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Abstract

Objective: While the coronavirus persists marginally for ninety-five percent of the infected case count, the remaining five percent
have been placed in a critical or vital condition. This study investigates to design an intelligent model that predicts the disease
severity level by modeling the relationships between the severity of COVID-19 infection and the various demographic/clinical
characteristics of individuals. Material and Methods: A public dataset of a cross-sectional study included the demographic and
symptomatological characteristics of 223 COVID-19 patients. The dataset was randomly divided into training (75%) and testing
(25%) datasets. During training, the class imbalance problem was solved, and the related factors with the COVID-19 severity
were selected using the evolutionary method supported by a genetic algorithm. Neural Network (NN), Support Vector Machine
(SVM), QUEST algorithms together with confidence weighted voting, voting, and highest confidence wins strategies (HCWS)
were constructed, and the predictive power of models was evaluated by performance metrics. Results: Of the individual models,
the NN model outperformed SVM and QUEST algorithms based on the performance metrics in the training and testing datasets.
However, ensemble approaches gave better predictions as compared to the individual models regarding all the evaluation metrics.
Conclusions: The proposed voting ensemble model outperforms other ensemble and individual machine learning approaches
for the severity prediction of COVID-19 disease. The proposed ensemble learning model can be integrated into web or mobile
applications in classifying the severity of COVID-19 for clinical decision support.

COVID-19 Severity Prediction in SARS-CoV-2 RNA-Positive Patients by Different Ensemble
Learning Strategies

Abstract

Objective : While the coronavirus persists marginally for ninety-five percent of the infected case count, the
remaining five percent have been placed in a critical or vital condition. This study investigates to design an
intelligent model that predicts the disease severity level by modeling the relationships between the severity
of COVID-19 infection and the various demographic/clinical characteristics of individuals.

Material and Methods: A public dataset of a cross-sectional study included the demographic and symp-
tomatological characteristics of 223 COVID-19 patients. The dataset was randomly divided into training
(75%) and testing (25%) datasets. During training, the class imbalance problem was solved, and the related
factors with the COVID-19 severity were selected using the evolutionary method supported by a genetic
algorithm. Neural Network (NN), Support Vector Machine (SVM), QUEST algorithms together with con-
fidence weighted voting, voting, and highest confidence wins strategies (HCWS) were constructed, and the
predictive power of models was evaluated by performance metrics.

Results : Of the individual models, the NN model outperformed SVM and QUEST algorithms based on
the performance metrics in the training and testing datasets. However, ensemble approaches gave better
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predictions as compared to the individual models regarding all the evaluation metrics.

Conclusions: The proposed voting ensemble model outperforms other ensemble and individual machine
learning approaches for the severity prediction of COVID-19 disease. The proposed ensemble learning model
can be integrated into web or mobile applications in classifying the severity of COVID-19 for clinical decision
support.

Keywords: Classification, COVID-19 severity, ensemble learning, machine learning, prediction.

WHAT’S KNOWN? (what is already known about this subject?)

The severity of the COVID-19 pandemic is associated with the survival of individuals, and evaluating the
level of severity, especially in individuals with chronic diseases, improves the quality of life and can reduce
the mortality rates caused by this virus. The severity of the COVID-19 disease was divided into four stages,
i.e., mild, moderate, extreme, and serious, in accordance with the Guidelines provided by the Ministry of
Health, Labor and Welfare, Japan, on the Diagnosis and Treatment of Novel Coronavirus. There have been
limited studies investigating between the severity of COVID-19 infection and the various demographic/clinical
characteristics of individuals using an intelligent ensemble model. Thence, this study investigates to design
an intelligent model that predicts the disease severity level by modeling the relationships between the severity
of COVID-19 infection and the various demographic/clinical characteristics of individuals.

WHAT’S NEW? (what does this study contribute to the literature?)

Understanding clinical/demographic features, progression, and prognosis of the COVID-19 disease may help
recognize critically ill patients, provide appropriate care, and avoid mortality. In light of this important
data, this research aims to design an intelligent model that predicts the disease severity level by modeling the
relationships between the severity of COVID-19 infection and the various demographic/clinical characteristics
of individuals. The possible contributions of the current study are given below:

• This study investigates to design an intelligent model that predicts the disease severity level by modeling
the relationships between the severity of COVID-19 infection and the various demographic/clinical
characteristics of individuals.

• Neural Network (NN), Support Vector Machine (SVM), QUEST algorithms together with confidence
weighted voting, voting, and highest confidence wins strategies (HCWS) were constructed.

• The proposed voting ensemble model outperforms other ensemble and individual machine learning
approaches for the severity prediction of COVID-19 disease.

• The proposed ensemble learning model can be integrated into web or mobile applications in classifying
the severity of COVID-19 for clinical decision support.

1. Introduction

Since December 2019, a cohort of patients in Wuhan, Hubei Province, China, has suffered from unknown
etiology acute respiratory disease. The first cases showed a connection to the Huanan wholesale market for
seafood. The Chinese Centre for Disease Control and Prevention (CDC) found a new coronavirus, previously
referred to by the International Committee on Taxonomy of Viruses (ICTV) as severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2, formerly referred to as 2019-nCoV), by analyzing the patient’s throat
swab sample. Human angiotensin-converting enzyme 2 (ACE2) molecules strongly interact with the SARS-
CoV-2 Spike protein’s receptor-binding domain (RBD). This gives human respiratory epithelial cells a high
infectious proficiency of the virus. The virus induces exhaustion, fever, cough, and serious or moderate
breathing impediments. SARS-CoV-2 is referred to as Coronavirus Disease 2019 (COVID-19), which showed
moderate symptoms in the majority of patients (1). Early disease detection helps to provide necessary,
appropriate care for clinicians. The clinical and epidemiological features of coronavirus were examined by
Zheng et al. (2). Treatment, radiological, laboratory, clinical, demographic, and epidemiological data were
used for 99 confirmed patients in China with COVID-19. As typical symptoms, they reported fever, tiredness,
and dry cough. The median age of patients registered is 49 years, 41 percent had the underlying disorder,
49 percent had near interaction with patients affected by COVID19, and 42 percent had resided or traveled

2



P
os

te
d

on
30

Ja
n

20
24

|T
he

co
py

ri
gh

t
ho

ld
er

is
th

e
au

th
or

/f
un

de
r.

A
ll

ri
gh

ts
re

se
rv

ed
.

N
o

re
us

e
w

it
ho

ut
pe

rm
is

si
on

.
|h

tt
ps

:/
/d

oi
.o

rg
/1

0.
22

54
1/

au
.1

70
66

54
11

.1
38

42
14

4/
v1

|T
hi

s
is

a
pr

ep
ri

nt
an

d
ha

s
no

t
be

en
pe

er
-r

ev
ie

w
ed

.
D

at
a

m
ay

be
pr

el
im

in
ar

y.

to Wuhan. Lower counts of CD8 and CD4, lower white blood cells, lymphocytes, and neutrophils; higher
levels of natriuretic peptides in the brain; higher myocardial damage levels, and higher C-reactive proteins
can be used for early detection of disease in seriously ill patients. (1).

The severity of the COVID-19 pandemic is associated with the survival of individuals, and evaluating the
level of severity, especially in individuals with chronic diseases, improves the quality of life and can reduce
the mortality rates caused by this virus. The severity of the COVID-19 disease was divided into four stages,
i.e., mild, moderate, extreme, and serious, in accordance with the Guidelines provided by the Ministry of
Health, Labor and Welfare, Japan, on the Diagnosis and Treatment of Novel Coronavirus. In short, the mild
disease was characterized as a lack of respiratory symptoms, no radiological pulmonary manifestations, and
levels of oxygen saturation (SpO2) of about 96 percent. The moderate disease was defined as mild respiratory
symptoms, 93 percent < SpO2 < 96 percent, and radiological evidence of pneumonia. Severe cases were
described as oxygen support requiring SpO2 93 percent. Critical was described as requiring support for acute
respiratory distress syndrome (ARDS) by the heart-lung machine or extracorporeal membrane oxygenation
(ECMO) (3).

Medical signs, personal traits, and demographic characteristics were strongly associated with COVID-19
infection in various research studies. Other clinical characteristics, specifically obesity, cardiovascular disease,
and hypertension, have also been reported in studies as important factors influencing the rate of COVID19
infection. On the other hand, studies discuss the demographic characteristics strongly associated with
COVID-19 disease worldwide, such as a country’s gross domestic product ratio, smoking prevalence, a
country’s average annual temperature, etc. (4).

Understanding clinical/demographic features, progression, and prognosis of the COVID-19 disease may help
recognize critically ill patients, provide appropriate care, and avoid mortality (5). In light of this important
data, this research aims to design an intelligent model that predicts the disease severity level by modeling the
relationships between the severity of COVID-19 infection and the various demographic/clinical characteristics
of individuals.

2. Materials and Methods

2.1. Patient data and selection

The open-accessed dataset used in the current research from a cross-sectional study (6) includes the demo-
graphic and symptomatological characteristics of 223 COVID-19 patients treated at the Sisli Hamidiye Etfal
Training and Research Hospital of the University of Health Sciences between March 10 and April 21, 2020 (7).
The public dataset can be achieved from the web address ofhttp://dx.doi.org/10.17632/w9tjhj8jy6.1. From
the beginning to the diagnosis of general and otolaryngologic symptoms of COVID-19, prevalence, serious-
ness, length, and time were determined. The SARS-CoV-2 RNA was detected in all patients included in this
dataset in the swab specimens. The dataset encapsulates general patient characteristics (age, gender, and
comorbidity), hospitalization status, dates, and swab specimen collection results, computerized tomography
results, and drugs used for COVID-19. Five otorhinolaryngologists and two infectious diseases specialists
performed the surveys. All the patients involved in the study gave informed consent. Detailed records of
the patients (113 males, 110 females) who had SARS-CoV-2 RNA found in their nasopharyngeal or oropha-
ryngeal swab specimens by reverse transcription-polymerase chain reaction (RT-PCR) were examined in the
current study. During the study period, all patients suspected of having COVID-19 were treated in compli-
ance with the Turkish Ministry of Health Study Board’s interim guidelines. After a brief training following
real interim instructions, resident or attending doctors obtained nasopharyngeal and oropharyngeal swabs.
Specimens were tested in the General Directorate of Public Health Microbiology Reference Laboratory for
the presence of SARS-CoV-2 RNA via Nucleic Acid Amplification Tests (RT-PCR and nucleic acid sequence
analysis if necessary). Detailed information on the research design and protocol can be obtained from the
related study (6). The attributes considered in the present work are summarized in Table 1.

2.2. Data Preprocessing

3
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There were no missing values in the available dataset regarding COVID-19 severity and other attributes of
the patients. However, there was a problem of class imbalance between categories of COVID-19 severity. The
class imbalance problem affects data when class distributions are strongly imbalanced. Many classification
learning algorithms in this context have poor predictive accuracy for the rare class. The proportion of cases
in a data set that belongs to each class plays an important role in machine learning. The real-world data,
however, often suffer from class imbalances. It is harder to deal with multi-class tasks that require different
class misclassification costs than with two-class tasks (8). The Sample (Balance) operator in the RapidMiner
software was used to solve the class imbalance problem that emerged in this study. An automated balancing of
an example set with labels is achieved by the Sample (Balance) operator, which allows up and downsampling
(9). For feature/attribute selection, the most important attributes of the given data set were selected by the
Optimize Selection (Evolutionary operator in the RapidMiner software, which uses a Genetic Algorithm. A
genetic algorithm (GA) is a search heuristic that imitates the natural evolution process. This heuristic is
regularly used to construct helpful solutions to problems of optimization. Genetic algorithms belong to the
broader class of evolutionary algorithms (EA), which use techniques inspired by natural evolution, such as
inheritance, mutation, selection, and crossover, to produce solutions to optimization problems (10).

2.3. Data Mining Approaches

2.3.1. Neural Network (NN) Algorithm

Neural networks predict a continuous or categorical goal based on one or more predictors by identifying
trends in the data which are unknown and probably complex. A feed-forward, supervised learning network
of up to two hidden layers is the multilayer perceptron (MLP). The MLP network is a feature of one or
more predictors that minimize one or more target prediction errors. A combination of categorical and
continuous fields can be predictors and targets (11). In the current study, the activation function was a
hyperbolic tangent, the error function was cross-entropy, the number of hidden layers was two, and the
number of component models for boosting was ten. The boosting is an algorithm used to enhance model
stability/precision, can be used in all models, and can minimize prediction variances and biases. Scaled
Conjugate Gradient technique was used for tuning model hyperparameters (12).

2.3.2. Support Vector Machine (SVM) Algorithm

A supervised learning technique that generates input-output mapping functions from a collection of labeled
training data is the Support Vector Machine (SVM). The mapping function may be a function of classification
or a function of regression. Nonlinear kernel functions are also used for classification to translate input
data to a high-dimensional feature space where the input data becomes more separable than the original
input space. Hyperplanes of maximum-margin are then formed. Only a subset of the training data near
the class boundaries depends on the generated model. In the present study, kernel type was radial basis
polynomial, regularization parameter (C) was ten, gamma was 0.1, and stopping criteria was 1.0E (-3). The
hyperparameters of the SVM algorithm was tune using a modified sequential minimal optimization (SMO)
method (11, 13).

2.3.3. QUEST Algorithm

QUEST stands for a quick, unbiased, efficient statistical tree and is a relatively new algorithm for binary tree
increasing. This deals with split field selection and different split-point selection. In Search, the univariate
split conducts roughly unbiased field selection. If all the predictor fields are equally informative concerning
the target field, QUEST selects any of the predictor fields with equal likelihood. QUEST offers many of
Classification and Regression Trees’ (C&RT) benefits. Still, the trees can become unusable, like C&RT.
Automatic cost-complexity pruning can be applied to the QUEST tree to reduce its scale. Concerning
this study, the boosting method was used to build the QUEST model to enhance accuracy (11). The
hyperparameters of the SVM algorithm were maximum tree depth of 5, maximum surrogates of 5, minimum
records in parent branch of 2%, minimum records in child branch of 1%, and the number of component
models for boosting was ten. The model hyperparameters were optimized by SMO approximation (13).
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2.4. Ensemble Learning

2.4.1. Confidence weighted voting (CWV) strategy

More specific predictions can be given by assembling scores from individual models. Limitations in individual
models can be avoided by integrating scores from many models, resulting in higher overall accuracy. Models
blended in this way usually perform at least as well as the best and sometimes better individual models.
Another weighted majority voting form is Confidence Weighted Voting (CWV). However, rather than giving
high weights to the nearest sensors, CWV gives higher weights to those sensors that are more likely to be
right (i.e., with higher confidence of correctness). A distributed comparison of sensing results and neighbors
that share overlapping coverage can be made for the confidence value of each sensor. For this study, a
confidence-weighted voting strategy was used to combine the scores from individual NN, SVM, and QUEST
algorithms (11, 14).

M∑
m=1

pm,jdm,j =
K

max
k=1

pm,j

(
M∑

m=1

dm,k

)

pm,j is the posterior likelihood for a given vector of predictor values calculated for the kth target group by
the mth base model. M is the number of base models, and K is the number of target categories (15).

2.4.2. Voting strategy (VS)

Assume that for a given vector of predictor values, the mark performance of the mth base model represents.
If the kth goal group is the mark given by the mth base model and 0, otherwise. Complete M base models
and K target categories are given. If the plurality of base models assigns it, the majority vote method selects
the jth group. The following equation fulfills it:

M∑
m=1

dm,j =
K

max
k=1

(
M∑

m=1

dm,k

)

dm,k is the label performance of the mth base model for a given predictor values vector. M is the number of
base models, and K is the number of target categories (15).

2.4.3. Highest confidence wins strategy (HCWS)

The highest confidence wins strategy is calculated as follows:

M
max
m=1

(pm,j) =
K

max
k=1

(
M

max
m=1

(pm,j)
)

pm,j is the posterior likelihood for a given vector of predictor values calculated for the kth target group by
the mth base model. M is the number of base models, and K is the number of target categories (16).

2.5. Model Validation and Performance Metrics

A nested operator used for validating the models in the current study is the split validation operator. The
operator consists of two subprocesses: a training subsection and a test subsection. The training subprocess
is used to learn or construct a model. The learned model is then employed in the subprocess testing. The
model’s efficiency is also evaluated during the test process. The input dataset is divided into two sub-sets.
One subset is used as a training set, the other as a test set. The model is learned from the training set and
adapted to the test set. The learning process normally optimizes the model parameters so that the model
fits as well as possible into the training data. If we then take an independent sample of test data, the model
normally does not match the test data and the training data. Split validation is a means of predicting how
a model fits into a hypothesis set if an explicit test set is not available. The Split Validation operator also

5
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provides instruction for one set of data and testing for another explicit test set (17). The whole dataset was
portioned into two subsets: %75 for training and 25% for testing samples. All the models were trained on the
first dataset and tested on the second dataset. Afterward, the performance metrics were calculated for each
model by DTROC software (18). The evaluation metrics were accuracy, precision, sensitivity, specificity,
F1-score, Matthews correlation coefficient (MCC), and G-mean. A detailed explanation of the metrics is
available from the study (19).

2.6. Data Analysis

Quantitative data were summarized as mean (standard deviation), and qualitative data were given as num-
bers (percentages). Pearson’s Chi-square test was utilized to examine the differences among the categories
of categorical variables. When significant differences were detected, the Bonferroni corrected Pearson’s Chi-
square test was also used for pairwise comparisons. A p-value of 0.05 was considered statistically significant.
IBM SPSS Statistics 26.0, IBM SPSS Modeler 18.0, and RapidMiner Studio Educational Edition 9.8 soft-
wares were used for the analyses (17, 20, 21).

3. Results

3.1. Baseline characteristics of the patients

Baseline characteristics of the patients by disease severity are summarized in Table 2. Of the data set
consisting of 223 patients, 113 were male (50.7%), and 110 were female (49.3%). There were 41 patients
(18.4%) with mild disease, 137 (61.4%) with moderate, 32 (14.3%) with severe, and 13 (5.8%) with critical.
The average age of all patients was 50.09 ± 16.46 years; the mild ones were 36.17 ± 14.28 years, the moderate
ones were 50.28 ± 14.88 years, the severe ones were 62.75 ± 13.63 years, and the critical ones were 60.85 ±
11.19 years, respectively.

Approximately 98.7% of the patients used Hydroxychloroquine, 63.7% Oseltamivir, 19.7% Azithromycin,
0.9% Lopinavir/Ritonavir, and 13.5% Favipiravir. About 50.7% of the patients had a fever, 54.3% had a
cough, 71.3% had fatigue, 37.7% had dyspnea, and 50.7% had Myalgia/Arthralgia. The proportion of patients
with headache is 26.5, the proportion of those with frontal type headache is 10.8, the proportion of those with
nasal obstruction is 16.6, the proportion of those with Rhiorrhea is 11.7. Sore throat in approximately 26.0%
of patients, dry throat in 16.1%, loss of smell in 31.8%, loss of taste in 34.5%, ear pain in 2.7%, dizziness in
2.2%, and hearing loss in 0.9% were the common complaints of the patients.

There are significant differences between the Patient Clinical Status variable in terms of Comorbidity Status,
General Medication, Lopinavir/Ritonavir, Favipiravir, Fever Presence, Cough Presence, Cough Presence,
Fatigue Presence, Dyspnea Presence, Smell Loss Presence, Dizziness Presence, and Hearing Loss Presence
variables (Pearson’s Chi-Squared Test; p<0.05).

3.2. Modelling and performance evaluation

Table 3 presents the performance metrics of the individual and ensemble models for each COVID-19 severity
category. Of the individual models, the NN model outperformed SVM and QUEST algorithms based on the
performance metrics in the training and testing datasets. However, ensemble approaches (i.e., HCWS, VS,
CWVS) gave better predictions as compared to the individual models regarding all the evaluation metrics.
As the ensemble models’ estimates were compared, VS achieved slightly better prediction performance than
the HCWS and CWVS algorithms.

Predictor importance values for each separate model are summarized in Table 4. Based on the estimates of
the best-performing individual model (i.e., NN), the three most important predictors were age, Favipiravir
use, and the presence of dyspnea, respectively. The predictor significance values of other individual models
are also shown in Table 4.

4. Discussion

The COVID-19 pandemic posed a big threat to global health, as well as a massive burden on healthcare

6
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systems. Besides, the COVID-19 pandemic has impacted the lives of many people worldwide in recent days
and needs a massive number of screening tests to identify the presence of the coronavirus. At the same
time, the rise of concepts of deep learning (DL) helps to build a COVID-19 diagnosis model effectively to
achieve maximum detection rate with minimum computation time (22). A precise forecast of the magnitude
of COVID-19 could provide realistic insights into directing critical hospitalization and treatment decisions
to relieve the burden on the healthcare system. Clinical/demographic knowledge of COVID-19 disease pro-
gression and prognostics will help diagnose critically ill patients, provide adequate treatment, and prevent
mortality (23). Based on these important data, the purpose of the research is to build an intelligent mo-
del predicting the severity of the disease by modeling the associations between the severity of COVID-19
infection and the demographic/clinical properties of individuals.

Predictive models acquire knowledge about a software project and predict whether the instances added in
the future will be faulty or not by studying historical software information. Nevertheless, in most programs,
there are many more non-defective (i.e., the majority class) cases than faulty (i.e., the minority class), which
is referred to as the problem of class imbalance. Conversely, traditional algorithms in the field of machine
learning presume that the numbers of minority and majority groups are essentially the same. Predictive
models built from such highly imbalanced datasets tend to disregard faulty instances and predict non-default
performance. As a consequence, the models yield highly skewed results and are not technically applicable.
Data resampling techniques are commonly used to resolve the class imbalance issue. Two forms of general
resampling strategies are oversampling and subsampling: the former creating new cases and introducing them
to the minority class and the latter eliminating existing cases from the mainstream. Both techniques strive
to balance the distribution of data sets to enhance prediction models’ efficiency (24). In the current study,
the class imbalance problem arose in the data set in the process of forming individual models. In order to
solve this problem, the imbalance among the disease categories was resolved by balancing the classes in the
preprocessing stage of the data set. Individual models of NN, SVM, and QUEST algorithms were constructed
to predict the COVID-19 severity categories on the balanced medical records of the patients. Based on the
experimental results of each singular model, the NN model produced better predictions as compared to the
SVM and QUEST algorithms. Additionally, the most important factors estimated from the NN algorithm in
the classification of COVID-19 severity were age, Favipiravir use, the presences of dyspnea, cough and smell
loss, Lopinavir/Ritonavir use, the presences of fatigue, fever, frontal type headache, and gender, respectively.

Ensemble learning approaches use many machine-learning algorithms to generate poor predictive results
based on features derived from a wide range of data forecasts and merge results to achieve higher performan-
ce than any single constituent algorithm, with different voting or other mechanisms. Therefore, ensemble
learning is extremely expandable, combined with various machine learning models for different tasks such
as general classification tasks, clustering tasks, etc. In general, current methods of ensemble learning can
be divided into four categories: supervised classification of the ensemble, semi-supervised classification of
the ensemble, the clustering ensemble, and a semi-supervised clustering ensemble (25). In the current study,
different ensemble learning algorithms were implemented to combine individual predictions to classify the
severity of the COVID-19 pandemic. Voting strategy, one of the ensemble learning methods, gave slightly
better predictive results than other ensemble techniques (i.e., HCWS and CWVS) in predicting the severity
of Covid-19 disease.

Recent studies on COVID-19 severity prediction have been reported on the applications of machine learning
algorithms and artificial intelligence models. A novel study aims to develop a COVID-19 severity prediction
model and explain dynamic changes in key clinical characteristics over seven weeks. In accordance with this
purpose, a support vector machine model was constructed with a genetic algorithm for feature selection and
achieved an accuracy of over 94% for COVID-19 severity prediction. The authors report that the proposed
model includes 11 routine clinical features commonly available during COVID-19 management, which may
predict the severity and guide the treatment of COVID-19 patients (26). In another recently published study,
RNA-Seq and high-resolution mass spectrometry on 128 blood samples from COVID-19 positive and nega-
tive patients with diverse disease severities were performed on 219 molecular features with high significance
to COVID-19 status and severity. The researchers present an interactive web-based tool (covid-omics.app)

7
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to illustrate its utility by comparing the data published and a machine learning approach to COVID-19
severity prediction (27). Another research assesses the predictive accuracy of the severity classification of
WHO COVID-19 and compares its predictive power based on the Bayesian network analysis with the new
prediction model, COVID-19 EPI-SCORE. The selected variables from the machine learning model were the
classification of WHO severity, acute kidney injury, age, Lactate dehydrogenase levels (LDH), lymphocytes,
and activated prothrombin time (aPTT). The findings of the study demonstrate that the severity classifi-
cation of the WHO is accurate for predicting serious results in patients with COVID-19 (28). Other newly
published work performs a comparative analysis using machine learning algorithms [i.e., the support vector
machine (SVM), decision tree (DT), k-nearest neighbor (kNN), and convolution neural network (CNN)] to
classify the COVID-19 confirmed patients’ pneumonia level (mild, progressive, and severe stage). Extensive
experiments have been performed, and the findings show the accuracy values for kNN, SVM, DT, and CNN
of 91.304%, 91.4%, 87.5%, and 95.622%, respectively (29). Some factors in this study are consistent with
other reported researches. Besides, the calculated performance metrics in the current study are higher as
compared to similar works (29). The results of the current and above-mentioned research studies demonstrate
that machine learning and statistical learning models can predict the severity of the COVID-19 pandemic.

In conclusion, the proposed voting ensemble model outperforms other ensemble and individual machine
learning approaches for the severity prediction of COVID-19 disease. The proposed ensemble learning model
can be integrated into web or mobile applications for classifying the severity of COVID-19 for clinical decision
support.

Ethical approval, conflict of interest and funding
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Abbreviation Explanation Role

Age Birth year (year) Input
Gender Gender (0=female, 1=male) Input
ComorbidityStatus Comorbidity Status (0=no comorbidities, 1=with comorbidities) Input
GeneralMedication General Medication Use (0=absence, 1=presence) Input
Hydroxychloroquine Hydroxychloroquine use (0=not used, 1=used) Input
Oseltamivir Oseltamivir use (0=not used, 1=used) Input
Azithromycin Azithromycin use (0=not used, 1=used) Input
LopinavirRitonavir Lopinavir/Ritonavir use (0=not used, 1=used) Input
Favipravir Favipravir use (0=not used, 1=used) Input
Fever Fever Presence (0=absence, 1=presence) Input
Cough Cough Presence (0=absence, 1=presence) Input
Fatigue Fatigue Presence (0=absence, 1=presence) Input
Dyspnea Dyspnea Presence (0=absence, 1=presence) Input
MyalgiaArthralgia Myalgia/Arthralgia Presence (0=absence, 1=presence) Input
Headache Headache Presence (0=absence, 1=presence) Input
FrontalTypeHeadache Frontal Type Headache Presence (0=absence, 1=presence) Input
NasalCongestion Nasal Congestion Presence (0=absence, 1=presence) Input
Rhinorrhea Rhinorrhea Presence (0=absence, 1=presence) Input
SoreThroat Sore Throat Presence (0=absence, 1=presence) Input
DryThroat Dry Throat Presence (0=absence, 1=presence) Input
SmellLoss Smell Loss Presence (0=absence, 1=presence) Input
TasteLoss Taste Loss Presence (0=absence, 1=presence) Input
Earache Earache Presence (0=absence, 1=presence) Input
Dizziness Dizziness Presence (0=absence, 1=presence) Input
HearingLoss Hearing Loss Presence (0=absence, 1=presence) Input
PatientClinicalStatus Patient Clinical Status (1=Mild Disease, 2=Moderate Disease, 3=Severe Disease, 4=Critical Disease) Output

Table 2. Baseline characteristics of the patients by disease severity

Variable Class Patient Clinical Status Patient Clinical Status Patient Clinical Status Patient Clinical Status Patient Clinical Status Patient Clinical Status Patient Clinical Status Patient Clinical Status Total Total p*

Mild Disease Mild Disease Moderate Disease Moderate Disease Severe Disease Severe Disease Critical Disease Critical Disease
n % n % n % n % n %

Gender Female 20 48.8 70 51.1 16 50 4 30.8 110 49.3 0.596
Male 21 51.2 67 48.9 16 50 9 69.2 113 50.7

Comorbidity Status Absence 28a 68.3 67a 48.9 6b 18.8 5a,b 38.5 106 47.5 <0.001
Presence 13a 31.7 70a 51.1 26b 81.3 8a,b 61.5 117 52.5

General Medication Absence 34a 82.9 83b 60.6 12b 37.5 8a,b 61.5 137 61.4 0.001
Presence 7a 17.1 54b 39.4 20b 62.5 5a,b 38.5 86 38.6

Hydroxychloroquine Not Used 1 2.4 1 0.7 1 3.1 0 0 3 1.3 0.627
Used 40 97.6 136 99.3 31 96.9 13 100 220 98.7

Oseltamivir Not Used 18 43.9 47 34.3 13 40.6 3 23.1 81 36.3 0.478
Used 23 56.1 90 65.7 19 59.4 10 76.9 142 63.7

Azithromycin Not Used 33 80.5 115 83.9 21 65.6 10 76.9 179 80.3 0.131
Used 8 19.5 22 16.1 11 34.4 3 23.1 44 19.7

Lopinavir/Ritonavir Not Used 41a,b 100 137b 100 31a,b 96.9 12a 92.3 221 99.1 0.04
Used 0a,b 0 0b 0 1a,b 3.1 1a 7.7 2 0.9

Favipiravir Not Used 41a 100 137a 100 10b 31.3 5b 38.5 193 86.5 <0.001
Used 0a 0 0a 0 22b 68.8 8b 61.5 30 13.5

Fever Presence Absence 29a 70.7 66a.b 48.2 10b 31.3 5a,b 38.5 110 49.3 0.005
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Variable Class Patient Clinical Status Patient Clinical Status Patient Clinical Status Patient Clinical Status Patient Clinical Status Patient Clinical Status Patient Clinical Status Patient Clinical Status Total Total p*

Presence 12a 29.3 71a.b 51.8 22b 68.8 8a,b 61.5 113 50.7
Cough Presence Absence 28a 68.3 59b 43.1 14a.b 43.8 1b 7.7 102 45.7 0.001

Presence 13a 31.7 78b 56.9 18a.b 56.3 12b 92.3 121 54.3
Fatigue Presence Absence 19a 46.3 38a.b 27.7 5b 15.6 2a,b 15.4 64 28.7 0.017

Presence 22a 53.7 99a.b 72.3 27b 84.4 11a,b 84,6 159 71.3
Dyspnea Presence Absence 33a 80.5 93a 67.9 13b 40.6 0c 0 139 62.3 <0.001

Presence 8a 19.5 44a 32.1 19b 59.4 13c 100 84 37.7
Myalgia/Arthralgia Presence Absence 25 61 62 45.3 15 46.9 8 61,5 110 49.3 0.274

Presence 16 39 75 54.7 17 53.1 5 38,5 113 50.7
Headache Presence Absence 33 80.5 97 70.8 21 65.6 13 100 164 73.5 0.062

Presence 8 19.5 40 29.2 11 34.4 0 0 59 26.5
Frontal Type Headache Presence Absence 37 90.2 123 89.8 26 81.3 13 100 199 89.2 0.277

Presence 4 9.8 14 10.2 6 18.8 0 0 24 10.8
Nasal Congestion Presence Absence 33 80.5 115 83.9 28 87.5 10 76,9 186 83.4 0.788

Presence 8 19.5 22 16.1 4 12.5 3 23,1 37 16.6
Rhiorrhea Presence Absence 35 85.4 123 89.8 28 87.5 11 84,6 197 88.3 0.832

Presence 6 14.6 14 10.2 4 12.5 2 15,4 26 11.7
Sore Throat Presence Absence 30 73.2 101 73.7 25 78.1 9 69,2 165 74 0.937

Presence 11 26.8 36 26.3 7 21.9 4 30,8 58 26
Dry Throat Presence Absence 38 92.7 113 82.5 27 84.4 9 69,2 187 83.9 0.208

Presence 3 7.3 24 17.5 5 15.6 4 30,8 36 16.1
Smell Loss Presence Absence 23a 56.1 90a.b 65.7 28b 87.5 11a,b 84,6 152 68.2 0.015

Presence 18a 43.9 47a.b 34.3 4b 12.5 2a,b 15,4 71 31.8
Taste Loss Presence Absence 23 56.1 90 65.7 23 71.9 10 76,9 146 65.5 0.404

Presence 18 43.9 47 34.3 9 28.1 3 23,1 77 34.5
Earache Presence Absence 38 92.7 136 99.3 30 93.8 13 100 217 97.3 0.072

Presence 3 7.3 1 0.7 2 6.3 0 0 6 2.7
Dizziness Presence Absence 41a.b 100 136b 99.3 28a 87.5 13a,b 100 218 97.8 0.004

Presence 0a.b 0 1b 0.7 4a 12.5 0a,b 0 5 2.2
Hearing Loss Presence Absence 41a.b 100 137b 100 30a 93.8 13a,b 100 221 99.1 0.023

Presence 0a.b 0 0b 0 2a 6.3 0a,b 0 2 0.9

*: Pearson’s Chi-Squared Test. In each row, different superscript letters indicate statistical significance
(Bonferroni-corrected Pearson chi-square test; p<0.05)

Table 3: The performance metrics of the individual and ensemble models for each COVID-19 severity
category

Algorithm Sample Category Accuracy Precision Sensitivity Specificity
F1-
Score MCC

G-
mean

NN Training Mild 0.9976 0.9905 1 0.9968 0.9952 0.9936 0.9984
Moderate 0.9976 1 0.9899 1 0.9949 0.9934 0.9949
Severe 1 1 1 1 1 1 1
Critical 1 1 1 1 1 1 1

Testing Mild 0.9389 0.8205 0.9697 0.9286 0.8889 0.8528 0.9489
Moderate 0.9179 0.9655 0.7368 0.9896 0.8358 0.7951 0.8539
Severe 0.984 0.9429 1 0.9783 0.9706 0.9604 0.9891
Critical 0.9919 0.9677 1 0.9894 0.9836 0.9785 0.9947

SVM Training Mild 0.9879 0.9541 1 0.9838 0.9765 0.9688 0.9918
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Algorithm Sample Category Accuracy Precision Sensitivity Specificity
F1-
Score MCC

G-
mean

Moderate 0.9951 1 0.9798 1 0.9898 0.9867 0.9898
Severe 0.9879 1 0.9519 1 0.9754 0.9678 0.9757
Critical 0.9951 0.9817 1 0.9934 0.9907 0.9875 0.9967

Testing Mild 0.9219 0.7805 0.9697 0.9053 0.8649 0.8203 0.9369
Moderate 0.9077 0.9643 0.7105 0.9891 0.8182 0.7741 0.8383
Severe 0.9672 1 0.8788 1 0.9355 0.9171 0.9374
Critical 0.9516 0.8333 1 0.9362 0.9091 0.8833 0.9676

GUEST Training Mild 0.8958 0.8764 0.75 0.9562 0.8083 0.7415 0.8468
Moderate 0.848 0.6721 0.8283 0.8551 0.7421 0.643 0.8416
Severe 0.8665 0.6923 0.9519 0.8327 0.8016 0.725 0.8903
Critical 0.8665 0.9833 0.5514 0.9962 0.7066 0.6729 0.7411

Testing Mild 0.8718 0.75 0.8182 0.8929 0.7826 0.6933 0.8547
Moderate 0.8293 0.7297 0.7105 0.8824 0.72 0.5973 0.7918
Severe 0.8644 0.6977 0.9091 0.8471 0.7895 0.7052 0.8775
Critical 0.8947 1 0.6 1 0.75 0.7246 0.7746

Ensemble
VS

Training Mild 0.9976 0.9905 1 0.9968 0.9952 0.9936 0.9984

Moderate 0.9976 1 0.9899 1 0.9949 0.9934 0.9949
Severe 1 1 1 1 1 1 1
Critical 1 1 1 1 1 1 1

Testing Mild 0.9398 0.8205 0.9697 0.93 0.8889 0.8536 0.9496
Moderate 0.9328 0.9677 0.7895 0.9896 0.8696 0.8327 0.8839
Severe 1 1 1 1 1 1 1
Critical 0.9921 0.9677 1 0.9896 0.9836 0.9786 0.9948

Ensemble
CWVS

Training Mild 0.9976 0.9905 1 0.9968 0.9952 0.9936 0.9984

Moderate 0.9976 1 0.9899 1 0.9949 0.9934 0.9949
Severe 1 1 1 1 1 1 1
Critical 1 1 1 1 1 1 1

Testing Mild 0.9389 0.8205 0.9697 0.9286 0.8889 0.8528 0.9489
Moderate 0.9179 0.9655 0.7368 0.9896 0.8358 0.7951 0.8539
Severe 0.984 0.9429 1 0.9783 0.9706 0.9604 0.9891
Critical 0.9919 0.9677 1 0.9894 0.9836 0.9785 0.9947

Ensemble
HCWS

Training Mild 0.9951 0.9811 1 0.9935 0.9905 0.9873 0.9967

Moderate 0.9951 1 0.9798 1 0.9898 0.9867 0.9898
Severe 0.9951 1 0.9808 1 0.9903 0.9871 0.9903
Critical 0.9951 0.9817 1 0.9934 0.9907 0.9875 0.9967

Testing Mild 0.9398 0.8205 0.9697 0.93 0.8889 0.8536 0.9496
Moderate 0.9328 0.9677 0.7895 0.9896 0.8696 0.8327 0.8839
Severe 1 1 1 1 1 1 1
Critical 0.9921 0.9677 1 0.9896 0.9836 0.9786 0.9948

NN: Neural Network, SVM: Support Vector Machine,VS: Voting strategy, QUEST : Quick, unbiased, effi-
cient statistical treeCWVS: Confidence weighted voting strategy,HCWS: Highest confidence wins strategy,
MCC: The Matthews correlation coefficient

Table 4: Predictor importance values for each separate model
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Predictor Importance Values Importance Values Importance Values

NN SVM QUEST
Age 0.24 0.22 0.20
Favipravir 0.24 0.15 0.27
DysneaPresence 0.22 0.13 0.15
CoughPresence 0.09 0.08 0.05
SmellLossPresence 0.04 0.06 0.06
LopinavirRitonavir 0.04 - 0.08
FatiguePresence 0.03 - 0.05
FeverPresence 0.03 - -
FrontalTypeHeadachePresence 0.02 0.04 0.03
Gender 0.01 0.07 -
MyalgiaArthralgialPresence - 0.10 0.07
Oseltamivir - 0.07 -
NasalCongestionPresence - 0.06 0.03

NN: Neural Network, SVM: Support Vector Machine.
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