Effects of climate variability and soil environment on plant diversity drive ecosystem stability in intact natural forests Anchi Wu¹, Guoyi Zhou², Yann Hautier³, Honglin He⁴, Xuli Tang⁵, Juxiu Liu⁵, Qianmei Zhang⁵, Silong Wang⁶, Anzhi Wang⁷, Luxiang Lin⁸, Yi-Ping Zhang⁹, Zong-Qiang Xie¹⁰, and Ruiying Chang¹¹ January 30, 2024 ## Abstract A substantial body of evidence sustains that biodiversity enhances ecological stability in changing environments, but the underlying mechanisms in intact natural forest ecosystems remain unresolved. Using data from seven permanent plots, we test the influence and driving factors of plant diversity on stability and variability of diameter at breast height (DBH). We show that species richness under different soils and climate variability indirectly increases stability by species asynchrony rather than a direct influence. Beta diversity (plant species composition dissimilarities over time) has a strong positive effect on stability and soils indirectly increase stability by beta diversity. Soils and climate variability cause a larger effect on variation in standard deviation of DBH by species richness, beta diversity and species asynchrony relative to mean DBH. The study provides a new insight into how plant species diversity affects the process of ecosystem stability under various soil conditions and climatic variability. ## Hosted file Manusript.doc available at https://authorea.com/users/611520/articles/709050-effects-of-climate-variability-and-soil-environment-on-plant-diversity-drive-ecosystem-stability-in-intact-natural-forests ¹South China Botanical Garden ²Nanjing University of Information Science and Technology ³Universiteit Utrecht ⁴Key Laboratory of Ecosystem Network Observation and Modeling, Institution of Geographic Sciences and Natural Resources Research, University of Chinese Academy of Science ⁵South China Botanical Garden, Chinese Academy of Sciences ⁶Institution of Applied Soil Ecology, Chinese Academy of Sciences ⁷Institute of Applied Ecology Chinese Academy of Sciences ⁸Chinese Academy of Sciences ⁹Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences ¹⁰State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences ¹¹Institute of Mountain Hazards and Environment Chinese Academy of Sciences