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Abstract

The aim of this article is to analyze the impacts of Eckert, surface temperature and heat flux on two boundary layer flow of non-

linear convection flow of micro-polar fluid past non-isothermal cylinder. The mathematical modeling for the flow problem has

been created with suitable similarity transformation and dimensionless variable. The main nonlinear boundary value problems

were reduced into mixed high order non-linear ordinary differential equations. The equations were solved using the method bvp4c

from matlab software for numerous quantities of main constraints. The impacts of constraints on velocities, surface temperature

and heat flux are examined and displayed through the graphs and tables. The convergence test has been maintained; for number

of spots greater than apposite mesh number of spots, the precision is not affected. Moreover, a comparison with previous paper

reachable in the literature has been reported and an excellent agreement is obtained. The acquiring shows that enhancing in

the values of surface temperature and heat flux constraints (F, H) is to improve thermal diffusion that improve temperature

distributions q(h);h(h).
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Abstract

The aim of this article is to analysis the impacts of Eckert, surface temperature and
heat flux on edge sheet flow of nonlinear convection stream of micro-polar fluid past non-
isothermal cylinder. The mathematical modeling for the stream trouble has been created
by suitable likeness change with dimensionless variables. The main nonlinear limit im-
portance problems were simplified into mixed high regulate nonlinear ordinary degree of
difference equations. The equations were calculated by using the idea bvp4c from matlab
software for numerous amount of main constraints. Impacts of constraints on veloci-
ties, surface temperature and heat flux are examined and displayed from side to side the
diagrams and charts. The junction examination has been sustained; For digit of spots su-
perior than apposite mesh digit of spots, the exactitude is not affected. More to the point,
a comparison with previous study reachable in the literature has been reported and an
excellent concurrence is got. The acquiring show that enhancing in the values of surface
temperature and heat flux constraints ( F, H) is to improve thermal diffusion that improve
temperature distributions θ(η),h(η). .
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Nomenclature

a Momentum jump factor (m−1)
b Radius of cylinder,( m)
C f , skin friction coefficient
cp specific heat (JKg−1K−1)
c thermal jump factor (m−1)
d Thermal non linear convection parameter
Ec Eckert number
F, H Non-isothermal parameter (power index)
Gr Thermal Grashof number
G2 Micro rotation slip parameter
G1 Velocity slip parameter
G3 temperature slip arameter
G4 heat flux slip parameter
h dimensionless heat flux
j Micro inertia density
K thermal conductivity (Wm−1K−1)
L dimensionless micro rotation velocity
M Micro rotation at surface
mw Wall couple stress
N Constants
Nt Thermal volumetric expansion coeffs.
Nu local Nusselt number
p dimensionless stream function
Pr Prandtl number

qw heat flux (Wm−2

T temperature of the fluid (K)
Tw wall temperature (K)
T∞ ambient temperature(K)
u, v velocity elements (ms−1)
x, y cartesian coordinates (m)
Greeks
α Dimensionless stream wise coordinate
η dimensionless similarity variable
θ dimensionless temperature
µ coeff. of dynamic viscosity(Pas)
κ vortex viscosity coefficient(Pas)
ν kinematic viscosity coeff.
ψ stream functions(m2s−1)
ρ fluid density(Kgm−3)
ϕ spin -gradient viscosity(m2s−1)
τw surface shear stress(pa)
λ microrotation constraint
Subscripts
∞ states at the free stream
w state at the wall

1 Introduction
The study of heat shift has drawn some researchers as result of its appeal to some technological,
various engineering and manufacturing growth for example glass making, paper industrialized
, the drawing of a polymer sheet, the cooling of metallic plate in bath etc. Pabst [1] has
discussed the physical importance of material constraint and the decrement of their number
because of symmetry. Moreover, the flow parts in the occurrence of a micro-polar fluid are,
indicating a declining behaviour in the flow compared to the velocity components Calmelet and
Majumdar [2]. The micro-polar constraints possess a low consequence on start of convection
inside holey medium; Enlarging the combining number in micro-polar fluid slows down the
flow velocity and increases the angular velocity as presented by Reena and Rena et al.[3] and
Gajjela et al.[4].

Machireddy[5] and Shah et al. [6] have reported that the increasing behaviour of transient,
radial and tangential velocities are performed with Grashoff number and rotation constraint.

The enhancing behavior of thermal field performed with improve the magnitudes of Eckert
number, and thermal relaxation time constraint while the reduction character of it functioned
as explained by Reddy et al.([7]-[8]) and Sherzad et al.[9]. Salleh as well as Nazar [10] have
studied the combined convection edge sheet stream beginning solid sphere with thermal radi-
ation impact and Newtonian roasting in MHD flow micropolar fluid. Wubshet and Shanker
[11] have informed the manipulates of magnetic area and thermal radiation on nanofluid past
non-isothermal ball along extending layer by non-isothermal wall temperature in addition to
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non-isothermal thermal fluctuation. Recently, Wubshet and Chaluma ([12], [13],[14]) have
been investigated that increasing in thermal nonlinear convection exhibits the enhancing fea-
ture on Nusselt number, skin friction coefficient, velocity fields close the outside of sphere,
disk and cylinder while it shows the decreasing behaviour on thermal field. This effect happen
due to higher density of the fluid which relates to lower the momentum diffusion and higher
thermal diffusion close wall of sphere, disk with cylinder

All the above quoted papers have been presenting the current past a flat surface, isothermal
sphere,disk, cylinder. However, we look at the nonlinear free convection run of micropolar
fluid onwards a nonisothermal cylinder within the existence of Eckert number, non-isothermal
indexes, the microinertia for each unit side, using method bvp4c from matlab. The affects of
physical constraints on fluid velocity,angular, heat were presented and revealed in diagrams
and charts as well.

2 Mathematical Formulation
Take into consideration a two measurement independent of time boundary layer flow of a
viscous micro-polar fluid past a non-isothermal cylinder with constant radius b. Presume a
non-isothermal surface temperature Tw(= T∞+ M T ) of cylinder is presumed hotter than at far
temperature of the fluid. The temperature at far is T∞. The coordinate x as well as y are selected
such that x events the distance toward the circumference of the cylinder from the lower point
and y events the distance usual to the wall of the cylinder along radial as revealed in the Fig. 1.

 
 
 
 
 

                    

 

 

 g 

                                                                                                                                                                       Gravity 

 

 

 

 

 Y 

                                                                                                                                       X 

                                                                                                                           

                     

 

 

 

 

b  

                                            

                                            r(x) 

Fig. 1 – Physical and coordinates system

Subsequently, Amanulla. et al.[15] the degree of difference equations leading this prob-
lems are prearranged as:

∂ (ur)
∂x

+
∂ (vr)

∂y
= 0 (1)

u
∂u
∂x

+ v
∂u
∂y

= (ν +
κ

ρ
)
∂ 2u
∂y2 +

κ

ρ

∂M
∂y

+(g(N(T −T∞)+Nt(T −T∞)
2))sin(

x
b
) (2)
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u
∂M
∂x

+ v
∂M
∂y

=
ϕ

ρ j
∂ 2M
∂y2 −

κ

ρ j
(2M+

∂u
∂y

) (3)

u
∂T
∂x

+ v
∂T
∂y

=
κ

ρcp

∂ 2T
∂y2 +

ν

cp
(
∂u
∂y

)2 (4)

by means of limit states

u = a∂u
∂y ,u = a∂u

∂x ,v = 0,

M =−λ
∂u
∂y

,M =−λ
∂M
∂x

,ony = 0 (5)

u→ u∞,M→ 0,asy→ ∞. (6)

The thermal limit states are:

1. The arranged wall temperature (AST)

T = Tw + c∂T
∂y = T∞ + xF

b + c∂T
∂y ,T = Tw + c∂T

∂x , on y=0.

T → T∞,asy→ ∞. (7)

2. The arranged heat flux(AHF)

−K ∂T
∂y = qw = xH

b + c∂T
∂y ,−K ∂T

∂y = xH

b + c∂T
∂x , on y=0.

T → T∞,asy→ ∞. (8)

Here are u and v, the elements of velocity in the x as wall as y axes correspondingly, a and
c stand for velocity and thermal slip factors, respectively. M is the part of angular velocity
normal to the xy flat surface. λ denotes a uniform that lies between 0 and 1. When λ = 0, the
intensity of particles are thicken which the microelements in the close of the wall are unable
to revolve, when λ = 1

2 , the anti-symmetric element of the stress tensor is departure which
represents for puny strenth. The case λ = 1 used for developing the turbulent limit layer flows.
µ , ρ , ν = µ

ρ
, cp , j = b2

√
Gr

, ϕ = (µ + κ

2 ) j ,κ ,T, K and Tw(= T∞+M T ) are the coefficient of fluid
viscosity, the density, kinematic viscosity, specific heat, micro inertia for each unit size, spin
gradient, vortex viscosity, temperature, conductivity of the fluid, transformable temperature
on surface, here, M T is constant which gives the rate of growth of temperature alongside the
surface and T∞, g stand for the uniform temperature of the free stream, g represents for the
gravity,∇ρ

ρ
(= N(T − T∞) +Nt(T − T∞)

2, N is stable, Nt is the stable coefficient of thermal
volumetric growth. Here the relation will be non-linear density temperature (NDT) change.
Let r(x) = bsin( x

b) be the radial remoteness from the symmetrical axis to the outside of the
sphere.

From Amanulla. et al.[15] the dimensionless changes are:

α = x
b , η = (Gr)

1
4

b y, r = r∗
b , p = ψ

να(Gr)
1
4

,

L =
b2

να(Gr)
3
4

M (9)
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On behalf of thermal limit states, we take into account non-dimensional measures as next:
(a) On behalf of arranged wall hotness, F is the surface hotness stricture, Tw is the hotness

at the wall and b is unchangeable. The dimensionless hotness in AST could be

θ =
T −T∞

Tw−T∞

(10)

here Tw−T∞ = xF

b
(b) On behalf of arranged heat flux AHF, the wall heat fluctuation is taken to changeable with
radial remoteness r(x) beginning the symmetrical axis to the wall of the cylinder and we create
the dimensionless hotness by

h =
T −T∞

Tw−T∞

(11)

here Tw−T∞ = (xH

K )( b

Gr
1
4
), H is the surface heat flux parameter.

The continuity equation could be combined by creating a run function ψ(x,y) as ur = ∂ rψ

∂y ,

vr = −∂ rψ

∂x . That fulfills equation (1). Consequently, eqns (2-4) can be written in nonlinear
system of PDEs as:

(a) On behalf of AST case

(1+s)p′′′+sL′+(θ +dθ
2)

sin(α)

α
−(p′)2+α(cot(α)pp′+

∂ p
∂α

p′′− ∂ p′

∂α
p′)+ pp′′= 0 (12)

(1+
s
2
)L′′− s(2L+ p′′)p′L+α(cot(α)pL′+

∂ p
∂α

L′− ∂L
∂α

p′)+ pL′ = 0 (13)

θ
′′+Pr(α(αEc(p′′)2 + cot(α)pθ

′+Fθ
′+

∂ p
∂α

θ
′− ∂θ

∂α
p′)−F p′θ) = 0 (14)

Lead to the boundary conditions

at η = 0 : p′(0) = G1p′′(0), ∂ p(0)
∂α

= 0,θ(0) = 1+G3θ ′(0), ∂θ(0)
∂α

=

−F +(Gr
1
4 −FG3)θ ′(0),L(0) =−λ f ′′(0), ∂L(0)

∂α
= G2 f ′′(0)

asη → ∞ : p′ = 0,θ = 0,L = 0, (15)

(b) For AHF case

h′′+Pr(α(αEc(p′′)2 + cot(α)ph′+Hh′+
∂ p
∂α

h′− ∂h
∂α

p′)−H p′h) = 0 (16)

Lead to the limit states

at η = 0 : h′(0) =−G4, ∂h
∂α

= Gr
1
4 h′(0)− H

α
h(0)

asη → ∞ : h = 0, (17)

Where, (′,′′ ,′′′) stand for differential with respect to η , α = x
b represents Dimensionless

stream-wise coordinate, G1 = aGr1/4

b , G2 = λ (α−b), G3 = cGr1/4

b and G4 = K
K+c , are velocity,

micro rotation and thermals slip parameters correspondingly. s = κ

µ
, is material parameter,

Gr = b3gN(Tw−T∞)
ν2 denotes the ratio of the buoyancy forces occur from temperature difference

to the viscous force times inertia force to viscous force called as thermal Grashof numbers,
d = Nt(Tw−T∞)

N is thermal non linear convection parameters. We note that for d = 0, the flow
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of eq. (13) becomes linear convective micro polar fluid. Pr = ρνcp
K is prandtl number, Ec =

ν2Gr
3
4

cpb3xH = ν2

cp jK(Tw−T∞)
is Eckert number for AHT and Ec = ν2Gr

cpb2xF = gN
cp

is Eckert number for
AST, F and H stand for power index of terms in non-isothermal surface.

It can be shown that the lower point of the cylinder α ≈ 0, eq.(12) to eq.(17) reduced to
the following non linear system of ordinary differential equations.
(a) For AST case

(1+ s)p′′′+ sL′+(θ +dθ
2)− (p′)2 + pp′′ = 0 (18)

(1+
s
2
)L′′− s(2L+ p′′)p′L+ pL′ = 0 (19)

θ
′′−PrF p′θ = 0 (20)

Subject to the boundary conditions

at η = 0 : p′(0) = G1p′′(0),θ(0) = 1+G3θ ′(0),L(0) =−λ f ′′(0)

asη → ∞ : p′ = 0,θ = 0,L = 0, (21)

(b) For AHF case
h′′+Pr(−H p′h) = 0 (22)

Lead to the limit states

at η = 0 : h′(0) =−G4

asη → ∞ : h = 0, (23)

The important physical quantities of accepting in this problem are the reduced skin friction
coefficient C f ,wall couple stress mw, and the Nusselt number Nu as:

C f =
τw

ρ(uw)
,Nu = qw

κ(Tw−T∞)
,

mw =−(ν +
κ

2ρ
) j(

∂M
∂y

)(y = 0). (24)

Where,τw = (µ +κ)(∂u
∂y )(y = 0)+κ(M)0, qw =−K((∂T

∂y ))(y = 0),
Using the non dimensional variables (9-11) and the boundary conditions (17) the reduced skin
friction coefficient C f , wall couple stress mw, and the Nusselt number Nu are

p′′(0) = j
1+ s−λ

a2αGr
1
4 c f

,−L′(0) =
mw
√

j

ν2α(1+ s
2)Gr

1
4
,Nu

√
j =−θ

′(0) =−h′(0). (25)

3 Numerical Rsult
The numerical solutions of physical constraints are established using the function bvp4c from
matlab software which is a fixed difference code that makes real the three- stage Lobatto IIIa
formulation. The two stages to be appropriate for the function bvp4c from matlab are:

1. First, Eqs. (12-17) are converted into a system of first-order equations.

2. Secondily, set up a boundary value problem (bvp) and apply the bvp solver in matlab to
solve this scheme.
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Taking on an appropriate finite value for the ambient field boundary state, that is, η → ∞, say
η∞ = 7 and the step-size is taking in account as4η = 0.01; and exactness to the fifth decimal
place as the degree of convergence. In calculating the BVP using matlab, bvp4c has only three
point of views: a function ODEs for calculation of the residual in the boundary states, and a
developing solint that gives a guess for a mesh. The order differential equations are controlled
exactly as in the Matlab IVP solvers. Further clarification on the process of bvp4c is obtained
in the book by Shampine et al.[16].

Let y(1) = p, y(2) = p′, y(3) = p′′, y(4) = L, y(5) = L′, y(6) = θ , y(7) = θ ′, y(8) = ∂ p
∂α

,

y(9) = ∂L
∂α

, y(10) = ∂θ

∂α
, y(11) = ∂ p′

∂α
and

y=[p, p′, p′′, L, L′, θ , θ ′, ∂ p
∂α

, ∂L
∂α

, ∂θ

∂α
, ∂ p′

∂α
]T gives,

d
dη



y(1)
y(2)
y(3)
y(4)
y(5)
y(6)
y(7)
y(8)
y(9)

y(11)


=



y(2)
y(3)

(1/(1+ s))∗ (y(2)∗ y(2)− (y(1)+α ∗ cot(α)∗ y(1))∗ y(3)+
α ∗ (y(11)∗ y(2)− y(8)∗ y(3))− s∗ y(5)− (y(6)+d ∗ y(6)∗ y(6))∗ sin(α)

α
)

y(5)
(1/(1+0.5∗ s))∗ (y(4)∗ y(2)+ s∗ (2∗ y(4)+ y(3))− y(1)∗ y(5)
−α ∗ cot(α)∗ y(1)∗ y(5)−α ∗ (y(10)∗ y(5)− y(11)∗ y(2)))

y(7)
−Pr ∗ (y(1)∗ y(7)+α ∗ cot(α)∗ y(1)∗ y(7)+

α ∗ (y(8)∗ y(7)− y(10)∗ y(2)−α ∗Ec∗ y(3)∗ y(3))−F ∗ y(6)∗ y(2))
y(8)
y(9)

y(10)
y(11)


(26)

4 Outcome with Discussion
In this subsection, we present the effect obtained by developing numerical technique for the
problem under kindness for each flow areas.

4.1 Velocity and micro-rotation Profiles
The impact of H, F, d, G1, j, α , Ec, λ and s on non dimension velocities p′(η), and L(η)
are shown in Fig. 2-Fig. 11. Fig. 2 and Fig. 6, show that enlarge values of H and j increase
the kinematic viscosity of the fluid which enhance the opposition to flow the fluid that cause
decrease the flow of the fluid p′(η) within the boundary layer.

Fig. 3,Fig. 4and Fig. 5 reveal that increase values of F, d and G1 decrease the viscosity of
the fluid which increase the flow of the fluid p′(η) near the surface of the cylinder and decline
as far from the wall of cylinder. Moreover, the velocity profile exhibits enhancing behavior
within the boundary layer of it for improving values of Ec and α as seen in Fig. 7and Fig. 8.

Feature of dimensionless stream-wise coordinate α , material s, and angular λ constraints
on L(η) are illustrated in Fig. 9, Fig. 10, and Fig. 11. The improving α , s and λ resulted in
a decrementing, an incrementing and a decrementing behavior of L(η). It is markable that
the curves of L(η) are constant for lower values η and then begin to enhance for material

7



constraint s and to go down for dimensionless stream-wise coordinate α and angular λ con-
straints.
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Fig. 2 – Impact of H on p′(η) profile
whenGr = λ = d = 0.1,G1 = 0.7,Ec = s =
0.2,G2 = j = 0.5,Pr = 7,α = 30
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Fig. 3 – Result of F on p′(η) for Gr =
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Fig. 6 – Impact of j on p′(η) when s = 0.35,
G1 = 1
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Fig. 7 – Impact of α on p′(η) when
Gr = 10, G1 = 0.8, s = 0.1, d = 11
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Fig. 8 – Result of Ec on p′(η)) profile
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= 0.5, λ = 0.7, d = j= 0.1
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Fig. 9 – Result of α on L(η) for Gr
= 12, s = 0.9
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Fig. 10 – Result of s on L(η) for Gr = 4, λ =
0.3
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Fig. 11 – Impact of λ on L(η) when
Gr = 3

4.2 Temperature Profiles
The significance of F, H, Ec, α , Gr, s, G3, G4, d on temperatures, θ(η),h(η) are elucidated in
Fig. 12-Fig. 25. Fig. 12- Fig. 13 demonstrate that increase of surface temperature and heat flux
parameters (F,H), enhance the thermal conductivity of involved material which result augment
in hotness profiles θ ,h. However, the temperature distributions exhibit the declining perfor-
mance for enlarge Ec and thermal non linear convection parameter d as shown in Fig. 14-
Fig. 17. These behaviors are happened due to reduction of thermal conductivity of the fluid
which is lower for larger Ec and d. The smaller thermal conduction relates to lower temper-
ature. The kinetic energy is reduced for greater Ec because of the fluid turn out to be cooler.
This occurrence resulted in the creation of lower temperature.

Fig. 18- Fig. 19 address that boost of micro inertia per unit mass j, enhance thermal conduc-
tivity of the fluid near the wall of cylinder and decline it near far from the surface of cylinder
which result the increment of temperature distributions at the surface and decrement of tem-
perature profiles at far from the surface of cylinder. Fig. 20 and Fig. 21 illustrate that improve
Gr and material parameter s,decline the viscosity of the fluid which relate to upsurge tem-
perature profile case i.e in AHT and the temperature distribution, in the case of AHT shows
the increasing behavior for growth values of thermal slip parameter in the case of AHT G4
as revealed in Fig. 23. This increasing behavior of temperature distribution is caused due to
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increment of thermal conductivity of the fluid which enhance kinetic energy for larger G4 as
the fluid becomes hotter. Here the phenomenon caused in the creation of higher hotness of the
flow.

Fig. 22 explain that enhance of thermal slip in the case of AST G3, go down the viscosity
of the fluid which decline thermal diffusion within the boundary layer that associate through
decrease in temperature. It observed that α exhibits opposite effect on temperature in case of
AST and AHF as seen in Fig. 24 and Fig. 25. Fig. 26-Fig. 29 elucidate the grid-independence
test. From these figures, it is seen that for the digit of points larger than apposite mesh digit of
points, the precision is not affected.
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Fig. 12 – Impact of F on θ(η) pro-
file when Gr = 0.7,λ = d = G1 =
0.6,Ec = s = 0.2,G2 = j = 0.5,Pr =
7,α = 30 for AST
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Fig. 13 – Result of H on h(η) for G1
= Ec = 1, Gr = 0.5 for AHF
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Fig. 14 – Impact of Ec on θ(η) pro-
file when Gr = 0.1 for AST

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

h(
)

Ec = 4
Ec = 8
Ec = 12
Ec = 16
Ec = 20

Fig. 15 – Result of Ec on h(η) for H
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Fig. 16 – Result of d on θ(η) for Gr
= 0.1, F = 0.1 for AST
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Fig. 17 – Impact of d on h(η) profile
when H = 1, Ec = 0.5 for AHF
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Fig. 18 – Impact of j on h(η) profile
when H= 1, Ec = Gr = 4, d = 0.1 for
AHF
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Fig. 19 – Result of j on θ(η) for G1
= Ec = 3, s = 0.1, G3 = 2 for AST
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Fig. 20 – Result of Gr on h(η) for H
= 2, Ec = 0.1 for AHF
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Fig. 22 – Impact of G3 on θ(η) pro-
file when Gr = G1 = F = d = 0.1, j =
0.5, Ec = 0.12 for AST
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Fig. 23 – Impact of G4 on h(η) pro-
file when H = 2, Ec = 0.1, for AHF
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Fig. 24 – Result of α on θ(η) for Gr
= 0.5 for AST
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Fig. 25 – Impact of α on h(η) profile
when H= 5, Gr = 1, Ec = 8 for AHF
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Fig. 26 – Grid-independence test on
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Fig. 28 – Grid-independence test on
θ(η) when G1 = 6, G3 = 1, F = 0.1,
Gr = 2 for AST
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Fig. 29 – Grid-independence test on
h(η) when G1 = 6, G4 = 0.4, H = 1,
Gr = 2 for AHF

The presentation of grid independence test is revealed in the Table 1, to maintain the point
of exactness called as grid convergence test. It initiated by the widespread mesh with 30 num-
ber of points. By adding 40 and 80 number of points to widespread, we have the middle mesh
,70 and the apposite mesh, 110 points of truthfulness for velocity, and temperature gradient
values. For the number of spots larger than apposite mesh number of spots, the correctness is
not affected.

Table 1 – Grid-independence test for velocity gradient p′′(η)andθ ′(η) when Gr = 2,G1 =
6,F = λ = 0.1,Ec = d = 0.2,Pr = 7,G2 = j = 0.5,α = 30.

widespread mesh, 30 middle mesh, 70 apposite mesh, 110
s p′′(η) -θ ′(η) p′′(η) -θ ′(η) p′′(η) -θ ′(η)
0 0.0028 0.2078 0.0028 0.2078 0.0028 0.2078
1 0.0025 0.1539 0.0025 0.1539 0.0025 0.1539
2 0.0023 0.1311 0.0023 0.1311 0.0023 0.1311
3 0.0020 0.1195 0.0020 0.1195 0.0020 0.1195
4 0.0018 0.1130 0.0018 0.1130 0.0018 0.1130

Table 2 drawn to put side by side the exactness of the technique used association with ear-
lier presented data feasible in the literatures have been made. From Table 2 it can be seen that
the numerical values of the Nusselt number -θ ′(0) in current study for various values of s and
α when λ=0.5, Pr = 0.7 is in an excellent agreement with the pervious outcomes of reported
studies by[17] and [13]. The results indicate that the numerical used in the information is
truthful and highly accurate.
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Table 2 – Comparison of Nusselt number -θ ′(0) when λ = 0.5, Pr = 0.7 for different values of
s and α with previously published result.

present result [12] [13] [17]
s α -θ ′(0) -θ ′(0) -θ ′(0) -θ ′(0)

0.0 0.0 0.4576 0.4576 0.4577 0.4576
0.5 0.4336 0.4336 0.4334 0.4336
1.0 0.4163 0.4165 0.4166 0.4166
1.5 0.4035 0.4037 0.4040 0.4035
2.0 0.3931 0.3931 0.3932 0.3930
0.0 10 0.4564 0.4561 0.4560 0.4565

20 0.4536 0.4535 0.4534 0.4533
30 0.4481 0.4481 0.4486 0.4480
40 0.4404 0.4406 0.4406 0.4405
50 0.4309 0.4309 0.4309 0.4308
60 0.4188 0.4189 0.4188 0.4189
70 0.4048 0.4048 0.4046
80 0.3873 0.3878 0.3879
90 0.3687 0.3687 0.3684

Table 3 indicate that increase in values of Ec and d, cause increasing in both the skin fric-
tion coefficient p′′(0), and Nusselt number −θ ′(0). These result happen because of reducing
thermal conductivity of the fluid which cause improve the diffusion of momentum and temper-
ature that associate through increment of these physical quantities. Since gravity of the earth
increase because of buoyancy force which increases the density of fluid results the skin friction
coefficient p′′(0), and Nusselt number −θ ′(0) growth.

Table 3 – The computed values of skin friction coefficient p”(0), Nusselt number -θ ′(0) when
Gr = 2, G1 = 0.6, G3 = 0.3, λ = G2 = 0.1, F = s= 0.2, j = 0.5, α= 30, Pr = 7 for different values
of Ec and d

Ec d p′′(0) -θ ′(0)
0 0.2 0.0138 0.0209

0.5 0.2 0.0140 0.0560
1 0.2 0.0142 0.0938

1.5 0.2 0.0144 0.1344
2 0.2 0.0146 0.1785

0.5 0.1 0.0132 0.0217
0.3 0.0144 0.0334
0.5 0.0156 0.0440

5 Conclusions
This study considers the consequences of governing dimensionless physical quantities such
as the surface temperature and heat flux parameters, thermal non-linear convection, Eckert
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number and multiple slip states on a micro-polar fluid past a non isothermal cylinder. Results
of governing boundaries are presented by using figures and tables. The main results are:

1. Enlarging the values of surface temperature and heat flux parameters (F, H) agree to
enhance thermal diffusion that improve temperature distributions θ(η),h(η).

2. The surface temperature and heat flux distributions( θ ,h) within the boundary can be
reduced by the enhance in values of Eckert number and non-linear convection parameter
which decrease the thermal conductivity (diffusion)of the fluid.

3. The existence of dimensionless stream-wise coordinate agree to upsurge in temperature
distribution θ and velocity profile p′(η) within boundary layer whereas it allows to
decline in heat flux distribution.

4. An enhancement in the values of G4,s result in increment of the heat flux within bound-
ary layer.

5. Boosting microinertia per unit j tolerate to enhance thermal conductivity of the fluid near
the wall of cylinder and upsurge viscosity of the fluid near far the surface of cylinder
which result the increment of temperature distributions at the surface and decrement of
temperature profiles at far the surface of cylinder as well as declining the velocity profile.
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