1 + �� aDq f (a)��p1�!
1
p1

+(b� x)2
 

1

[s+ 1]q

��� bDq f (x)��p1 + �� bDq f (b)��p1�!
1
p1

35 ;
where 1

r1
+ 1

p1
= 1:

Proof. From Lemma 1, using properties of the modulus and Hölder�s inequality, we have

������f (x)� 1

b� a

24 xZ
a

f (t) adqt +

bZ
x

f (t) bdqt

35������(4.12)

� q (x� a)2

b� a

1Z
0

t
��
aDq f (tx+ (1� t) a)

�� dqt+ q (b� x)2
b� a

1Z
0

t
�� bDq f (tx+ (1� t) b)�� dqt

� q (x� a)2

b� a

0@ 1Z
0

tr1dqt

1A
1
r1
0@ 1Z
0

��
aDq f (tx+ (1� t) a)

��p1 dqt
1A

1
p1

+
q (b� x)2

b� a

0@ 1Z
0

tr1dqt

1A
1
r1
0@ 1Z
0

�� bDq f (tx+ (1� t) b)��p1 dqt
1A

1
p1

:

Since the mappings jaDqf jp1 and jbDqf jp1 are s-convex in the second sense, therefore

0@ 1Z
0

tr1dqt

1A
1
r1
0@ 1Z
0

��
aDq f (tx+ (1� t) a)

��p1 dqt
1A

1
p1

(4.13)

�
 

1

[r1 + 1]q

! 1
r1
 

1

[s+ 1]q

���
aDq f (x)

��p1 + �� aDq f (a)��p1�!

and

0@ 1Z
0

tr1dqt

1A
1
r1
0@ 1Z
0

�� bDq f (tx+ (1� t) b)��p1 dqt
1A

1
p1

(4.14)

�
 

1

[r1 + 1]q

! 1
r1
 

1

[s+ 1]q

��� bDq f (x)��p1 + �� bDq f (b)��p1�! :
We obtain the resultant inequality (4.11) by putting (4.13) and (4.14) in (4.12). �
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Remark 8. If we set s = 1 in Theorem 6, then we obtain the following inequality������f (x)� 1

b� a

24 xZ
a

f (t) adqt +

bZ
x

f (t) bdqt

35������
� q

b� a

�
1

[r1 + 1]q

� 1
r1

"
(x� a)2

 ��
aDq f (x)

��p1 + q �� aDq f (a)��p1
[2]q

! 1
p1

+(b� x)2
 �� bDq f (x)��p1 + q �� bDq f (b)��p1

[2]q

! 1
p1
#

which is proved by Budak et al. in [16].

Corollary 3. If we assume jaDqf (x) j, jaDqf (a) j �M in Theorem 6, then we have following quantum
Ostrowski�s type inequality for s-convex functions in the second sense:������f (x)� 1

b� a

24 xZ
a

f (t) adqt +

bZ
x

f (t) bdqt

35������(4.15)

� Mq

b� a

 
1

[r1 + 1]q

! 1
r1
 

2

[s+ 1]q

! 1
p1 h

(x� a)2 + (b� x)2
i
:

Remark 9. In Corollary 3, if we set s = 1, then we recapture the following inequality������f (x)� 1

b� a

24 xZ
a

f (t) adqt +

bZ
x

f (t) bdqt

35������
� qM

b� a

 
1

[r1 + 1]q

! 1
r1 h

(x� a)2 + (b� x)2
i

which is obtained by Budak et al. [16].

Remark 10. In Corollary 3, if we take the limit as q ! 1�, then Corollary 3 reduces to [1, Theorem
3].

5. Applications to Special Means

For arbitrary positive numbers �1; �2 (�1 6= �2), we consider the means as follows:
(1) The arithmetic mean

A = A(�1; �2) =
�1 + �2
2

:

(2) The logarithmic mean

Lpp= Lpp (�1; �2) =
�p+12 � �p+11

(p+ 1) (�2 � �1)
:

Proposition 1. For 0 < a < b and 0 < q < 1, the following inequality is true:���� 1

s+ 1

�
As+1 (a; b)�A (|1;|2)

�����
� q (b� a)

2

"
1

[s+ 2]q

�
Lss
�
q
a+ b

2
+ (1� q) a; a+ b

2

�
+Lss

�
q
a+ b

2
+ (1� q) b; a+ b

2

��
+ 2�1A (as; bs)

�
;
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where

|1 = (1� q)
1X
n=0

qn
�
qn
a+ b

2
+ (1� qn) a

�s+1
;

|2 = (1� q)
1X
n=0

qn
�
qn
a+ b

2
+ (1� qn) b

�s+1
:

Proof. The inequality (4.2) in Theorem 4 with x = a+b
2 for f (x) = xs+1

s+1 , where x > 0 and s 2 (0; 1)
leads to this conclusion. �
Proposition 2. For 0 < a < b and 0 < q < 1, the following inequality is true:���� 1

s+ 1

�
As+1 (a; b)�A (|1;|2)

�����
� Mq (b� a)

2

"
1

[s+ 2]q
+�1

#
:

Proof. The inequality (4.6) in Corollary 1 with x = a+b
2 for f (x) = xs+1

s+1 , where x > 0 and s 2 (0; 1)
leads to this conclusion. �
Proposition 3. For 0 < a < b and 0 < q < 1, the following inequality is true:���� 1

s+ 1

�
As+1 (a; b)�A (|1;|2)

�����
� q (b� a)

2

 
1

[2]q

!1� 1
p1

24 1

[s+ 2]q

����Lss�q a+ b2 + (1� q) a; a+ b
2

�����p1 +�1 jasjp1
! 1

p1

+

 
1

[s+ 2]q

����Lss�q a+ b2 + (1� q) b; a+ b
2

�����p1 +�1 jbsjp1
! 1

p1

35 :
Proof. The inequality (4.7) in Theorem 5 with x = a+b

2 for f (x) = xs+1

s+1 , where x > 0 and s 2 (0; 1)
leads to this conclusion. �
Proposition 4. For 0 < a < b and 0 < q < 1, the following inequality is true:���� 1

s+ 1

�
As+1 (a; b)�A (|1;|2)

�����
� q (b� a)

2

 
1

[r1 + 1]q

! 1
r1

24 1

[s+ 1]q

�����Lss�q a+ b2 + (1� q) a; a+ b
2

�����p1 + jasjp1�
! 1

p1

+

 
1

[s+ 1]q

�����Lss�q a+ b2 + (1� q) b; a+ b
2

�����p1 + jbsjp1�
! 1

p1

35 :
Proof. The inequality (4.11) in Theorem 6 with x = a+b

2 for f (x) = xs+1

s+1 , where x > 0 and s 2 (0; 1)
leads to this conclusion. �
Proposition 5. For 0 < a < b and 0 < q < 1, the following inequality is true:���� 1

s+ 1

�
As+1 (a; b)�A (|1;|2)

�����
� Mq (b� a)

2

 
1

[r1 + 1]q

! 1
r1
 

2

[s+ 1]q

! 1
p1

:

Proof. The inequality (4.15) in Corollary 3 with x = a+b
2 for f (x) = xs+1

s+1 , where x > 0 and s 2 (0; 1)
leads to this conclusion. �
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6. Conclusion

In this investigation, Hermite-Hadamard and Ostrowski type inequalities for s-convex mappings
in the second sense are derived, by applying quantum integrals. It is also showed that the results
established in this paper are potential generalization of the existing comparable results in the literature.
As future directions, one can �nd similar inequalities for co-ordinated s-convex functions in the second
sense.
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