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Abstract

This paper is devoted to applying a numerical method for solution of the 2D sine-Gordon equation. The bivariate multiple

quadratic quasi-interpolation ( MQQI ) method is adopted to simulate this equations, which the first order spatial derivative

is approximated by MQQI, the second spatial and time derivative are approximated by forward difference. One of the merit of

this scheme is its simple structure and easy implementation. In the meanwhile, we present truncation and total error of this

scheme, high accuracy and efficiency of the method are verified by numerical experiments. In addition, the optimal value of

parameters are investigated in this article based on Luh [10, 11].
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1 Introduction

A famous reads: ”with a suitable initial boundary conditions, called solition equation, also, sine-
Gordon equations”. It is an important class of nonlinear soliton equations. As mentioned in [7], solitons

essentially represent special wave-like solutions of nonlinear dynamic equations. In fact, these waves

advance in the medium without any deformation owing to dispersion. Moreover, it will not deform after

interacting with other solitons. Solitons have been proved to play a key role in the theory of nonlinear

differential equations. Soliton solutions of various equations have been found, including the Korteweg-de

Vries equation, the nonlinear Schrödinger equation and the sine-Gordon equation [12].
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This paper is devoted to numerical computation of two dimensional time-dependent nonlinear sine-

Gordon equation. The two dimensional sine-Gordon equation is given by

∂2u

∂2t
+ β

∂u

∂t
=
∂2u

∂2x
+
∂2u

∂2y
+ φ(x, y)sin(u), (1.1)

with u(x, y, t) in the region Ω = {(x, y), L0
x < x < L1

x, L
0
y < y < L1

y} for t > 0 and u is a sufficiently

differentiable function.

Eq. (1.1) is defined in some continuous domain with suitable initial and Neumann’s boundary

conditions. Here, initial conditions associated with Eq. (1.1) will be assumed to be of the form

u(x, y, 0) = f(x, y), (x, y) ∈ Ω, (1.2)

with initial velocity
∂u

∂t
(x, y, t) = g(x, y), (x, y) ∈ Ω. (1.3)

And the boundary conditions are supposed to be in the following form

∂u

∂x
(x, y, t) = p(x, y, t), (x, y) ∈ ∂Ω, t > 0, (1.4)

and
∂u

∂y
(x, y, t) = q(x, y, t), (x, y) ∈ ∂Ω, t > 0, (1.5)

where p(x, y, t) and q(x, y, t) are normal gradients along the boundary of the region Ω.

In Eq. (1.1), the parameter β is the so-called dissipative term, which is supposed to be a real number

with β > 0. When β = 0, Eq. (1.1) calls the undamped sine-Gordon equation with two space variables,

while β > 0, it calls the damped one. The function φ(x, y) may be interpreted as the Josephson current

density, while in Eqs. (1.2) − (1.3), the functions f(x, y) and g(x, y) represent wave modes or kinks and

velocity, respectively, as said in [8]. In experiments the kink profiles will be considered known from the

relevant one-dimensional problem. They will move on straight lines or closed curves in the xy − plane.

These curves will be called line and ring soliton waves respectively.

Radial basis function ( RBF ) methods have been widely developed since 1988, and breakthroughs

had been made in properties of the coefficient matrices, establishment of simplified algorithm, and selec-

tion of the best interpolation points and so on [1]. Although most of the work to data on RBFs is related

to the approximation of scattered data and interpolation theory, there has been more and more interested

in its application in solving partial differential equations ( PDEs ), see [3]. This method approximates the

global solution of PDE by the translation of radial basis function. Because it is a real meshless method

and independent of space dimension, it can be easily extended to solve high-dimensional problems. In

addition, due to the smoothness of RBF, it can be easily applied to solve higher order differential equa-

tions. The advantages of RBF based meshless method also include that there is no need to explicitly

connect the volumes, surfaces and nodes compared with the method based on conformal hexahedron or

tetrahedron mesh. Flexibility in node distribution allows shape preserving and multi-scale modeling.

Meanwhile, there are some shortcomings in the numerical calculation. It is found that the condi-

tions of the generated linear system are too harsh to guarantee the accuracy of the numerical solution,

especially for large-scale problems. With the intensive study of RBFs interpolation theory, a new quasi-

interpolation ( QI ) method has attracted people’s attention. This new interpolation method does not
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need to solve large scale linear systems, but maintains the optimal efficiency in terms of energy norm

and can obtain the solution directly, mentioned in [3]. One of the advantages of QI is that it is related

to the smoothness, simplicity, good shape and exponential decay of the generating function. Therefore,

compared with other meshless techniques ( such as RBF interpolation ), this method can reduce the com-

putation time and even approximate functions in high-dimensions. QI has been successfully applied to

scattered data approximation and interpolation, numerical solution and quadrature of PDEs, see [14].

Some quasi-interpolations can even keep the positive, monotone and convexity of approximations,

such as spline quasi-interpolation [7, 13], multiple-quadratic quasi-interpolation [3, 10]. Because of those

excellent properties, more and more scholars have devoted themselves to the study of multiple quadratic

quasi-interpolation ( MQQI ), following Refs. [3, 6, 8, 9, 10, 13]. To improve the approximation behav-

iors near the boundary, Beaston and Powell [15] put forward three univariate MQQI to deal with scattered

data, that is `A, `B , `C . Wu and Schaback [16] constructed a new MQQI scheme, which is named `D
and improved Beatson’s and Powell’s results. Meanwhile, they also proved convergence rates and shape

preserving properties of these MQQI schemes. Ma and Wu [17] studied the approximate properties of

k-th derivatives by MQQI. What’s more, a new MQQI scheme designed by Ma and Wu [18], which

was successfully applied to solve sine-Gordon equation, stiff ordinary differential equation and shock

wave. By introducing multiple quadratic trigonometric kernel, Gao and Wu [2] extended MQQI to single

variable periodic data with irregular center spacing.

The MQQI method is suitable for the initial conditions of the scattered data and any boundary

conditions so that it can approximate almost all functions. This paper takes the lead in utilizing the

multivariate meshless MQQI method for two-dimensional sine-Gordon equation systematically. In this

proposed numerical scheme, the first derivative of space is approximated by the derivative of MQQI, the

second-order spatial and temporal derivatives are approximated by forward difference. Compared with

Luh’s aritcle [4, 5], this paper investigate the optimal selection of parameters friendly. The experimental

results demonstrate that the errors of root mean squart ( RMS ) and L∞ are 1e-05 and 1e-04 respectively,

within a short time, which is much better than the RBF method used in 2008 [8].

This article is arranged as follows. Section 2 introduce the univariate MQQI firstly, on this basis, the

bivariate MQQI is developed. In section 3, the numerical scheme of bivariate MQQI is introduced and

the corresponding programs are appeared. In section 4, we use the algorithm to approximate five kinds

of two-dimensional sine-Gordon equations and their partial derivatives to fit the equations. The results

present that the method has high accuracy and can simulate the soliton equations accurately, in a short

time. The choice of the parameters friendly approaching are also showed in section 5. Some conclusion

are made at the end of this paper.

2 Bivariate multiple quadratic quasi-interpolation

In this section, the univariate MQQI is introduced firstly. Based on this, we present the bivariate

MQQI and show its approximation order to the function and its derivatives by using tensor product

technique (⊕), see [2].

Suppose f(x) has values on a set of different nodes xj , given a group of scattered points {(xj , f(xj)},
then the unknown function f(x) can be constructed by

(Qf)(x) =
∑
j

f(xj)ψj(x), (2.1)
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where,

ψj(x) =
φj+1(x)− φj(x)

2(xj+1 − xj)
− φj(x)− φj−1(x)

2(xj − xj−1)
, (2.2)

φ(x) =
√
c21 + x2 is the MQ function, the transform of MQ function is φj(x) =

√
c21 + (x− xj)2.

Where, c1 is a positive constant ( also called shape parameter ). As c1 goes to zero, φj(x) will converge to

|x− xj |. Therefore, the univariate MQQI could be used as piecewise linear interpolation, but possesses

smoothness property.

The n-th order derivative of the MQQI can be directly calculated:

(Qf)(n)(x) =
∑
j

f(xj)ψ
(n)
j (x). (2.3)

It is also a better approximation of the derivative of an unknown function. The approximate error

of Qf(x) to the original function f(x) and the k-th derivative were given in [17], by defining h1 =

maxj(xj+1 − xj).

In this paper, we presents a bivariate MQQI using tensor product technique (⊕). Specifically, given

the date (xi, yj , fij) and fij = f(xi, yj), the bivariate MQ quasi-interpolation is defined as:

(Qf)(x, y) =
∑
i

∑
j

fijψj(x)ψj(y), (2.4)

where, ψi(x) are described in (2.2) and ψj(y) are represented as follows:

ψj(y) =
φj+1(y)− φj(y)

2(yj+1 − yj)
− φj(y)− φj−1(y)

2(yj − yj−1)
,

φj(y) =

√
c22 + (y − yj)2

.

c2 is a positive constant. In this paper, we only discuss the case of c1 = c2. Step size in y direction is

defined as h2 = maxj(yj+1 − yj).

3 Solving 2D sine-Gordon equation with MQQI scheme

Here, a numerical scheme is applied for solving two-dimensional sine-Gordon equations (1.1)õ(1.5)

based on bivariate MQQI mentioned in Section 2.

3.1 Numerical scheme

At the points (xi, yj , tk) = (ih1, jh2, kτ), the approximation of u(x, y, t) is replaced by ukij . Where

h1 and h2 are the grid sizes in x and y direction separately, τ is the time step sizes. For the sake of

recall, we define ukij ≈ u(xi, yj , tk), then the first derivative is given by (ux)kij ≈ ux(xi, yj , tk), other

definitions of derivatives are similar to this.

The first partial derivative of u with respect to spatial variables is approximated by MQQI as fol-

lowing,

(ux)kij =
∑
m

∑
n

ukijψ
′
m(xi)ψn(yj),

(uy)kij =
∑
m

∑
n

ukijψm(xi)ψ
′
n(yj),
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and the second derivative is approximated by the forward difference of the first derivative

(uxx)kij = ((ux)ki+1,j − (ux)ki,j)/h1,

(uyy)kij = ((uy)ki,j+1 − (uy)ki,j)/h2.

In this case, the boundary conditions belong to the second kind ( also called Riemann boundary

conditions ). Although there are some methods to dispose of boundary conditions, following Refs. [7,

19], they generally require complex calculation or are beyond comprehension for non mathematical peo-

ple. On the right boundary, we let the value of the second derivative to the nearest value hear. That is to

say, (uxx)kij = (uxx)ki−1,j and (uyy)kij = (uyy)ki,j−1. In the sequel, we certificate the effectiveness and

feasibility of this method. Now, we infer the interpolation expression of u(x, y, t).

Discretization of time derivatives by forward difference as follows,

(ut)
k
ij =

uk+1
ij − ukij

τ
,

(utt)
k
ij =

(ut)
k+1
ij − (ut)

k
ij

τ
=
uk+2
ij − 2uk+1

ij + ukij
(τ)2

,

then, put it in (1.1), obtain

uk+2
ij − 2uk+1

ij + ukij
(τ)2

+ β
uk+1
ij − ukij

τ
= (uxx)kij + (uyy)kij + φsin((ut)

k
ij),

after simplification, the representation of u(x, y, t) is gained

uk+2
ij = (2− βτ)uk+1

ij + (βτ − 1)ukij + τ2{(uxx)kij + (uyy)kij + φsin((ut)
k
ij)},

where, τ is time step.

3.2 Implementation of the numerical method

Define some global variables X Y M N T τ β t h1 h2 c1 c2. Let h1 = X/M , h2 = Y/N , τ = t/T .

Let X is the matrix of M × 1, Y is the matrix of N × 1. t is the matrix of T × 1. M and N are the number

of nodes obtained in space. T is the running times. τ is the time interval. h1 and h2 are the spatial interval

in x and y directions respectively. c1 and c2 are the shape parameters (ci > 0, i = 1, 2). Note that f and

g is the initial conditions defined in section 1. φ′ is the derivative of φ. ψ and ψ′ are shows in section 2.

1. Let u(X(i), Y (j), 1) = f(X(i), Y (j)), and ut(X(i), Y (j), 1) = g(X(i), Y (j)), for i = 1, 2, ..., M ,

j = 1, 2, ..., N .

2. Let u(X(i), Y (j), 2) = u(X(i), Y (j), 1) + τ ∗ ut(X(i), Y (j), 1), (i = 1, 2, ..., M , j = 1, 2, ..., N ).

3. Define ψ(X(i), Y (j)) = (φ(X(i), Y (j) + h, c) − φ(X(i), Y (j), c))/(2h) − (φ(X(i), Y (j), c) −
φ(X(i), Y (j)− h, c))/(2h), then let ψ = ψ(:, 2 : end), for i = 1, ..., M , j = 2, ..., N − 1,

where, matrix ψ removes the first column.
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4. Define ψ′(X(i), Y (j)) = (φ′(X(i), Y (j) + h, c)− φ′(X(i), Y (j), c))/(2h)− (φ′(X(i), Y (j), c)−
φ′(X(i), Y (j)− h, c))/(2h), let ψ′ = ψ′(:, 2 : end), for i = 1, ..., M , j = 2, ..., N − 1.

5. Define ψ = phi(X,Y, h), ψ′ = dex(X,Y, h), where, ψ and ψ′ are showed in step 3 and 4 respectively.

6. Let p = dex(X(i), X(j), h1), q = phi(Y (i), Y (j), h2), q1 = dex(Y (i), Y (j), h1),

p1 = phi(X(i), X(j), h2), s1(X(i), Y (j)) = sum(p(X(i), :)) ∗ sum(q(Y (j), :)),

s2(X(i), Y (j)) = sum(p1(X(i), :)) ∗ sum(q1(Y (j), :)), for i = 1, ..., M , j = 1, ..., N .

7. Solving ux and uy , (i = 1, ..., M , j = 1, ..., N , k = 1, ..., T -2),

if i < M and j ≤ N , ux(X(i+ 1), Y (j), t(k)) = u(X(i+ 1), Y (j), t(k)) ∗ s1(X(i+ 1), Y (j)),

if i = M and j ≤ N , ux(X(i), Y (j), t(k)) = u(X(i), Y (j), t(k)) ∗ s1(X(i), Y (j)),

if i ≤M and j < N , uy(X(i), Y (j + 1), t(k)) = u(X(i), Y (j + 1), t(k)) ∗ s2(X(i), Y (j + 1)),

if i ≤M and j = N , uy(X(i), Y (j), t(k)) = u(X(i), Y (j), t(k)) ∗ s2(X(i), Y (j)).

8. Solving uxx and uyy , (i = 1, ..., M , j = 1, ..., N , k = 1, ..., T -2),

if i < M, j ≤ N , uxx(X(i), Y (j), t(k)) = (ux(X(i+ 1), Y (j), t(k))− ux(X(i), Y (j), t(k))/h1,

if i = M, j ≤ N , uxx(X(i), Y (j), t(k)) = uxx(X(i− 1), Y (j), t(k)),

if i ≤M, j < N , uyy(X(i), Y (j), t(k)) = (uy(X(i), Y (j + 1), t(k))− uy(X(i), Y (j), t(k))/h2,

if i ≤M, j = N , uyy(X(i), Y (j), t(k)) = uyy(X(i), Y (j − 1), t(k)).

9. Let u(X(i), Y (j), t(k + 2)) = (2− βτ)u(X(i), Y (j), t(k + 1))− (1− βτ)u(X(i), Y (j), t(k))

+ τ2{uxx(X(i), Y (j), t(k)) + uyy(X(i), Y (j), t(k))− sin(u(X(i), Y (j), t(k)))},
for i = 1, ..., M , j = 1, ..., N , k = 1, ..., T -2.

4 Numerical Examples

In this section, we chose the sine-Gordon equation to illustrate the performance of the method

described in the previous section. All these experiments are executed on a computer with AMD Ryzen

7 4800H with Radeon Graphics, 2.90 GHz processor and 16.00 GB RAM (random access memory ).

In additon, we show that the proposed scheme is applicable to other two-dimensional partial differential

equations containing shock waves and even soliton waves.

In order to verify the effectiveness of the scheme, the root mean square (RMS) and L∞ error norms

are employed. The error norms are defined as

L2 =

√∑
i

∑
j(u

exact
ij − unumij )2

(N1 + 1)(N2 + 1)
,

L∞ = maxij |uexactij − unumij |,

where uexactij and unumij are the analysis and numerical results of u at the knot (xi, yj), L2 is RMS error.
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4.1 2-D sine-Gordon Equations

To observe the behavior of the numerical method, it was tested on the sine-Gordon obtained for

φ(x, y) = −1 with initial conditions,

f(x, y) = 4tan−1 exp(x+ y), (x, y) ∈ Ω,

g(x, y) = − 4 exp(x+ y)

1 + exp(2x+ 2y)
, (x, y) ∈ Ω,

and boundary conditions

p(x, y, t) =
4 exp(x+ y + t)

exp(2t) + exp(2x+ 2y)
, x = −7 and 7,−7 ≤ y ≤ 7, t > 0,

q(x, y, t) =
4 exp(x+ y + t)

exp(2t) + exp(2x+ 2y)
, y = −7 and 7,−7 ≤ x ≤ 7, t > 0.

The numerical solution of this problem, in which the parameter β = 0 is given by

u(x, y, t) = 4tan−1 exp(x+ y − t), (x, y) ∈ Ω, t > 0,

where, Ω = {−7 ≤ x ≤ 7,−7 ≤ y ≤ 7}.

Figure 1: Estimated and analytical solutions in t = 0.01, with τ = 1e-04, c = 1.7, h1 = h2 = 0.25 for problem 4.1.

Figure 2: Analytical and estimated solutions in t = 0.01, with τ = 1e-04, c = 1.7 and h1 = h2 = 0.25 for problem 4.1.
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Figure 3: L2 and L∞ errors using MQIQ method, with τ = 1e-04, c = 1.7, h1 = h2 = 0.25 for problem 4.1.

The graph of estimated and analytical solutions for t = 0.01 is given in Fig. 1. From this picture,

we can find that the image obtained by MQQI method is almost identical with the image of numerical

solution. Fig. 2 presents the value of analysis and numerical solution for knots which are accruing in line

y = x. This also directly confirms the above conclusion. Fig. 3 shows the L2 error, L∞ norms of error

and comparison between L2 and L∞ norms of errors at time t = 0.01. We can draw a such conclusion

immediately from the Figure 3, in a extraordinary time, the two kinds of error precision are excellent,

the L2 error even reaches 1e-05. This is more accurate than the traditional RBFs method proposed in

reference [8], and the error accuracy in this paper is only 1e-02.

The MQ function has such excellent properties [10], it has a round and smooth waveform, not a

shock wave. Therefore, MQQI technique is better than finite difference method ( FDM ), see [8], finite

element method ( FEM ), see [11], boundary element method ( BEM ), and is better than the one obtained

by the collocation solution of traditional RBFs proposed in [7].

4.2 The Typical Soliton Equation

In this example, we will show the proposed scheme which is applicable to other 2 dimensional PDEs

with shock waves or even soliton waves. We take the typical soliton equation as the example

ut = v,

vt = uxx + uyy − sinu.

The initial conditions are

u(x, y, 0) = 4tan−1 exp(x) + 4tan−1 exp(y), (x, y) ∈ Ω,

v(x, y, 0) = 0, (x, y) ∈ Ω,

and the boundary conditions are

ux = 0, x = −6 and 6,−6 ≤ y ≤ 6, t > 0,

uy = 0, y = −6 and 6,−6 ≤ x ≤ 6, t > 0,

where, Ω = {−6 ≤ x ≤ 6,−6 ≤ y ≤ 6}.
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Figure 4: The numerical solutions and contours with τ = 0.01, h1 = h2 = 0.2, t = 0, t = 2, and t = 4 for problem 4.2, in terms of sin(u/2).

The example depicts the superposition of two orthogonal line silitons, the numerical results are

gained with a space width h1 = h2 = 0.2 and time step τ = 0.01. The images and contours of the

function sin(u/2) are shows in Fig. 4, at t = 0, t = 2 and t = 4 with shape parameter c = 13. Figure 4

shows that the solitons are simulated exactly by adopting MQQI scheme. That is to say, the scheme can

solve a wild range of two dimensional PDEs efficiently.

4.3 Circular Ring Soliton

Circular ring solitons is obtained for φ(x, y) = −1 and initial conditions

f(x, y) = 4tan−1(exp(3−
√

(x2 + y2))), (x, y) ∈ Ω,

g(x, y) = 0, (x, y) ∈ Ω,

and the boundary conditions

p(x, y, t) = 0, x = −7 and 7,−7 ≤ y ≤ 7, t > 0,

9



q(x, y, t) = 0, y = −7 and 7,−7 ≤ x ≤ 7, t > 0.

where, the solution domain of the equation is Ω = {−7 ≤ x ≤ 7,−7 ≤ y ≤ 7}.

Figure 5: Numerical solutions at times t = 0, t = 1.5, t = 2, t = 2.6, with τ = 0.01 and h1 = h2 = 0.2, for problem 4.3.

Figure 5 presents the solution of t = 0, t = 1.5, t = 2, t = 2.6 and contour map, in terms of

sin(u/2) respectively. The solution is obtained for β = 0, τ = 0.01, h1 = h2 = 0.2 and c = 1.5. The

10



simulated ring solitons shrink at the initial stage, as time goes by, the oscillation and radiation begin to

form and continue slowly. The fact is consistent with the results of Refs. [7, 19] and the motion state of

the ring soliton can be clearly observed by contour maps.

Figure 5 only shows the oscillation of the soliton from the initial time to 2.6 seconds. This is

because the error of MQQI method increases a little fast with the increase of time. Therefore, the motion

of the soliton is not demonstrated later. When the space step h is reduced to 0.1, we find that the soliton

oscillation can last up to 3.3 seconds. It is worth noting that as long as shape parameter c is greater than

or equal to 1.5, this method can accurately simulate solitons in a short time.

4.4 Collision of Two Circular Ring Solitons

The collision between circular solitons is obtained for φ(x, y) = −1 and initial conditions

f(x, y) = 4tan−1(exp(
4−

√
(x+ 3)2 + (y + 7)2

0.436
)), (x, y) ∈ Ω,

g(x, y) = 4.13sech(exp(
4−

√
(x+ 3)2 + (y + 7)2

0.436
)), (x, y) ∈ Ω,

and the boundary conditions

p(x, y) = 0, x = −30 and 10, −21 ≤ y ≤ 7,

q(x, y) = 0, y = −21 and 7, −30 ≤ x ≤ 10.

The image and the contour map of the equation with respect to t = 0, t = 0.4, t = 0.8 and t = 2 in

region Ω = {−30 ≤ x ≤ 10,−21 ≤ y ≤ 7} are shown in Fig. 6, in terms of sin(u/2). The numerical

solution is obtained when the parameters are defined as c = 5, τ = 0.01 and h1 = h2 = 0.1 separately.
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Figure 6: Numerical solutions at times t = 0, t = 0.4, t = 0.8, t = 2, with τ = 0.01 and h1 = h2 = 0.1, for problem 4.4.

The solution is extended across x = −10 and y = −7 by symmetry relations. As illustrated in the

Figure 6, we can survey the expansion and oscillation of the two ring solitons, and the solitons appear

obvious oscillation in a short time. Contour maps can reflect the trajectory of solitons more directly. In

this example, as long as shape parameter c is greater than or equal to 1, the soliton can be accurately

simulated in a short time.

4.5 Collision of Four Circular Ring Solitons

A collision of four expanding circular ring solitons is is obtained for φ(x, y) = −1 with initial

conditions

f(x, y) = 4tan−1(exp(
4−

√
(x+ 3)2 + (y + 3)2

0.436
)), (x, y) ∈ Ω,

g(x, y) =
4.13

cosh(exp(4−
√

(x+3)2+(y+3)2

0.436 ))
, (x, y) ∈ Ω,

and the boundary conditions

p(x, y) = 0, x = −30 and 10, −30 ≤ y ≤ 10,

q(x, y) = 0, y = −30 and 10, −30 ≤ x ≤ 10.

Over the region Ω = {−30 ≤ x ≤ 10,−30 ≤ y ≤ 10} are presented in Fig. 7 for β = 0, τ = 0.01

and h1 = h2 = 0.1 at t = 0, t = 0.4, t = 0.8 and t = 1, in terms of sin(u/2). From the diagram, we

can observe the phenomenon similar to the collision of four expanding ring solitons.
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Figure 7: Numerical solutions at times t = 0, t = 0.4, t = 0.8 and t = 1, with τ = 0.01 and h1 = h2 = 0.1, for problem 4.5.

Over the domain−30 ≤ x ≤ 10,−30 ≤ y ≤ 10, the solution is received in a quarter of the domain,

and then symmetrically about x = −10 and y = −10 to extend the solution to the whole domain. The
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solitons expansion from the initial time to 2 seconds is shown in Fig. 7, and the shape parameter c is

selected as 5. In addition, it is found that the shape parameter c have little influence on the results, as

long as c is greater than or equal to 1.

In the above five numerical examples, the shape parameters c are slightly different, which may be

related to the fitting equation, interpolation region and spatial step. How to choose the value of shape

parameter is further investigated in the sequel.

5 The choice of parameters

The sine-Gordon equation which is mentioned in section 1 is chosen to consider the value of pa-

rameters. In order to verify the effectiveness of the scheme, RMS and L∞ error norms are used. The

MQQI method in this paper takes the MQ function with shape parameter c as the radial basis function,

therefore, it is very essential to find the influence of shape parameter on the superiority of fitting effect.

Besides, we also discuss the influence of the selection of time step and space step on the approximation

effect.

For any set Ω ⊆ R2, any setX = {x1, ..., xM} and Y = {y1, ..., yN} included in Ω, the fill distance

is defined by

h1 = max
xi∈Ω

(xi+1 − xi), i = 1, 2, ...,M − 1,

h2 = max
yj∈Ω

(yj+1 − yj), j = 1, 2, ..., N − 1,

which measure the space interval of Ω. M and N define the number of interpolation points in x− axis
and y − axis respectively. The smaller h1 and h2 are, the more sampling points are needs. As long as

hi (i = 1, 2) is controlled within a certain range, the interpolation points in the region can be randomly

distributed, or even not a simple shape.

For given h1 and h2, Ω is divided into (14/h1)× (14/h2) small rectangles with an area of h1× h2.

There are 14/h1+1 horizontal lines in Ω. For each horizontal lines, 14/h1+1 interpolation points are set,

when the points are equidistant. In this case, the number of interpolation points isM×N = 14
h1+1×

14
h2+1 .

The points x = L1
x and y = L1

y are always chosen as the last interpolation points in x and y direction

separately. In the following Table 1, Nd denotes the numbers of the interpolation spots.

5.1 The optimal value of shape parameter

In this experiment, Ω = {−7 ≤ x ≤ 7,−7 ≤ y ≤ 7} is the interpolation domain, which space step

is h1 = h2 and time interval is τ = 1e-04. Suppose that the shape parameter c is equal to c2, in this case,

it is denoted as c. For the following Table, the value of h is fixed, and then change the value of c, so that

the correlation between errors and c can be observed, so as to obtain the optimal value of c.

Now the interpolation points evenly spaced in the domain. The data in all tables in this subsection

are obtained at t = 0.01. Empirical results show that when c changes from 1e-05 to 1e+04, the errors

of L2 and L∞ keep within 1e-05 and 1e-04 orders of magnitude respectively, which shows that MQQI

method has very good stability in a short time and is not sensitive to the value of shape parameters, as

presented in Table 1.

Combined with Tables 2 to 7, it is not difficult to find that when the filling distance h decreases

gradually, c must be larger to retain the error in the same order of magnitude as Table 1. The optimal
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Table 1

c 1e-05 1e-04 1e-03 1e-02 1e-01 1 1.45
Nd 225 225 225 225 225 225 225
L2 8.52377e-05 8.52375e-05 8.52356e-05 8.52145e-05 8.48247e-05 7.6485e-05 7.56725e-05
L∞ 3.04754e-04 3.04754e-04 3.04754e-04 3.04724e-04 3.031728e-04 2.25628e-04 2.24467e-04

c 1.46 1.47 1.48 1e+01 1e+02 1e+03 1e+04
Nd 225 225 225 225 225 225 225
L2 7.56721e-05 7.56721e-05 7.56726e-05 8.07334e-05 8.14634e-05 8.14637e-05 8.14637e-05
L∞ 2.24439e-04 2.24412e-04 2.24384e-04 2.26018e-04 2.26916e-04 2.26917e-04 2.26917e-04

h = 1, CPU time: 0.03s

Table 2

c 1e-05 1e-04 1e-03 1e-02 1e-01 1 1.55
Nd 441 441 441 441 441 441 441
L2 1.11186e-04 1.11185e-04 1.11181e-04 1.11122e-04 1.09543e-04 7.88396e-05 7.68623e-05
L∞ 6.22012e-04 6.220124e-04 6.22011e-04 6.21885e-04 6.09535e-04 2.53142e-04 2.52066e-04

c 1.56 1.57 1.58 1e+01 1e+02 1e+03 1e+04
Nd 441 441 441 441 441 441 441
L2 7.68615e-05 7.68613e-05 7.68616e-05 8.17509e-05 8.248e-05 8.24803e-05 8.24803e-05
L∞ 2.52045e-04 2.52024e-04 2.52002e-04 2.53356e-04 2.54065e-04 2.54066e-04 2.54066e-04

h = 0.7, CPU time: 0.04s

Table 3

c 1e-05 1e-04 1e-03 1e-02 1e-01 1 1.61
Nd 841 841 841 841 841 841 841
L2 1.63512e-04 1.63511e-04 1.63502e-04 1.63366e-04 1.58092e-04 8.04161e-05 7.75625e-05
L∞ 1.21915e-03 1.21915e-03 1.21915e-03 1.21867e-03 1.17205e-03 2.57034e-04 256051e-04

c 1.62 1.63 1.64 1e+01 1e+02 1e+03 1e+04
Nd 841 841 841 841 841 841 841
L2 7.75619e-05 7.75619e-05 7.75624e-05 8.22622e-05 8.29875e-05 8.29878e-05 8.29878e-05
L∞ 2.56033e-04 2.56015e-04 2.55997e-04 2.57212e-04 2.57774e-04 2.57775e-04 2.57775e-04

h = 0.5, CPU time: 0.06s

Table 4

c 1e-04 1e-03 1e-02 1e-01 1 1.64 1.65
Nd 1296 1296 1296 1296 1296 1296 1296
L2 2.21343e-04 2.21329e-04 2.21092e-04 2.09733e-04 8.12211e-05 7.79411e-05 7.79405e-05
L∞ 1.90492e-03 1.9049e-03 1.90373e-03 1.79212e-03 2.53166e-04 2.52245e-04 2.52229e-04

c 1.66 1.67 1.68 1e+01 1e+02 1e+03 1e+04
Nd 1296 1296 1296 1296 1296 1296 1296
L2 7.79405e-05 7.7941e-05 7.7942e-05 8.25192e-05 8.32413e-05 8.32416e-05 8.32416e-05
L∞ 2.52213e-04 2.52197e-04 2.52181e-04 2.53334e-04 2.53817e-04 2.53818e-04 2.53818e-04

h = 0.4, CPU time: 0.09s

Table 5

c 1e-04 1e-03 1e-02 1e-01 1 1.68 1.69
Nd 3249 3249 3249 3249 3249 3249 3249
L2 4.4049e-04 4.40457e-04 4.39599e-04 3.85529e-04 8.24496e-05 7.85521e-05 7.85512e-05
L∞ 4.87641e-03 4.87633e-03 4.86862e-03 4.19361e-03 2.57154e-04 2.56213e-04 2.56197e-04

c 1.70 1.71 1.72 1e+01 1e+02 1e+03 1e+04
Nd 3249 3249 3249 3249 3249 3249 3249
L2 7.85507e-05 7.85508e-05 7.85514e-05 8.29172e-05 8.36331e-05 8.36334e-05 8.36334e-05
L∞ 2.56182e-04 2.56166e-04 2.56151e-04 2.57294e-04 2.57774e-04 2.57775e-04 2.57775e-04

h = 0.25, CPU time: 0.18s
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Table 6

c 1e-04 1e-03 1e-02 1e-01 1 1.7 1.71
Nd 5041 5041 5041 5041 5041 5041 5041
L2 6.15884e-04 6.15833e-04 6.14154e-04 5.04184e-04 8.28577e-05 7.87654e-05 7.87646e-05
L∞ 7.61912e-03 7.61894e-03 7.60014e-03 6.06187e-03 2.57101e-04 2.5611e-04 2.56095e-04

c 1.72 1.73 1.75 1e+01 1e+02 1e+03 1e+04
Nd 5041 5041 5041 5041 5041 5041 5041
L2 7.87643e-05 7.87645e-05 7.87663e-05 8.30534e-05 8.37669e-05 8.37672e-05 8.37672e-05
L∞ 2.56079e-04 2.56063e-04 2.56032e-04 2.57224e-04 2.57732e-04 2.57733e-04 2.57733e-04

h = 0.2, CPU time: 0.28s

Table 7

c 1e-04 1e-03 1e-02 1e-01 1 1.74 1.75
Nd 19881 19881 19881 19881 19881 19881 19881
L2 1.75203e-03 1.75177e-03 1.73579e-03 9.39713e-04 8.36552e-05 7.92055e-05 7.9205e-05
L∞ 3.04676e-03 3.04647e-03 3.01664e-03 1.44306e-03 2.57213e-04 2.56272e-04 2.56257e-04

c 1.75 1.77 1.78 1e+01 1e+02 1e+03 1e+04
Nd 19881 19881 19881 19881 19881 19881 19881
L2 7.92049e-05 7.92053e-05 7.92061e-05 8.33311e-05 8.40393e-05 8.40396e-05 8.40396e-05
L∞ 2.56243e-04 2.56229e-04 2.56215e-04 2.57342e-04 2.57774e-04 2.57775e-04 2.57775e-04

h = 0.1, CPU time: 0.65s

value of c is between 1 and 2, which holds for any filling distance h, (h ∈ [0.1, 1]). It can be seen that

there is a negative correlation between h and c, in terms of L2 error.

In Tables 1 to 7, the value of c slightly greater than 1 is to obtain the best L2 error. The value of

c when L2 error is the best is shown in the upper part of table 8, which can be directly observed in the

previous tables. The same method is used to get the c value when the L∞ error is optimal, as shown

in the lower part of Table 8. For each filling distance h, the L2 and L∞ errors corresponding to each

optimal value c are given simultaneously in Table 8.

Table 8

h 0.1 0.2 0.25 0.4 0.5 0.7 1

c 1.75 1.72 1.70 1.66 1.63 1.57 1.47
L2 7.9205e-05 7.87643e-05 7.85507e-05 7.79405e-05 7.75619e-05 7.68613e-05 7.56721e-05
L∞ 2.56257e-04 2.56079e-04 2.56182e-04 2.52213e-04 2.56015e-04 2.52024e-04 2.24412e-04

c 3.34 3.44 3.32 3.15 3.29 3.50 3.52
L2 8.0623e-05 8.03856e-05 8.01127e-05 7.94742e-05 7.93241e-05 7.89709e-05 7.79341e-05
L∞ 2.54404e-04 2.53707e-04 2.53952e-04 2.5007e-04 2.53401e-04 2.48664e-04 2.20265e-04

On the whole, we also find that the error accuracy of this method is the highest near c = 1, so the

more accurate value of c are discussed. In Tables 1 to 7, the value of c slightly greater than 1 is to gain the

optimal L2 error. The L∞ error first decreases until it reaches the minimum value near c = 1, and then

increases gently until it remains unchanged. The value of L2 error has the same changing trend as well.

From the overall point of view, as c is a number greater than 1, the error accuracy is better. When c is

greater than 100, the error almost does not change, which indicates that the MQQI algorithm converges.

The error precision when c is a large positive number is the same as that c is the optimal value, which

seems to be consistent with the conclusion of Luh [4] roughly. Luh points out that c = 12b0 = 120 is the

optimal value, where r/2 ≤ b0 ≤ r, r is the the diameter of Ω, the value of b0 is defined as 10.

CPU time refers to the time required for each command execution, which is presented in the table

comments. Although when the number of interpolation points is a large value (the number in Table 7
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is close to 20000), the program can still get the result within one second, which greatly improves the

efficiency of the program.

5.2 The choice of time and space step

In this experiment, we first fix h, and define c as its optimal value ( which can be obtained directly

from Table 8 ), then research the relevance between time and space step and approximation effect from

Table 9 to Table 14. The values of other parameters are consistent with Table 1. In this text, it is worth

noting that the value of τ should not be too small, because it will lead to a sharp increase in the amount

of calculation.

Table 9

τ 1e-06 5e-06 1e-05 5e-05 1e-04 5e-04 1e-03

h 1 1 1 1 1 1 1
c 1.47 1.47 1.47 1.47 1.47 1.47 1.47
L2 4.00474e-05 3.96768e-05 3.95028e-05 4.87799e-05 7.56721e-05 3.54122e-04 7.12154e-04
L∞ 1.21065e-04 1.15793e-04 1.09203e-04 1.60302e-04 2.24412e-04 9.99431e-04 1.9995e-03

c 3.52 3.52 3.52 3.52 3.52 3.52 3.52
L2 3.7905e-05 3.77966e-05 3.79667e-05 4.97088e-05 7.79341e-05 3.57103e-04 7.14742e-04
L∞ 1.02178e-04 9.83394e-05 1.04756e-04 1.56092e-04 2.20265e-04 9.99373e-04 1.99945e-03

CPU time 0.37s 0.14s 0.09s 0.04s 0.03s 0.02s 0.02s

Table 10

τ 1e-06 5e-06 1e-05 5e-05 1e-04 5e-04 1e-03

h 0.5 0.5 0.5 0.5 0.5 0.5 0.5
c 1.63 1.63 1.63 1.63 1.63 1.63 1.63
L2 4.12709e-05 4.09459e-05 4.08275e-05 5.04156e-05 7.75619e-05 3.59185e-04 7.21589e-04
L∞ 1.10171e-04 1.04913e-04 1.09465e-04 1.6791e-04 2.56015e-04 9.99425e-04 1.9995e-03

c 3.29 3.29 3.29 3.29 3.29 3.29 3.29
L2 3.92286e-05 3.91206e-05 3.92887e-05 5.09786e-05 7.93241e-05 3.61676e-04 7.23765e-04
L∞ 1.00721e-04 9.99725e-05 1.06387e-04 1.65255e-04 2.53401e-04 9.99381e-04 1.99946e-03

CPU time 1.07s 0.29s 0.19s 0.08s 0.06s 0.03s 0.03s

Table 11

τ 1e-06 5e-06 1e-05 5e-05 1e-04 5e-04 1e-03

h 0.4 0.4 0.4 0.4 0.4 0.4 0.4
c 1.66 1.66 1.66 1.66 1.66 1.66 1.66
L2 4.13186e-05 4.10056e-05 4.0905e-05 5.0648e-05 7.79405e-05 3.60436e-04 7.23907e-04
L∞ .113434e-04 1.07373e-04 1.12083e-04 1.71329e-04 2.52213e-04 9.99422e-04 1.9995e-03

c 3.15 3.15 3.15 3.15 3.15 3.15 3.15
L2 3.93098e-05 3.91949e-05 3.93563e-05 5.10484e-05 7.94742e-05 3.62693e-04 7.25884e-04
L∞ 1.02469e-04 1.02061e-04 1.09471e-04 1.68749e-04 2.5007e-04 9.99384e-04 1.99946e-03

CPU time 1.51s 0.60s 0.50s 0.14s 0.08s 0.04s 0.03s

Table 9 to Table 14 research the influence of time step on error accuracy under different optimal

value c, and give the running time of each order. From a global perspective, when the value of τ is less

than 1e-04, the errors precision are kept at 1e-05 and 1e-04 order of magnitude respectively. But the

value of τ is not the smaller, the better. Such as, the error precision of τ = 1e-05 is higher than that of

τ = 1e-06, and the error precision at this moment is the highest. In order to reduce the calculation, the

value of τ can be selected from 1e-05 to 1e-04. Therefore, τ = 1e-04 is a good choice in the previous
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section. From Table 9 to 14, we can also find that when the time step τ is less than or equal to 1e-05, we

can choose a larger value of c to get higher accuracy. When τ is greater than 1e-05, we need to choose a

smaller value of c.

Table 12

τ 1e-06 5e-06 1e-05 5e-05 1e-04 5e-04 1e-03

h 0.25 0.25 0.25 0.25 0.25 0.25 0.25
c 1.70 1.70 1.70 1.70 1.70 1.70 1.70
L2 4.14038e-05 4.11127e-05 4.10415e-05 5.10312e-05 7.85507e-05 3.62402e-04 7.27533e-04
L∞ 1.10666e-04 1.04411e-04 1.11485e-04 1.72713e-04 2.56182e-04 1.01188e-03 1.99949e-03

c 3.32 3.32 3.32 3.32 3.32 3.32 3.32
L2 3.95056e-05 3.94126e-05 3.96019e-05 5.15005e-05 8.01127e-05 3.64645e-04 729495e-04
L∞ 1.00511e-04 1.01285e-04 1.08942e-04 1.70201e-04 2.53952e-04 1.01141e-04 1.99946e-03

CPU time 3.24s 0.95s 0.67s 0.32s 0.18s 0.06s 0.05s

Table 13

τ 1e-06 5e-06 1e-05 5e-05 1e-04 5e-04 1e-03

h 0.2 0.2 0.2 0.2 0.2 0.2 0.2
c 1.72 1.72 1.72 1.72 1.72 1.72 1.72
L2 4.13941e-05 4.11116e-05 4.1053e-05 5.115e-05 7.87643e-05 3.63096e-04 7.28796e-04
L∞ 1.09546e-04 1.04796e-04 1.12201e-04 1.72368e-04 2.56079e-04 1.01454e-03 1.99949e-03

c 3.44 3.44 3.44 3.44 3.44 3.44 3.44
L2 3.95897e-05 3.9508e-05 3.97116e-05 5.17039e-05 8.03856e-05 3.65362e-04 7.30774e-04
L∞ 1.00951e-04 1.217e-04 1.0958e-04 1.69959e-04 2.53707e-04 1.01449e-03 1.99946e-03

CPU time 5.11s 1.37s 0.92s 0.47s 0.27s 0.11s 0.06s

Table 14

τ 1e-06 5e-06 1e-05 5e-05 1e-04 5e-04 1e-03

h 0.1 0.1 0.1 0.1 0.1 0.1 0.1
c 1.75 1.75 1.75 1.75 1.75 1.75 1.75
L2 4.1429e-05 4.1164e-05 4.11286e-05 5.14189e-05 7.9205e-05 3.64498e-04 7.31361e-04
L∞ 1.07753e-04 1.05015e-04 1.12253e-04 1.73409e-04 2.56257e-04 1.0146e-03 2.00575e-03

c 3.34 3.34 3.34 3.34 3.34 3.34 3.34
L2 3.96868e-05 3.9604e-05 3.98074e-05 5.18409e-05 8.0623e-05 3.66542e-04 7.3315e-04
L∞ 1.00893e-04 1.025673e-04 1.09887e-04 1.71157e-04 2.54404e-04 1.01453e-03 2.00611e-03

CPU time 19.43s 4.27s 2.35s 0.80s 0.66s 0.27s 0.18s

For now, we control the value of h and only consider the influence of a single variable τ on the

fitting effect of the equation. Next, we determine the grid ratio ( fixed ratio of τ to h ) to discuss the

influence on the approximation effect, as shown in Table 15 and 16.

Table 15 and 16 explain that when h and τ are reduced at the same time, the error accuracy is higher.

Table 15 shows when τ
h = 1

1000 , more interpolation points ( that is, smaller filling distance h ) are needed

to improve the accuracy of MQQI algorithm. As τ
h = 1

10000 , for any filling distance h, the algorithm has

high accuracy.

Table 16 demonstrates the trend of errors accuracy when the grid ratio is 1
2000 and 1

20000 respectively.

Good error accuracy can be obtained when fill distance h = 0.25 and time step τ = 1.25e-04. The

experimental results present that the accuracy of the algorithm can be improved by reducing the time

step and space step at the same time. The MQQI method may be unstable when the grid is large, which

is a pity of this method.
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Table 15

c 1.48 1.64 1.68 1.72 1.75 1.78

h 1 0.5 0.4 0.25 0.2 0.1

τ 1e-03 5e-04 4e-04 2.5e-04 2e-04 1e-04

L2 7.12175e-04 3.59209e-04 2.88135e-04 1.81628e-04 1.46528e-04 7.92061e-05

L∞ 1.9995e-03 9.99425e-04 8.04311e-04 5.286357e-04 4.36312e-04 2.56215e-04

CPU time 0.02s 0.03s 0.04s 0.09s 0.15s 0.61s

h 1 0.5 0.4 0.25 0.2 0.1

τ 1e-04 5e-05 4e-05 2.5e-05 2e-05 1e-05

L2 7.56726e-05 5.0392e-05 4.66591e-05 4.26753e-05 4.17874e-05 4.09928e-05

L∞ 2.24384e-04 1.67892e-04 1.56479e-04 1.3441e-04 1.2696e-04 1.12203e-04

CPU time 0.03s 0.08s 0.17s 0.49s 0.61s 2.22s

Table 16

c 1.48 1.64 1.68 1.72 1.75 1.78

h 1 0.5 0.4 0.25 0.2 0.1

τ 5e-04 2.5e-04 2e-04 1.25e-04 1e-04 5e-05

L2 3.54145e-04 1.79761e-04 1.45204e-04 9.46695e-05 7.87663e-05 5.13601e-05

L∞ 9.9943e-04 5.20337e-04 4.36212e-04 3.00204e-04 2.56032e-04 1.73362e-04

CPU time 0.04s 0.04s 0.05s 0.15s 0.27s 0.78s

τ 5e-05 2.5e-05 2e-05 1.25e-05 1e-05 5e-06

L2 4.87573e-05 4.23432e-05 4.15826e-05 4.10317e-05 4.09105e-05 4.10205e-05

L∞ 1.60274e-04 1.28673e-04 1.26855e-04 1.15277e-04 1.12149e-04 1.04963e-04

CPU time 0.04s 0.12s 0.31s 0.60s 0.84s 4.16s

5.3 The number of interpolation points

5.3.1 Point set of uniform distribution

Here, we alter the number of interpolation points with fixing the value of c = 1.75 and time step

τ = 1e-04. Then, we control h1 = h2, which makes the sampling points equally spaced and uniformly

distributed in Ω. All data are recorded at t = 0.01.

The Table 17 present that the L2 and L∞ errors increase slightly as the number of interpolation

points increase on the whole. Nd denote the numbers of the interpolation points. When we use only 225

interpolation points to approximating the equation in the domain, the errors still perform very good. This

demonstrates that we only need a few points to simulate the equation, and can accurately describe the

equation, which immensely reduces the amount of calculation and avoids taking up too much RAM.

Table 17

h 1 0.7 0.5 0.4 0.25 0.2 0.1

c 1.75 1.75 1.75 1.75 1.75 1.75 1.75
Nd 225 441 841 1296 3249 5041 19881
L2 7.58223e-05 7.69344e-05 7.75979e-05 7.79614e-05 7.85557e-05 7.87663e-05 7.9205e-05
L∞ 2.23636e-04 2.51636e-04 2.558e-04 2.52069e-04 2.56105e-04 2.56032e-04 2.56257e-04

CPU time 0.02s 0.04s 0.06s 0.08s 0.18s 0.26s 0.61s

It is not difficult to find that when fill distance h is smaller, the error accuracy of the equation is

almost not change, as shown in Table 17. Generally, the number of interpolation points has tiny effect on

errors. Therefore, it is not necessary to select too many interpolation points when using MQQI method
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to simulate sine-Gordon equations.

5.3.2 Point set of random distribution

In this example, the number of fixed interpolation points is equal to 225. Ω is divided into 14× 14

small squares with a length of 1 on each side. Then, we put each interpolation point in a square and let it

move randomly, but not beyond the boundary of the square. In this way, a series of stochastic point sets

are obtained. In the horizontal direction, the interval between two points is represented by h1, and the

maximum value of h1 will not exceed 2, because we specify that the side length of each small square is

1. The maximum value of h2 is not exceed 2 as well, in the vertical direction.

Table 18

c 1.75 1.75 1.75 1.75 1.75 1.75 1.75

h1 1.47501 1.51796 1.62331 1.688 1.70996 1.75952 1.80836
h2 1.50519 1.71993 1.90052 1.88006 1.65441 1.83736 1.49901
L2 7.79181e-05 8.01394e-05 7.82469e-05 7.7535e-05 8.11389e-05 7.70429e-05 7.8127e-05
L∞ 272383e-04 301378e-04 267596e-04 265808e-04 313885e-04 268151e-04 2967397e-04

According to Table 18, it shows that although the total number of interpolation points in the domain

is stochastically, the L2 and L∞ errors remain keeping the order of 1e-05 and 1e-04, which is consistent

with the result when the interpolation points are evenly distributed. The above experimental results verify

that the MQQI method does not need to divide the mesh. The method can simulate 2D sine-Gordon

equation accurately as long as the time step τ and shape parameter c are set appropriately. There is one

thing we need to note, the value of shape parameter c depends on the size of interpolation range as well,

which can be found from the numerical examples in Section 4.

6 Conclusions

In this paper, the MQQI algorithm in two-dimensional was presented, and used it to simulate the

numerical solution of sine-Gordon equation, which proved that the method can accurately and effectively

simulate the soliton equation. In addition, we testified that MQQI algorithm performs better than RBF

method [7] in approximation of sine-Gordon equations. We also carefully discussed the correlation

between parameters and approximation effect, in the fifth part of the paper. Due to the complexity of

the influence of shape parameter on the equation, we only considered the selection of shape parameter

friendly. We can draw the following conclusions through example verification,

• The choice of shape parameter is not controlled by a single variable, but depends on the dimension

of the equation, the size of the interpolation range, etc.

• The value of shape parameter has a negative correlation with spatial step. As the increase of the

spatial step, the value of shape parameter also decreases.

• The L∞ error between the analysis solution and the numerical solution can reach 1e-04, and L2

error can up to 1e-05. The precision has been improved at least 1000 times, compared with the

RBF method of Dehghan [7].

• When the time step size is selected as a smaller value, the error accuracy will be improved, but

the amount of calculation will addition. Therefore, in the experiment, the time step size can be

selected as 1e-04.
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• The number of interpolation points determines the size of space interval. In the numerical example,

we verify that the number of interpolation points is not the more the better, but needs reasonable

arrangement. Even when the interpolation points are randomly distributed, the fitting effect of the

equation is excellent.

All the numerical results in this paper can be completed within several seconds, which proves that

the MQQI method is very easy to implement and efficient.
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