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Abstract

In this paper, we prove a new identity involving the second derivative of the function and Riemann-Liouville fractional integrals.
The newly established identity is then used to establish some new Simpson’s type inequalities for twice differentiable convex

functions. Finally, we give applications of special functions using the newly proved inequalities.



FRACTIONAL SIMPSON’S TYPE INEQUALITIES FOR TWICE DIFFERENTIABLE
CONVEX FUNCTIONS WITH APPLICATIONS

JAMSHED NASIR, SHAHID QAISAR, SAAD IHSAN BUTT, AND MUHAMMAD AAMIR ALI

ABSTRACT. In this paper, we prove a new identity involving the second derivative of the function and Riemann-
Liouville fractional integrals. The newly established identity is then used to establish some new Simpson’s type
inequalities for twice differentiable convex functions. Finally, we give applications of special functions using the
newly proved inequalities.

1. INTRODUCTION AND PRELIMINARIES

A fantastic dependence has been found among inequalities and theory of convex functions. This relationship is the essential
mental security behind the tremendous information using convex functions. The Simpson type imbalances have been analyzed
comprehensively throughout ongoing many years. Recall that the secant line joining the images of any two points in the
domain of a convex function dominates the entire graph between the points. Formally, A function h : J C R — R, is termed
as convex on J, if the inequality

h(ndr+ (1 =n)d2) <nh (V1) + (1 =n)h(D2), (1.1)
holds for all 91,02 € J,¥1 < Vg, and n € [0,1]. We say that h is concave, if the inequality (1.1) holds in the reverse
direction.

One of the marvelous result in the theory of inequalities, is the Simpson’s inequality. The geometrical significance attracts
the researcher to obtain the average integrals for generalized classes of convex functions. So far, many generalizations has
become the part of literature. We refer to [1,4,5,7,11,20] and the references therin.

In [4], Dragomir et al. established the Simpson’s inequality.

Theorem 1.1. Let h : [U1,92] — R be a differentiable mapping whose derivative is continuous on (¥1,92) and
K € L[¥y,92]. Then we have the following inequality:

ol +192> 1 :| 1 02

1 (92 — )
2 )T Ty 9

h(0) do ;

[1h(191) + §h< < 1A, . (12)

6

where |||, = [ [h/(9) | dV.
The bound of inequality (1.3) for L-Lipschitzian mapping was given in [4] by 35—6 (92 — 1) . In [15], Kirmaci et al.
established the some inequalities of the Hermite-Hadamard type inequality as follows

Theorem 1.2. Let h : [U1,02] — R be a differentiable mapping whose derivative is continuous on (¥1,92) and
h' € L[¥,92]. Then we have the following inequality:

U1 + V2 1 LE
h( 5 )—192_?91 . h(z)dx

(1.3)

92— 00 [0+ [ (52)
— 4 2 )
The following Lemma is proved by Sarikaya et al. see [19]:

Lemma 1.3. Suppose h : [91,92] — R is twice differentiable mapping on I° such that h" € Ly [91,92] where
V1,09 € I with Y1 < ¥3. Then following equality holds:

1 2 (91 + 9 1 1 U2
[éh(61)+§h< 5 )+6h(192)}—192_191 [91 h(0) do
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= @0 [ AN e+ (1= )i, (1.4)
e 5(1—n), neod)
ro={ oY) S et g

Using Lemma, Sarikaya et al. [19] established the following results holds for twice differentiable mapping

Theorem 1.4. Suppose h : [91,92] — R is a differentiable mapping on I° such that h" € Ly [01,92] where
Y1,02 € I with Y1 < 92, then following equality holds:

F2
[6 (W) + 3h (191 ;192) + éh(ﬁg)] _ 7192;91 [9 h(6) df
2 1
= 2 [+ 1= nponyan (15)

Theorem 1.5. Let h be defined as in Theorem 1 and if |h"| is a convex on [¥1,s], with ¢ > 1, then we have:

1 91 + 9o 1 1 V2 5 1 1-1/q
- - - < _ il
[6h(ﬁ1> h( : )+6h(02>] — [9 n(O)db| < (9~ 01)* o

59 ., 133, YVa /133 59 1/q
{(35.27”( )I"+3527|h’( )) +(3527h’( )|+ 5507 [ (0 )) (1.6)

where % + % =1
Now we recall the important definition of Riemann— Liouville fractional integral

Definition 1.6. Suppose h € L[¢1,¥2]. The left—sided and right—sided Riemann—Liouville fractional integrals for
left—sided and right—sided of order x > 0 defined by

T

1 _
JXhT:7/ r—n)X"th dn, h <71
5, h(T) 00 ﬁl( n)X""h(n)dn 1
and

P
Jf;ghm:ﬁ / (n— 7" 'h()dn, T <9

Gamma function is defined as I'(y) = [~ e~ “uX~'du. Note that J) h() = J9_h(r) = h(7).

If x = 1, the above integral becomes the classical integral. Numerous researchers have been demonstrated Simpson’s
type inequalities and obtained various outcomes. For more details(see, [10]- [8]). For the execution of differentiation and
integration of real or complex number orders, fractional calculus, demonstrated as an accommodating device which exhibits
its centrality. The topic had pulled in a great deal of thought from numerous authors who center around investigation of
analysis during the latest couple of many years. For late results related to current study, one can see( [16]- [18]). Among a
lot of the fractional integral which are grown up, the Riemann-Liouville fractional integral has been generally thought of,
because of uses in various fields of sciences.

The aim of this paper is to establish some new inequalities of type Simpson’s for twice differentiable for convex and
concave functions via Riemann-Liouville fractional integral. Our results generalize the results obtained by Sarikaya [19] and
provide new estimates on these types of inequalities for fractional integrals.

2. INEQUALITIES FOR SIMPSON TYPE

In this section, First we prove an important new Lemma for Riemann-Livouille fractional integrals, which plays a key role
to prove our main results is as follows:

Lemma 2.1. Let h: [91,92] = R be a twice differentiable mapping such that b is integrable on (V91,92) with 91 < V2. If
|h"'| is convex on [91,92], then the identity holds for 0 < x < 1

H [T, h(D2) + T, h(91)]

,%[((QXQ;(;)J(FXQ;L 1))(h(§1)+h(§2))+ (QQXX:(;:;)))h(ﬂl;%)}
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= (V2 *191)2 [D1+ D2 + D3 + D4,

where

_ (20 T — e+ DY -
b _/o ( (x + D2X(x + 2) )h (mdr + (1 —mn)da)dn,

1 x+1 1 1 1
Ds :/ ( U/ | R + ) R'(nd2 + (1—n)d1)dn,
1

+ 22X oy +1

1 12
) W (o> + (1— n)on)da,

! x+1 1 1 1
D4:/ (n _on_n P

)h”(m% © (1= n)da)dn.

Proof. Using integration by parts, we obtain

1z UX+1 n ”
D = — 1—
_ (ﬂ*“ _ n )h’wm + (1—n)ds)|"?
x+1  2x(x + 2) U1 — U2 0

1 S 1 /
- — - ——— | A (p¥ 1—n)da)d
it [ g ) M =

_ 1 1 B 1 W Y1 4+ Ve n
WYy — 91 [2xF1(x + 1) Xt (xy + 2) 2
1

P2 —

X _ 1 h(nd2 + (1 —n)th)
- [(’7 2 (x + 2)) o2

T - 191'2><1“ ((x + 1)1(x + 2))hl<191 ; 192)
‘ﬁ@i - F s 2))’1(191 3 192)

1 -1 X vz x—1 _
+ G2 — ) <2x o+ 2)>h(192) + s — 191)2/0 " " h(nd1 + (1 —n)d2)dn

1/2 1

Y1 — Do

1 1 U1 + D2
T 0 - 2 + D (x + 2) ( 2 )
(s - 1)’ (2>E>E><++1)2))h(01 3 02)

1 X /1/2 .
- h(2) + ———=3 " th(ndr + (1 —n)da)dn
2X (X + 2) (192 _ 191)2 ( 2) (192 — 191)2 o ( 1 ( ) 2)

1 1 (90 + 0o
T 0 - 902 () + D(x T 2) ( 2 )
(02 —1 1) <2>E>§x++1)2)>h(ﬂl ; 192>

1 X 2y, — X!
T ox (x + 2) (02 — 191)2}1(192)4‘ (0 — 01)° /191_;_192 ((192 — 1;1)X h(0)do.
Dy — 1 . 1 ,(191 + 192)
Vo — 91 2F (x + 1) (x + 2) 2
+ 1)

_ 1 (x 91+ Do

(W2 — $)* (ZX(X + 2)>h( 2 )

- : ox [ 0 =)

2(x + 2) (02 — 191)2}1(191) " (P2 — 191)2 /M (P2 — )X h(O)db.

2

1/2
- / X h(ndy + (1= n)da)dn
0
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1 x+1
n n n 1 1 1 >,,

D3 = . + = - R (nde + (1 —n)d1)d
’ /1/2<x+1 1o Tyt g 1)t (i
:(77"+1 ~.n _n 1 1 )h’(m92+(1—n)191)1

x+1 x+1 2x x4+ 2 2x x +1 P2 — 1/2
1 - 1 Y
- - — — W 1 —n)dy)d
191_192/1/277 1 = (md2 + (1 —mn)d)dn

n
1 /1 (nx, L 7i) B (02 + (1 —mn)d1)dn

9 — Dy x + 1 2x
_ 1 1 . X +i7 1 h/ 191 + 192
o9 — Y1 |2(x + 2) 2xtl(x + 1) 2x  x + 1 2
1 v 1 L\ K (2 + (L—m)dy)|' X / X1
_ - = + h(nd2 + (1 —n)d1)d
ra— {( T 2X> Ka R - 1/27) (nd2 + (1 —mn)d)dn
_ 1 1 o X +i7 1 h/ '191 + 192
2 = O [2(x +2) 2HL(x + 1) 2x x + 1 2
1 1 1 1 91+ 192)
- 1— —— ) h(®) -
(W92 — 191)2 ( x + 2 2X> (92) (92 — 191)2 (x + 2 ( 2
1
b [ s+ 1=y
U2 = D1 )iy
_ 1 1 o X +i7 1 h/ '191 + 192
2 = O [2(x +2) 2HL(x + 1) 2x x + 1 2
1 1 1 d + 192)
- 1-— — — ) h(®) - h
(W2 — %)* ( (x + 2) 2X> (52) (W2 — 1)* (x + 2) ( 2

Yv1+992

O — 9 )"

X 2
+ —= ~————h(0)do.
R /19 @ = o< "0

1 1 1 X 1 01 + V2
D, = — — _ - = =
* 192—191{2(x+2) X + 1 2X“(x+1)+2’<}h< 2 )
1 1 1 Y1 + 192)
— 1-— —— | h()—
ooy U ar s w) " et (U
91 +99 -1
X 7 (02 — 9)*
+ h(6)do.
P2 — h /91 (92 — O1) ©)
Which completes the proof. ]

Theorem 2.2. Let h be defined as in Lemma 2.1 and if |h"| is a convexr on [¥1,92], then we have following Simpson’s type
inequality:

‘H [J5, h(92) + T3, h(01)]

1 K(% - Hx + 1))(h(191)+h(192))+ <2X X ”)h(ﬁl;ﬁ?)”

2 2X(x + 2) 2x-1(x + 2)
gm—mf&&+%ﬂﬁmw«@+@Wﬂw@. (2.2)

Proof. By using the properties of modulus on Lemma 2.1, we have

‘H (5 h(02) + T, h(91)]

R e (5]
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< (W2 — 1) [|D1| + [ D2| + [ Ds| + [ Da]] .
By the convexity of |h”|, x € (0,1] and V 5 € [0, 1], we have

%1;;;_7*1911)))( [JX, h(¥2) + JX, h(91)]
R o () (23]
X (y + 2t — ,]( 1)

1/2
< (W2 — 791)2/

0

1/2
(0 — 191)2/

0

//
o+ D2 (x ’“L (a0 + (1 —m)fs)|dn

2X (x + 2t — n(x + 1)
(x + H2x(x + 2)

"h” nh + (1—n)d2) ‘dn

b x+1 1 1
B2 — 91)° U/ " 1—n)91)|d
(2 /1/2x+1 VIR R v SO (1= m)du)|dn
ot n n 1 1

x+1 x+1 2x+x+2+27 x+1

‘|h// 77191 =+ (1— 192 ’dn

x+1 _
( (;‘ i)"{)zx(x 7] )’{ // 1_"7)|h”(191)|}d77

2X(X+2)77X+ _77(X+1 // "
(x + D2x(x + 2 ‘{ ()] + (1 —n)[n"(92)]} dn

1/2
= (02 — 191)2/
0

1/2
+ (92 — 191)2/
0

1 x+1
’r] ,r] 17 1 1 //
+19—192/ __n 1 @) + (1-
(62 2lx + 1 x + 1 2x  x + 2 2x X+1{77} 2| (
1 x+1 1 1
Yo — 91)> n __n _n L h//19 1
+ (2 1/1/2)(‘5‘1 x + 1 2X+X+2 2X X+1{n} 1|+(

A
)
M)

|

mfﬁ&+%ﬂM%MHWﬁﬂowwm}

Simple calculations yields

Glzlf”%w+mwﬂ—nu+n
0 (x + 12x(x + 2)

ndn

n) [R" (91)]} dn

n) |1 (02)]} dn

81[(x + 2*(27% — 37X —1] — 19(x + D(x+2)*(x+3)27X 2 +2727%)(x + D(x+3)

‘ ndn

[\

81(x + L)(x + 3)(x + 2)*
Gy — /01/2 20+ Q0 —nl + D
27X7337X T (3X(x(2x + 89) + 330) — 32XT(2x + 7))
x + Dx + 2)(x + 3)
Gs = /1/2x+1 x + 1 2% X+2+27_x+1
(x + Dx + 2)*
(2XF2)x — 27X (42
d )-27)
((2x+5)(x+2)3+3 X(x + D(x +2)? — 4X2x +5)(x+2) — 23X+1(x+1))
(x + Dix + 2)*
(x + 23 (x + D(x
<t n n 1 1 1

(x + 12x(x + 2)
n n 1 1
1 ((x+4)(x+2)3 + 32 (x+1)(x +2)* - 4X+1(2x+5)(x+2)—8X+1(><+1)>
(x +3)(x + 23x + 1)
((X+2)3(x + 2% — (2X+3) 2><)
+ 3)
x + 1 x + 1 2X X + 2 27_)(—1—1

1
o - |
1/2

‘ (1 —m)dn

C 2@ =X+ 2X = 2) B+ DN (x+3) + 32H2) 4+ (X4 6)x+4)(x +2)(x +3)

3(x + 2xT(x + 3)(x + 1)
+(2’”4)X B+ +2)* — (29BN +2)(x +3) =N+ DX +2X +2)(x +3)

3(x + 2 (x + 3(x + 1)



6 J. NASIR, S. QAISAR, S. I. BUTT, M. A. ALI

3.2X(—x% = 3x +2X = 2)(x +3)(x + 2)XT + 3. 2% 712 + (2X 4+ 6)x +4)(x + 3)(x + 2)X
3x + 2P (x + 3)(x + 1)
BXFHX — 3. 22 (x +3) — 8 (x + D(x +2X +2)(x +3)(x + 27!
3x + 2P (x + 3)(x + 1)
27X (Tx® —2(2¥ = 21) x* 4+ (80 — 17 2X) x — 33 2X 4 54)
3(x® 4+ 6x2 + 1llx + 6)

—9X

+

Gs = /1/2 2 + 290" = px + 1)

0 (x + 2x(x + 2)
9—x—1 (x+2)7X73  27X7337X72 (5 3%y — 13 3% 4 2X13)
(x +2)3 x+1 (x+D(x+2)

! X+l 1 1 1
Go — / n n n
1/2

-+
1 2x+? 4 -
= 7< X __ _327%43

dn

i

Y+ 1 v+l wxTyrotaw Ty
_ _ (X)X — 27X 2 (x + 2)2“‘)
8\ x2 +3x +2 (x + 2?2 (x + 2 (x + 1)

1 4 9 ox+2 8 gx+t
+= [+ + +
8(X+1 X +2 (x +2?2 (x + 22 x+2>

L1 (2(x — 2+ o L+ 2* - (2xH2)x N AN >
2\ X% +3x + 2 (x + 2% + 1) x+2 x +22 +2)7°
which completes the proof. O

Corollary 2.3. By choosing h (91) = h (“14%2) = h (92) in Theorem 2.2, inequality (2.2), becomes

‘h <191 ;192) B 2(1:9(2x s 1911))% [T h(02) + J, h(91)] ’

< @ - ﬁ1>2{(G1+G3> |h”w1)|+<G2+G4>|h”wz>|}. (2.3)

Remark 2.4. By letting x =1 in above corollary , we get midpoint inequality (1.3), which looks better than the inequality
presented by Kirmaci.

Remark 2.5. By letting x =1 in Theorem 2.2, we can get the inequality of [19, Theorem 2.2]:

‘é{h(ﬁl) +4h (ﬁ1;ﬁ2)+h(ﬁ2)}fﬂ2iﬂl /I:Qh(e)da‘

(02 — 1) |,/ "
< Tﬂh (W1)] + 1" (92)[}.

The corresponding version for powers of the absolute value of the derivative incorporates as.

Theorem 2.6. Let h be defined as in Lemma 2.1 and if |h"|? is a convez on [91,92], with ¢ > 1, then we have the following
inequality:

‘H [ 73, h(92) + T3, h(91)]

s oo (240 (32)]

< (92 — 91)? [Gl{Ggyh” )|+ (Gr = Gs) |B” (90)]*) "+ (G [0 (92)|* + (G1 — G3)|h”(192)“1)1/q}
+Go{ (Gl (92)]" + (G2 = Ga) [ (092)]") "+ (Ga |1 (90)|" + (Gz = Ga) 1" (@2)|") /" }] - (2.4)

Proof. By the use of power-mean integral inequality for ¢ > 1, we obtain

T+ 1) [JX,h(92) + JX,h(0)]

200, — 91)x
- [ ) eonno + (g ) (52|

2X(x + 2 —nx + 1)
(x + D2x(x + 2)

1/2
<@ -0y [ 1o+ 1= mpon)]an
0
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n n n 1 1 1

_ h”'l9 1719d
x +1 x +1 2x X+2+2x X+1| (md2 + ( n)Y1)dn

1-1/q
2X (x + 2)77x+1 - n(x + 1)'d?7>

(x + D2x(x + 2)

1/2 1/a
x (/ﬁ W (s +<1nﬁ%)ﬁdn>

0

1-1/q 1/q
1 x+1 1 1 1 1
+197192/ 0 0y - ‘d /h”19+17 91)|%d
(92 1)<1/2x+1x+12x v Rl v § KU 1|(772 (1 =n)dh)|"dn
2X(x + 2 —px + 1

/2
One can notice that
v ) ' (9 91)|%d
+ (1-
/0 (x + 12x(x + 2) " (2 (L=l

Vet2 (oX (x + 2)p™ — n(x + 1) . . , ,
) /o < x + D2x(x + 2 )Wh @OI" + (1) B (92)|"} dy

1/2 2% (X + 2)77X+1 - 77(X + 1) " q _ " q
N G e e ) KU IR R (29)

and

"t om o omo 1 1]
Y+ 1 x+1 2x " x4+ 2" 2x 1
n

1
Jin

X
2% /a+2 x+1
n n 1 1 1 ) 1" q ” q
< -1 __ Ty - R W)|T + (1—n) B (92)|"}d
< L (e et e ) OO G @)

Mhﬂ(nﬂz L (1= )0

+/1 (77X+1 _L_ﬂ_k 1 +1_ 1 ){ ’h”(ﬁ)|q +(1_ )‘h”(ﬁ)!q}d
sejapa \X T 1 x +1 20 x 2 ax yq1)imae ! Ve

which completes the proof.

In the following theorem, we obtain estimate of Simpson’s inequality for concave functions.

Theorem 2.7. Let h: [091,92] — R be a differentiable function on (91,92) such that b’ € L'[a,b]. If |h"|? is concave on
[91,02], for some fized p > 1 with ¢ = p%v then we have

'21;1(9):%1911)))( [J5, h(02) + J5, h(91)]
- |[(S ) eosren+ (5ns9) (557))
< (92 —1)% x
[Gl { y (Gm2 + ((6;111_ Gg)ﬁl) ’ e (0301 + (gll—cgwg) H
R (Gu?g + (gz — Ga) >' L (Gml + (gz — G4) 192) H . (2.6)

Proof. Utilizing concavity of |h”|? and the power-mean inequality, we obtain

IV (01 4+ (L=n)92)|T > nlh”(91)|7 + (1 = n)|h" (92)
> (nh"(@0)]+ (1 =n)|h" (92)])*

R (91 + (1 = m)d2) = nlh" (91)] + (1 = n)|[n" (92)],
Thus, |h”| is also concave. Jensen integral inequality follows that

‘% K(gx 2;(;)4(—X QJ)r 1)) (h(91) + h(92)) + (zzxle-(; : 21))) h (191 -2+ 02)} B 2(11‘9(2><_+1911))X (5. h(02) + T35, h(9)]
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< (W2 — ¥)° (/01/2

q

(x + 1)2X(x + 2)

2X(x + 29Xt — p(x + 1) . (91 + (1 —n)da)dn

1/2
22X (x + 2),7x+1 — nx + 1)‘dn> B 0

1) 2x + 2 1/2 [ 2X(x + 2)nX+1 — n(x + 1)
(x + 1)2x(x ) fo X(X+771)2X(X4:];< ’dn

L opxtt 1 1 1
+ (92— 91)? / r____1__ 71 = ‘n

1/2X+1 x + 1 2x X + 2 2Xx x + 1

Lottt 1 1 9 1 —n)d1)d

o p f1/2 YFI x+1 > tyxrztax + (md2 + ( n)¥1)dn

1 x+1 1

f1/2 ;+1_X11_2ix+x+2+2ix_x+1‘d77

q

2X )Xt — g 1
Ol Z et D (g 4+ (11— n)da)dn

f01/2 2X(x + )Xt — n(x + 1) ‘ dn

1/2
2X(x + T — n(x + 1) dn | [n [ 2
(x + 2x(x + 2)

+ (92 — 01)? </01/2
+ (92 — 01)? </;2

(x + 1)2X(x + 2)

x+1
n

n n 1 1 1
S B - d
Y+l x+1 > xtz aw x+1|?

pX+1 q

B f1/2 X+1_X11_2ix+x-1}—2+2ix_x+1(77791+(1—77)192)d17
X
+1 N
f1/2 ;X+1_Xfrl—gix+m+27—xil‘dn
= (V2 —191)2 Gs |n’ M + (92 —191)2 Ge | M
G5 G6
+ (92— 91)° Gs | (M)‘ + (92— 91)° Gs | (M) 7
G5 GG
which completes the proof. 0

Corollary 2.8. By putting x =1 in Theorem 2.7, then inequality (10) becomes as:

1 2. (01 + 0, 1 1 V2
th(vl) + gh( 5 ) + gh(m)] pr h(6) del (2.7)
(92 — 1) [|,, (5991 + 133092 (13301 + 5992
= 162 h 192 | 192 ' (2:8)

Remark 2.9. Inequality (2.7) is a generalization of obtained inequality as in [19, Theorem 8]

3. APPLICATION TO BETA FUNCTION

In this section, let x > 0, x > 3, 91 = 0, 92 = 1, T'(x) be the gamma function, and h (6) = 6X~* (§ € [0,1]). Then |h"| is
convex on [0, 1].

Remark 3.1. First of all we define the beta function

/m "1-0)°""do (7,6 >0).

From section 3, we have

1
LD g g,y = x/ 67 (1 6)°do = T (x.X)
0

2(192 —191)X
and
C(x+1) /1 fx—2 X
JX h(¥1) = 0XTX72do =
2(92 — 91)x P2 (W) =X 0 2(x +x—1)

Proposition 3.2. In Theorem 2.2, the following inequality holds

X +Xx - 1)] - ((z;:ll(lc(i;)l) 23:;’32;:)2)) ‘

l[%n(x,xH 3
< (x = DI[((G1 +G3)) + (G2 + G4))]
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3.1. g-digamma function. Suppose 0 < q < 1, the gq—digamma function ¢4, is the g—analogue of the digamma function
¢ (see [13,21] )given as:

pa=—In(1- +lan =

kx
=—In(l—q)+ lnqzli
k=0

For g > 1 and x > 0, g—digamma function ¢q can be given as:

1 > *(k+x)
wq:*ln(q*1)+lnq[xf§ Zl = Hx)]
k=0
1 oo q_
“ln(q-1)+ Ing|y— »
na- 1)+ malx- 5 -3 7S],

k=0

Proposition 3.3. Suppose 91,92,q are the real numbers such that 0 < 91 < 92, 0 < q < 1. Then the following inequality
holds:

{0 +as (252 o) | - Enlll = pal)

Yo —
o W2 —v1)?
- 162

Proof. By employing the definition of g-digamma function ¢q(), it is easy to notice that g-trigamma function x — cp;(x)
(3)

05 ( 191)‘ + ‘wff’) (192). } (3.1)

is completely monotonic on (0,00). This ensures that the function g’ is again completely monotonic on (0,00) for each

q € (0,1) and consequently is convex (see [22], p.167 ). Now by applying Remark 2.5, we extract that the inequality (3.1)
is valid for q € (0, 1). O

Presently another application of inequality (3.1), we can give the accompanying inequalities for the q—triagamma and
q—polygamma functions and the simple of Harmonic numbers H,q characterized by

qk
H"QZZW’ ’rLGN

So, from inequality (3.1) and using the equation

Pa(n+1) = ¢q(1) — Log(q) Hnq,
Analogously, we obtain the required result.
Corollary 3.4. Suppose n € N, 0 < q < 1. Then the following inequality holds:

Log(q)Hnqg

1 / Al /
‘6{%1(1) +4<pq(§+1)+<pq(n+1)}+ o

< 2 {Je0 [+ [e 4] | (32

Proposition 3.5. Suppose n is an integer and q > 1. Then the following inequality holds:

1 / AL ’ Hy (3) ’ ‘ (3) ‘
Z hd _ <
'6{¢ W) +4¢' (5 +1) +¢ (n+1)} < 162“0 +]e® m+ 1) {,

Proof. From inequality (3.2), when q — 1, and using the relation

limq—1log (q) Hnq = lim [(T%?) (a4 — 1) Hng)

n

= — ]in’l1 71 CL =—-H,.
a4

We obtain the required result. O
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