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Abstract

We study a new Jerk equation involving three fractional derivatives and anti periodic conditions. By Banach contraction

principle, we present an existence and uniqueness result for the considered problem. Then, by applications of Krasnoselskii

fixed point theorem, another result for the existence of at least one solution is established. Also, An illustrative example is

discussed. At the end, an approximation for Caputo derivaitive is proposed and some chaotic behaviours are discussed by means
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1 Introduction

Fractional differential equations theory has been a powerful tool for modeling several phe-
nomena in applied sciences and engineering, such as, visco-elasticity, chemistry, fluid flow,
electrical networks, electrical circuits, optics, chaotic phenomena in dynamical systems, so
on. For more details, one can consult the papers [2, 3, 5, 6, 4, 8, 9, 16, 21].
In this paper, we are concerned with some applications of dynamical systems of chaotic be-
haviours. To do this, we begin by recalling some papers that have motivated the present
work. We begin by the references [18], where J.C. Sportt discovered some new chaotic sys-
tems through an extensive computer search on this phenomenon, with five terms and two
quadratic nonlinearities or six terms and a single quadratic nonlinearity.
Then, H.P.W. Gottlieb [11] studied the following problem of chaotic type:
x′′′ = −x′s+ x′′(x+ x′′)/x′,
which he called a Jerk equation.
Then, J.C. Sportt [19] discovered the following particular case of Jerk equation with chaotic
behaviours:
x′′′ + ax′′ ± x′2 + x = 0,
which has only three terms in its Jerk representation or five terms in its dynamical system
representation with a single quadratic nonlinearity and a single parameter a.
We cite also the work of Z. Fu and J. Heidel [10], where the authors proved that there can be
no simpler system with a quadratic nonlinearity.
Then, B. Munmuangsaen et al. [14] studied several simple chaotic systems of the form:
x′′′ + x′′ + x = h(x′).
Other papers dealing with Jerk equations and systems for chaotic behaviours can be found
in [1, 7, 12, 13, 15, 17, 20].
In this work, we try to find a suitable fractional presentation for a simple Jerk circuit that
allows us to study some chaotic behaviours.
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So, we consider the following problem:
Dα[Dβ(Dγ +λ)]y(t) = f (t,y(t),Dγy(t)), t ∈ J,

y(0) + y(T ) = 0, (Dγ )y(0) + (Dγ )y(T ) = 0,

DγDγy(0) +DγDγy(T ) = 0.

(1)

In (1), the derivatives Dα,Dβ ,Dγ are taken in the sense of Caputo, with 0 ≤ γ ≤ β ≤ α ≤
1, J := [0,T ] and f : J ×R×R→R is a given function.
It is to important to note that in the present work:
1-We take the derivatives of Caputo in both sides of the problem.
2-We consider three parameters of derivation α,β and γ which allow us to be concerned
with a sequential Jerk problem without commutativity and semi group properties.
3-The above sequential processes with the anti-periodic conditions on the problem allow us
to consider a new type of Jerk problem of three fractional order.
4-Also, it is important to note that Eq. (1) is general enough to describe many problems that
arise in mathematical physics, and depending on the values of the constants and functions
involved in (1), there are several particular types of equations with important practical ap-
plications. For example, Eq. (1) includes the standard Jerk equation of Gottlieb [11] as a
particular case. Also, it includes the above two models of Sportt [19] and Munmuangsaen
et al. [14].
To the best of our knowledge, this is the first time in the literature where such problem is
considered.
The organization of the paper is as follows: In the second section, we recall some funda-
mental results about fractional calculus. In the third section, the theoretical main results
are obtained by using Banach contraction mapping principle and Krasnoselskii fixed point
theorem. An illustrative example is discussed in the fourth section. Moreover, some applied
results are discussed in section five; an approximation for Caputo derivative is proposed
and some numerical simulations and some chaotic behaviours for problem (1) are discussed
in this section. At the last section, a conclusion follows.

2 Preliminaries on Fractional Calculus

We recall some definitions and lemmas that will be used later. For more details, we refer to
[8].

Definition 1 Let α > 0 and f : [0,T ] 7−→ R be a continuous function. The Riemann-Liouville
integral of order α is defined by:

Jαf (t) =
1

Γ (α)

∫ t

0
(t − τ)α−1f (τ)dτ, α > 0 , 0 < t < T .

where Γ (α) :=
∫∞

0
e−uuα−1du.

Definition 2 For a function h ∈ Cn([0,T ],R) and n−1 < α ≤ n, the Caputo fractional derivative
is defined by:

Dαh(t) = Jn−α
dn

dtn
(h(t))

=
1

Γ (n−α)

∫ t

0
(t − s)n−α−1h(n)(s)ds.

2



In order to study the problem (1), we need the following lemmas:

Lemma 3 Let n ∈N∗, and n− 1 < α < n. The general solution of Dαy(t) = 0 is given by

y(t) = c0 + c1t + c2t
2 + ...+ cn−1t

n−1,

where ci ∈R, i = 0,1,2, . . . ,n− 1.

Lemma 4 Let n ∈N∗, n− 1 < α < n. Then

IαDαy(t) = y(t) + c0 + c1t + c2t
2 + ...+ cn−1t

n−1,

for some ci ∈R, i = 0,1,2, . . . ,n− 1.

Lemma 5 (Krasnoselskii Theorem) Let Ω be a closed convex and nonempty subset of Banach
space H. Let H1 and H2 be two operators such that:

1. H1y1 +H2y2 ∈Ω, ∀y1, y2 ∈Ω.

2. H1 is compact and continuous.

3. H2 is a contraction mapping.

Then there exists y3 ∈Ω such that H1y3 +H2y3 = y3.

We need also to prove the following integral representation for (1):

Lemma 6 Let G ∈ C(J) . Then, the problem
Dα[Dβ(Dγ +λ)]y(t) = G(t), t ∈ J,

y(0) + y(T ) = 0, (Dγ )y(0) + (Dγ )y(T ) = 0,

DγDγy(0) +DγDγy(T ) = 0,

is equivalent to the following integral representation:

y(t) =
Γ (β −γ + 1)
Γ (β + 1)

Jα+β−γG(T )
(
T γ tγ

2Γ (γ + 1)
− T 2γ

4Γ (γ + 1)

)

+
Γ (β −γ + 1)
Γ (β +γ + 1)

Jα+β−γG(T )
(
tβ+γ

T β−γ
− T

2γ

2

)

+ Jα+βG(T )
(

T γ

4Γ (γ + 1)
− tγ

2Γ (γ + 1)

)
+ Jα+β+γG(t)− 1

2 J
α+β+γG(T )

− λJγy(t) +
λ
2
Jγy(T ).

3



Proof. Thanks to lemma 4, we can written:

[Dβ(Dγ +λ)]y(t) = JαG(t)− c0.

With the the same idea, we can write

(Dγ +λ)y(t) = Jα+βG(t)− c0J
β(T )− c1.

Hence, it yields that

y(t) = Jα+β+γG(t)− c0
tβ+γ

Γ (β +γ + 1)
− c1

tγ

Γ (γ + 1)
−λJγy(t)− c2.

Thanks to the anti-periodic conditions, we observe that
−2c2 + Jα+β+γG(T )− c0J

β+γ (T )− c1J
γ (T )−λJγy(T ) = 0,

−2c1 + Jα+βG(T )− c0J
β(T ) = 0,

Jα+β−γG(T )− c0J
β−γ (T ) = 0.

Solving the above system, we get:

c0 = Γ (β −γ + 1)Jα+β−γG(T ),

2c1 = Jα+βG(T )− Γ (β −γ + 1)Jα+β−γG(t)Jβ(T ),

2c2 = Jα+β+γG(T )− Γ (β −γ + 1)Jα+β−γG(T )Jβ+γ (T )

− 1
2

(
Jα+βG(T )− Γ (β −γ + 1)Jα+β−γG(T )Jβ(1)

)
Jγ (T )−λJγy(T ).

The lemma is thus proved.

3 Main Results

Now, we introduce the Banach space:

X := {x ∈ C(J,R),Dγx ∈ C(J,R)},

endowed with the norm:
‖x‖X = ‖x‖∞ + ‖Dγx‖∞,

where,
‖x‖∞ = sup

t∈J
|x(t)| , ‖Dγx‖∞ = sup

t∈J
|Dγx(t)|.

Then, we consider the notations:

α1 = α + β +γ, α2 = α + β −γ, α3 = α + β, α4 = β +γ.

Over the above Banach space, we define the nonlinear operator H: X→ X by:

Hy(t) =H1y(t) +H2y(t),

4



where,

H1y(t) =
Γ (β −γ + 1)
Γ (β + 1)

T∫
0

(T − τ)α2−1

Γ (α2)
f (τ,y(τ),Dγy(τ))dτ

(
T γ tγ

2Γ (γ + 1)
− T 2γ

4Γ (γ + 1)

)

+
Γ (β −γ + 1)
Γ (β +γ + 1)

T∫
0

(T − τ)α2−1

Γ (α2)
f (τ,y(τ),Dγy(τ))dτ

(
tβ+γ

T β−γ
− T

2γ

2

)

+

T∫
0

(T − τ)α3−1

Γ (α3)
f (τ,y(τ),Dγy(τ))dτ

(
T γ

4Γ (γ + 1)
− tγ

2Γ (γ + 1)

)

+

t∫
0

(t − τ)α1−1

Γ (α1)
f (τ,y(τ),Dγy(τ))dτ − 1

2

T∫
0

(T − τ)α1−1

Γ (α1)
f (τ,y(τ),Dγy(τ))dτ,

and

H2y(t) = −λ
t∫

0

(t − τ)γ−1

Γ (γ)
y(t)dτ +

λ
2

T∫
0

(T − τ)γ−1

Γ (γ)
y(t)dτ.

We need also to consider the following hypotheses:

(H1): There exist K1,K2 > 0, such that for all t ∈ [0,T ] and ui ,vi ∈R, i = 1,2, we have

|f (t,u1,u2)− f (t,v1,v1)| ≤ K1|u1 − v1|+K2|u2 − v2|), K :=max(K1,K2).

(H2): Let f : [0,T ]×R×R→R be a jointly continuous function.

(H3): There exists a continuous function ψ defined over [0,T ]; such that for all t ∈ [0,T ] and
ui ∈R, i = 1,2, we have

|f (t,u1,u2)| ≤ ψ(t); sup
t∈[0,T ]

= ‖ψ‖.

For computation convenience, we define the function Fy : [0,T ]→R by:

Fy(t) := f (t,y(t),Dαy(t)),

and

I1 :=
3T α2+2γ

2Γ (α2 + 1)
Γ (β −γ + 1)
Γ (β +γ + 1)

+
3T α2+2γ

4Γ (γ + 1)Γ (α2 + 1)
Γ (β −γ + 1)
Γ (β + 1)

+
3T α3+γ

4Γ (α3 + 1)Γ (γ + 1)
+

3T α1

2Γ (α1 + 1)
.

L1 :=
T α2+γ

Γ (α2 + 1)
Γ (β −γ + 1)
Γ (β + 1)

+
T α2+γ

2Γ (α2 + 1)
Γ (β −γ + 1)
Γ (β + 1)

+
T α3

2Γ (α3 + 1)
+

T α1−γ

Γ (α1 −γ + 1)
.

I2 :=
3|λ|

2Γ (γ + 1)
, L2 := |λ|.

Also, we take:
∆ := K (I1 +L1) + (I2 +L2).

Now, we are ready to study the above problem by means of the fixed point theory.
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3.1 A Unique Solution Via Banach Contraction

Theorem 7 Assume that (H1) is valid and ∆ < 1. Then, the problem (1) has a unique solution on
[0,T ].

Proof. We show that the operator H is contractive. Let yi ∈ X,i = 1,2. Then, for each
t ∈ [0,T ], we have

∣∣∣∣H1y1(t)−H1y2(t)
∣∣∣∣ =

Γ (β −γ + 1)
Γ (β + 1)

T∫
0

(T − τ)α2−1

Γ (α2)
|Fy1

(τ)−Fy2
(τ)| dτ

∣∣∣∣∣∣ T γ tγ

2Γ (γ + 1)
+

T 2γ

4Γ (γ + 1)

∣∣∣∣∣∣
+

Γ (β −γ + 1)
Γ (β +γ + 1)

T∫
0

(T − τ)α2−1

Γ (α2)
|Fy1

(τ)−Fy2
(τ)| dτ

∣∣∣∣∣∣ tβ+γ

T β−γ
+
T 2γ

2

∣∣∣∣∣∣
+

T∫
0

(T − τ)α3−1

Γ (α3)
|Fy1

(τ)−Fy2
(τ)| dτ

∣∣∣∣∣ T γ

4Γ (γ + 1)
+

tγ

2Γ (γ + 1)

∣∣∣∣∣
+

t∫
0

(T − τ)α1−1

Γ (α1)
|Fy1

(τ)−Fy2
(τ)| dτ +

1
2

T∫
0

(T − τ)α1−1

Γ (α1)
|Fy1

(τ)−Fy2
(τ)| dτ.

Thanks to (H1), yields∣∣∣∣H1y1(t)−H1y2(t)
∣∣∣∣ ≤ K‖y1 − y2‖X T α2

Γ (α2 + 1)

∣∣∣∣∣∣ T γ tγ

2Γ (γ + 1)
+

T 2γ

4Γ (γ + 1)

∣∣∣∣∣∣ Γ (β −γ + 1)
Γ (β + 1)

+
K‖y1 − y2‖X T α2

Γ (α2 + 1)

∣∣∣∣∣∣ tβ+γ

T β−γ
+
T 2γ

2

∣∣∣∣∣∣ Γ (β −γ + 1)
Γ (β +γ + 1)

+
K‖y1 − y2‖X T α3

Γ (α3 + 1)

∣∣∣∣∣ T γ

4Γ (γ + 1)
+

T γ

2Γ (γ + 1)

∣∣∣∣∣
+

K‖y1 − y2‖X T α1

Γ (α1 + 1)
+
K‖y1 − y2‖X

2
T α1

Γ (α1 + 1)
.

Also, we have

∣∣∣∣H2y1(t)−H2y2(t)
∣∣∣∣ ≤ |λ| t∫

0

(t − τ)γ−1

Γ (γ)
|y1(τ)− y2(τ)| dτ

+
|λ|
2

T∫
0

(T − τ)γ−1

Γ (γ)
|y1(τ)− y2(τ)| dτ.

‖H2y1 −H2y2‖∞ ≤ I2‖y1 − y2‖∞ ≤ I2‖y1 − y2‖X . (2)

Therefore,
‖Hy1 −Hy2‖∞ ≤ (I1K + I2) ‖y1 − y2‖X . (3)

6



In the same manner, we can write∣∣∣∣DH1y1(t)−DH1y2(t)
∣∣∣∣ ≤ Γ (β −γ + 1)

Γ (β + 1)

T∫
0

(T − τ)α2−1

Γ (α2)
|Fy1

(τ)−Fy2
(τ)| dτ

∣∣∣∣∣∣γT γ tγ−1

2Γ (γ + 1)

∣∣∣∣∣∣
+

Γ (β −γ + 1)
Γ (β +γ + 1)

T∫
0

(T − τ)α2−1

Γ (α2)
|Fy1

(τ)−Fy2
(τ)| dτ

∣∣∣∣∣∣(β +γ) tβ+γ−1

T β−γ

∣∣∣∣∣∣
+

T∫
0

(T − τ)α3−1

Γ (α3)
|Fy1

(τ)−Fy2
(τ)| dτ

∣∣∣∣∣∣ γtγ−1

2Γ (γ + 1)

∣∣∣∣∣∣
+

t∫
0

(T − τ)α1−2

Γ (α1 − 1)
|Fy1

(τ)−Fy2
(τ)| dτ .

Hence, we have

|DγH1y1(t)−DγH1y2(t)| ≤
Γ (β −γ + 1)
Γ (β +γ + 1)

T∫
0

(T − τ)α2−1

Γ (α2)
|Fy1

(τ)−Fy2
(τ)| dτ

∣∣∣∣∣∣Γ (β +γ + 1) tβ

T β−γ Γ (β + 1)

∣∣∣∣∣∣
+

Γ (β −γ + 1)
Γ (β + 1)

T∫
0

(T − τ)α2−1

Γ (α2)
|Fy1

(τ)−Fy2
(τ)| dτ

∣∣∣∣∣T γ2
∣∣∣∣∣

+
1
2

T∫
0

(T − τ)α3−1

Γ (α3)
|Fy1

(τ)−Fy2
(τ)| dτ

+

t∫
0

(T − τ)α1−γ−1

Γ (α1 −γ)
|Fy1

(τ)−Fy2
(τ)| dτ .

Consequently, ∣∣∣∣DγH1y1(t)−DγH1y2(t)
∣∣∣∣ ≤ L1‖y1 − y2‖X ,

and
‖DγH2y1 −DγH2y2‖∞ ≤ L2‖y1 − y2‖X . (4)

It yields then that

‖DγHy1 −DγHy2‖∞ ≤ (L1K +L2)‖y1 − y2‖X . (5)

Thanks to (3)-(5), we get

‖Hy1 −Hy2‖X ≤
(
(I1 +L1)K + (I2 +L2)

)
‖y1 − y2‖X .

By Theorem 7, we deduce that H is contractive. As a consequence of Banach contraction
principle, we conclude that H has a unique fixed point which is the solution of (1).

3.2 Existence via Krasnoselskii Theorem

Theorem 8 Assume that (H2) and (H3) are valid and ∆ < 1.
Then, the problem (1) has at least one solution y(t), t ∈ [0,T ] that satisfies:
‖y‖X ≤ ε,

where ε is an infinitesimal that satisfies ε ≥
‖ψ‖ (I1 +L1)
1− (I2 +L2)

.
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Proof. Let us consider the following closed convex subset: B(ε) := {y ∈ X,‖y‖X ≤ ε} ⊂ X, with

ε ≥
‖ψ‖ (I1 +L1)
1− (I2 +L2)

.

Our first claim is to prove that for any y1, y2 ∈ B(ε), we have HB(ε) ⊂ B(ε).
Let y1, y2 ∈ B(ε). Then, by (H3), it follows that

‖H1y1 +H2y2‖∞ ≤ I1‖ψ‖+ I2ε.

On the other hand, we have

‖DγH1y1 +DγH2y2‖∞ ≤ L1‖ψ‖+L2ε.

Therefore,
‖H1y1 +H2y2‖X ≤ ε.

Furthermore, H2 satisfies the Banach contraction principle (as it has been shown in the
inequalities (2)-(4)). In fact, we have

‖H2y1 −H2y2‖X ≤ (I2 +L2)‖y1 − y2‖X .

The last step in this proof is to show that H1 is compact and continuous.
The continuity of the operator H1 is due to the continuity of f ( see (H2))
Moreover, H1 is bounded on B(ε). Indeed, for any y ∈ B(ε), we have:

‖H1y‖X ≤ (I1 +L1) ‖ψ‖.

Next, we shall prove that H1 is equicontinuous.
Let t1, t2 ∈ [0,T ] with t1 < t2. Then, we have:

∣∣∣∣H1y(t1)−H1y(t2)
∣∣∣∣ ≤ Γ (β −γ + 1)

Γ (β + 1)

T∫
0

(T − τ)α2−1

Γ (α2)
|Fy(τ)| dτ

∣∣∣∣∣∣T γ (tγ1 − t
γ
2 )

2Γ (γ + 1)

∣∣∣∣∣∣
+

Γ (β −γ + 1)
Γ (β +γ + 1)

T∫
0

(T − τ)α2−1

Γ (α2)
|Fy(τ)| dτ

∣∣∣∣∣∣∣t
β+γ
1 − tβ+γ

2

T β−γ

∣∣∣∣∣∣∣
+

T∫
0

(T − τ)α3−1

Γ (α3)
|Fy(τ)| dτ

∣∣∣∣∣∣ (tγ1 − t
γ
2 )

2Γ (γ + 1)

∣∣∣∣∣∣
+

t1∫
0

∣∣∣(t1 − τ)α1−1 − (t2 − τ)α1−1
∣∣∣

Γ (α1)
|Fy(τ)| dτ +

t2∫
t1

(t2 − τ)α1−1

Γ (α1)
|Fy(τ)| dτ.

Thanks to (H3), we can write

∣∣∣∣H1y(t1)−H1y(t2)
∣∣∣∣ ≤ t1∫

0

∣∣∣(t1 − τ)α1−1 − (t2 − τ)α1−1
∣∣∣

Γ (α1)
|Fy(τ)| dτ +

t2∫
t1

(t2 − τ)α1−1

Γ (α1)
|Fy(τ)| dτ

+
‖ψ‖ (T )α2+γ

Γ (α2 + 1)
Γ (β −γ + 1)
Γ (β + 1)

∣∣∣∣∣∣ (tγ1 − t
γ
2 )

2Γ (γ + 1)

∣∣∣∣∣∣+
‖ψ‖ (T )α3

Γ (α3 + 1)

∣∣∣∣∣∣ (tγ1 − t
γ
2 )

2Γ (γ + 1)

∣∣∣∣∣∣
+
‖ψ‖ (T )α2

Γ (α2 + 1)
Γ (β −γ + 1)
Γ (β +γ + 1)

∣∣∣∣∣∣∣t
β+γ
1 − tβ+γ

2

T β−γ

∣∣∣∣∣∣∣ .
(6)
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With the same arguments as before, we have

∣∣∣∣DγH1y(t1)−DγH1y(t2)
∣∣∣∣ ≤ t1∫

0

∣∣∣(t1 − τ)α1−1 − (t2 − τ)α1−γ−1
∣∣∣

Γ (α1)
|Fy(τ)| dτ

+

t2∫
t1

(t2 − τ)α1−γ−1

Γ (α1)
|Fy(τ)| dτ +

‖ψ‖ (T )α2

Γ (α2 + 1)
Γ (β −γ + 1)
Γ (β +γ + 1)

∣∣∣∣∣∣∣ t
β
1 − t

β
2

T β−γ

∣∣∣∣∣∣∣ .
(7)

The right hand sides of (6) and (7) tend to zero as t1→ t2. Then, H1 is equicontinuous.
Hence by the Arzela-Ascoli theorem, the operator H1 is compact on B(ε).
Thus, thanks to Krasnoselskii theorem, the problem (1) has at least one solution y;‖y‖X ≤ ε,
with ε satisfies the condition in Theorem 8.

4 An Illustrative Example

We consider the following problem:{
Dα[Dβ(Dγ +λ)]y(t) = f (t,y(t),Dαy(t)), t ∈ [0,1], 0 < α,β,γ ≤ 1.
y(0) + y(1) = 0, (Dγ )y(0) + (Dγ )y(1) = 0, DγDγy(0) +DγDγy(1) = 0.

(8)

Here, we take

f (t,y(t),Dαy(t)) = ±sinh(Dαy(t))− 0.95 Dαy(t)− 0.08 y(t),

T = 1,α = 0.9,β = 0.75,γ = 0.6,λ = 0.1.

For all (x1, y1), (x2, y2) ∈R2, and t ∈ [0.1], we have:

|f (t,x1,x2)− f (t,y1, y2)| ≤ 0.08
(
|x1 − y1|+ |x2 − y2|

)
.

We have also
I1 = 4.263,I2 = 0.167,L1 = 4.486,L2 = 0.1,∆ = 0.967.

Thanks to Theorem 7, we can state that the problem (8) has a unique solution on [0,1].

5 Existence of Fractional Chaotic Behaviours

In the following two subsections, we present a numerical approach for the Caputo deriva-
tive. Then, in order to study dynamic behavior of the above fractional Jerk problem, we
present a reduced fractional differential system that is equivalent to our studied problem.
For this reduction, we will show sensitive attractors to initial anti-periodic conditions in
phase space, which is one of the properties of certain chaotic behaviours.
The numerical simulation of the fractional system is done by the fourth-order Runge-Kutta
applied to Caputo derivative.
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5.1 Numerical Approach for Caputo Derivative

Since the Caputo derivative has wide applications, so we put our attention to the numer-
ical approach of this derivative. To do this, we begin this section by recalling the follow-
ing theorem [9] in which the authors presented an important numerical approach for the
Riemann-Liouville fractional integral.

Theorem 9 Assume that y ∈ C1([0,T ],R). The numerical approach for fractional integral is given
by:

Jαy(ti) '
hα

Γ (α + 2)

i∑
j=0

Kjyj , i = 0, . . . ,n+ 1, y0 initial condition,

where

Kj := σj(α) =
{

(n+ 2− j)(α+1) + (n− j)(α+1) − 2(n− j + 1)(α+1), j = 1 . . . i − 1.

(n)(α+1) − (n−α)(n+ 1)α, j = 0, 1, j = i.

Based on Theorem 9, we propose the following approximation for Caputo derivative:

Theorem 10 Assume that y ∈ C1([0,T ],R) and 0 < α ≤ 1. Then, we have:

Dαy(ti) '
h1−α

Γ (1−α + 2)

i∑
j=0

Ljy
(j)(tj), i = 0, . . . ,n.

Where,
Lj := σj(1−α).

and
y(j) =

{
y1 − y0

h
, j = 0,

yj+1 − yj−1

2h
, j = 1 . . . i − 1,

yi − yi−1

h
, j = i.

Proof. Let y ∈ C1([0,T ],R),0 < α ≤ 1,0 ≤ t ≤ T and setting h :=
T
n

;n ∈N∗.
Then, thanks to Theorem 9 and using the above definition of Caputo derivative, we obtain:

Dαy(tn) = J1−α Dy(tn) ≈ h1−α

Γ (1−α + 2)

n∑
j=0

LjDy(tj).

By finite difference scheme, instead of using ”central difference scheme” for j = 0, . . . ,n, we
use ”forward difference scheme” for j = 0, ”backward difference scheme” for j = n, and ” central
difference scheme” for j = 1, . . .n− 1.
By substitution in the above formula, we obtain:

Dαy(tn) ≈ h1−α

Γ (1−α + 2)

 n−1∑
j=1

Lj
(yj+1 − yj−1

2h

)
+L0

(y1 − y0

h

)
+Ln

(yn − yn−1

h

) .
Theorem 10 is thus proved and a Caputo derivative approximation is obtained.
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Figure 1: Different phase portrait of incommensurate order of system(9) for (10)

5.2 Simulation for Chaotic Behaviours

We note that the problem (1) can reduced to the following system:

Dγy(t) = z(t)−λ y(t)
Dβz(t) = w(t)
Dαw(t) = f (t,y(t),Dαy(t)),

that is
Dy(t) = D1−γ (z(t)−λy(t))
Dz(t) = D1−β w(t)
Dw(t) = D1−α f (t,y(t),Dαy(t)).

(9)

( a:) As a first simulation, we consider the case where f is given by:

f (t,y(t),Dαy(t)) = ±((Dαy(t))2 ± 2)−2 − y(t), (10)

with initial conditions (0.0945,0,−0.0945), λ = 0.7 and h = 0.005. The integration of system
(9) is carried out by the fourth-order Runge-Kutta method and the Caputo approach.

• For incommensurate order (γ,β,α) = (0.8,0.85,0.9), we get

• For commensurate order (γ,β,α) = (0.9,0.9,0.9), so with the same data as above, we
have

• For γ = β = α = 1, the incorporation of system (9) is carried out by the 4th Runge-Kutta
method, we obtain

( b:) As a second simulation, we consider the case where f is given by:

f (t,y(t),Dαy(t)) = ±0.1exp(∓Dαy(t))− y(t), (11)

with initial conditions (0.1021,0,−0.1021), λ = 0.7 and h = 0.005, the integration of system
(9) is carried out by the fourth-order Runge-Kutta method and Caputo approach.

• For incommensurate order (γ,β,α) = (0.85,0.9,0.9), we get graphical illustrations in
Figure 1-6.
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Figure 2: Different phase portrait of commensurate order of system(9) for (10)

Figure 3: Different phase portrait of γ = β = α = 1, of system (9) for (10)

Figure 4: Different phase portrait of incommensurate order of system(9) for (11)
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Figure 5: Different phase portrait of commensurate order of system (9) for (11)

Figure 6: Different phase portrait of γ = β = α = 1, of system (9) for (11)

• For commensurate order (γ,β,α) = (0.9,0.9,0.9), with the same data as above, we ob-
tain

• For γ = β = α = 1, the incorporation of system (9) is carried out only by the fourth-
order Runge-Kutta method.

Remark 11 .

• Comparison of numerical simulations showed great correlation for specific parameters. Un-
fortunately, it is not the same for all cases.

• Numerical simulations have displayed a strange attractors that can coexist in these frac-
tional order systems.

• The incorporation have indicated a high qualitative agreement between chaotic systems for
α,β,γ −→ 1.

• The commensurate-order and incommensurate-order reflect the influence of fractional order
on chaotic systems.
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6 Conclusion

We have introduced a new problem for Jerk circuits of chaotic phenomena by means of frac-
tional derivatives. An existence and uniqueness result has been established by means of
Banach contraction principle. Then, using Krasnoselskii fixed point theorem, another main
result for the existence of one solution has also been discussed. An illustrative example has
been presented to show the applicability of our main result. At the end, an approxima-
tion for Caputo derivative has been proved and some numerical solutions having chaotic
behaviours have been illustrated and discussed.
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