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Abstract

COVID-19–a viral infectious disease–has quickly emerged as a global pandemic infecting millions of people with a significant

number of deaths across the globe. The symptoms of this disease vary widely. Depending on the symptoms an infected person

is broadly classified into two categories namely, asymptomatic and symptomatic. Asymptomatic individuals display mild or

no symptoms but continue to transmit the infection to otherwise healthy individuals. This particular aspect of asymptomatic

infection poses a major obstacle in managing and controlling the transmission of the infectious disease. In this paper, we

attempt to mathematically model the spread of COVID-19 under various intervention strategies. The impact of various factors,

such as the presence of asymptotic individuals, lockdown strategies, social distancing practices, quarantine, and hospitalization,

on the disease transmission is extensively studied. We consider SEIR type epidemiological models, incorporated with social

contact matrix representing contact structures among different age groups of the population. Numerical simulation of the model

shows the dependence of the second wave on the lockdown and its exit policies during the first wave.
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Summary

COVID-19–a viral infectious disease–has quickly emerged as a global pandemic
infecting millions of people with a significant number of deaths across the globe. The
symptoms of this disease vary widely. Depending on the symptoms an infected per-
son is broadly classified into two categories namely, asymptomatic and symptomatic.
Asymptomatic individuals display mild or no symptoms but continue to transmit the
infection to otherwise healthy individuals. This particular aspect of asymptomatic
infection poses a major obstacle in managing and controlling the transmission of
the infectious disease. In this paper, we attempt to mathematically model the spread
of COVID-19 under various intervention strategies. The impact of various factors,
such as the presence of asymptotic individuals, lockdown strategies, social distancing
practices, quarantine, and hospitalization, on the disease transmission is extensively
studied. We consider SEIR type epidemiological models, incorporated with social
contact matrix representing contact structures among different age groups of the pop-
ulation. Numerical simulation of themodel shows the dependence of the secondwave
on the lockdown and its exit policies during the first wave.

KEYWORDS:
COVID-19, SARS-CoV-2, Epidemiological models, SEIR model, Infectious disease control, Intervention
strategies, Reproduction number, Stability

1 INTRODUCTION

COVID-19 is an infectious disease caused by the novel human coronavirus named SARS-CoV-2. Towards the end of Decem-
ber 2019, the first few cases of the COVID-19 outbreak was reported as a mysterious pneumonia from Wuhan in the Hubei
Province of China. In a short span of time, this infectious disease has rapidly spread across the world and has catapulted into a
global pandemic.

The symptoms of SARS-CoV-2 virus infection vary widely with most people only experiencing mild to moderate respiratory
illness symptoms. A small proportion of people develop severe respiratory complications often requiring ICU and ventilator
support46, except few regions4,22 like Seattle and Lombardy (Italy), where the percentage is higher. Based on clinical data,
elderly people have been found to be at greater risk of experiencing acute respiratory distress symptoms with high mortality

†This is an example for title footnote.
0Abbreviations: ANA, anti-nuclear antibodies; APC, antigen-presenting cells; IRF, interferon regulatory factor



2 BARMAN M ET AL

rate as compared to people of younger age. Multiple studies23 using the COVID-19 test positive cases from different countries
suggest that a higher proportion of the infected individuals are asymptomatic carriers who experience mild or no symptoms but
continue to transmit the virus to otherwise healthy people. This has caused the detection and containment of the SARS-CoV-2
virus transmission a very challenging problem for civic authorities.

The COVID-19 pandemic is inflicting significantly high mortality, straining public healthcare systems and causing severe
socio-economic distress globally. In the absence of any potent vaccine or effective pharmaco-medical treatments available, all
efforts towards the pandemic management and mitigation have largely focused on non-pharmaceutical interventions like social
distancing, lockdowns, contact tracing, quarantine and isolation. Intensive testing, contact tracing, and isolation of cases has to
a large extent enabled disease transmission control in several places, such as Israel, Singapore and South Korea. Goal of these
intervention strategies is to slowdown the disease transmission, reduce mortality rate and ameliorate the burden and strain on
healthcare systems.

Since the seminal work31 of Kermack-McKendric in 1927 on SIR epidemic model51, several researchers have used adapted
or modified versions of the basic SIR epidemiological model for modelling evolution of epidemics. Various versions of the
basic models are essentially systems of first order ODEs with an incidence function and dependency on constant parameters
describing the nature of the infectious disease such as rate of transmission on contact, rate of recovery, mortality, incubation
period etc. In practice these parameters vary during the course of the epidemic and also across geographical regions and local
population. Another drawback of SIR type models involving intervention strategies is eventually almost the whole susceptible
population become infected in a short span of time due to the exponential rate of transmission. Intervention strategies applied
on SIR models only delay the eventual infection of almost entire population.

Generally, epidemics with latency periods2,3,6 are modeled by compartmental epidemiological models of the type Susceptible-
Exposed-Infected-Removed (SEIR). Mathematics of epidemic models like SIR and SEIR, and its variants can be seen in24,
along with different threshold numbers. Let N denote the size of a population, S(t) the number of susceptible individuals at
time t, E(t) the number of exposed individuals at time t, I(t) the number of infected and infectious individuals at time t, and
R(t) the number of recovered and death cases at time t. Exposed class individuals are not infectious but may have contracted
the infection. Then evolution of the epidemic is governed by the system of first order ODEs

Ṡ(t) = �N − �SI∕N − �S,
Ė(t) = �SI∕N − (� + �)E,
İ(t) = �E − (� + )I,
Ṙ(t) = I − �R.

Here � denote constant rate of new recruitment to the susceptible population as well as natural death rate in each compartment.
Parameter � measures potential force of infection on contact, whereas parameters � and  denote rate of transition from compart-
mentsE and I to I andR, respectively. One may note that Ṡ(t)+Ė(t)+ İ(t)+Ṙ(t) = 0. Therefore, S(t)+E(t)+I(t)+R(t) = N
is constant for all time t ≥ 0 and the solution space is {(S,E, I, R) ∈ ℝ4

+ ∶ S +E + I +R = N}. The model is extended here
along with the contact network to perform a data based analysis for the COVID-19 spread and its control in India.

Main Contributions : The focus of our work is to understand the different disease control, target interventions and accordingly
predict the disease spread possibilities from the available data. In this attempt our main contributions are listed below.

1. We have used COVID-19 data of India to numerically study two epidemic models SEAIRD and control based SEAIRD.
The second model fine tunes the first model towards the goal of capturing the real situation.

2. The disease free and endemic stability of the SEAIRD model has been established.

3. Presence of asymptomatic infections and their role in largely unbridled and quick disease transmission is computationally
established.

4. The control based SEAIRDmodel has two very interesting features. One being a reverse flow from quarantine class (Q) to
susceptible class (S) and another one modeling increased awareness for social distancing practices among the population.
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These features model the effectiveness of the general and individual level preventive measures quarantine and social
distancing.

5. The control based SEAIRD model parameters are traced back by matching the real COVID-19 data of India for the first
few months. Some model based predictions are presented to understand the possibility of second wave, its size and time
of arrival under different lockdown policies.

6. Three lockdown policies are considered. One of them (LD-I) attempt to model different lockdown phases (complete
lockdown, zone-wise lockdown) in India. Additionally, two staggered policies are designed for further bringing down the
infection levels and mitigate the adverse socio-economic impact.

Before presenting the technical details, in Section 2, we enlist some relevant definitions and theorems useful in describing math-
ematical models of epidemics. A standard model suitable for modeling COVID-19 pandemic named as SEAIRD is proposed
in Section 3, incorporating the age and contact structures to track the COVID-19 evolution in India. In this model, the removed
compartment (R) is further partitioned into two compartments, namely, recovered class (R) and death class (D). The infective
class of population is subdivided into two classes, namely, asymptomatic (A) and symptomatic (I). Presence of asymptomatic
infections and their role in largely unbridled and quick disease transmission is computationally established. There are some
theoretical support for the new SEAIRD model discussed in Subsection 3.1 for establishing the disease free and endemic
equilibrium points and their stability. We study the disease transmission under three different lockdown scenarios namely, no
lockdown, strict lockdown for prolonged time period, and staggered lockdown phases of varying degrees of implementation.

An improvised SEAIRD model where the scope of the pandemic model is broadened to incorporate quarantine (Q) and hospi-
talization (H) measures is considered in Section 4 to further control the disease transmission. The model parameters are traced
back by comparing with the real COVID-19 data in India. In Section 5, multiple lockdown policies and social distancing strate-
gies are experimented computationally, which suggest the possibility of second wave of infections and possible optimal control
strategy in next two years time frame. Finally, Section 6 presents the future scope and conclusions of this work.

2 EPIDEMIC MODEL : BASIC DEFINITIONS & CONCEPTS

The general pandemic model considers a heterogeneous population that can be grouped into n homogeneous compartments. Fur-
ther, the compartments may be sorted such that the first m compartments consists of all the infected cases. Let x = (x1,⋯ , xn)T

represent a general state of the model where, xi ≥ 0 denote the number of individuals in each compartment. Thus, all states of
the model are restricted to the closed positive cone x ∈ X = ℝ+. Further, let

Xs = {x ≥ 0 | xi = 0, i = 1, 2⋯ , m}

denote the set of disease free states. The system of differential equations modeling disease transmission in X is of the form

ẋ = f (x), f = (f1, f2,⋯ , fn) (1)

where components of f are of the form fi(x) = Fi(x) −Wi(x), i = 1, 2,⋯ , n. Here Fi(x) represents the rate of appearance of
new infections in compartment i by all other means and

Wi(x) = W −
i (x) −W

+
i (x),

where W −
i (x) is the rate of transfer of individuals out of the ith compartment and W +

i (x) is the rate of transfer of individuals
into compartment i by all other means. It is assumed that each function is at least twice continuously differentiable in each
variable. Furthermore, it is required that F ≥ 0 and W is an M-matrix, so that, W −1 ≥ 0. The next-generation matrix15 is
computed corresponding to them infected compartments and defined to beK = FW −1 ≥ 0. The next-generation matrix is used
in computing the reproduction number.

Definition 1. 12

In epidemiology, we take basic reproduction number/ratio, R0, as the average number of individuals infected by a single
infected individual during his or her entire infectious period, in a population which is entirely susceptible.
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The reproduction number can be computed via different methods.We have taken the next-generationmatrix approach to compute
the reproduction number as spectral radius of the next-generation matrix K , that is,

R0 = �(FW −1).

Definition 2. 1

A point x∗ is said to be an equilibrium point of f , if f (x∗) = 0. An equilibrium point x∗ is stable, if every initial point x0
which is close to x∗ has the property: the solution F (t, x0) remain close to x∗ for all t ≥ 0. An equilibrium point x∗ is called
asymptotically stable if it is both stable and attracting. The point x∗ is unstable if it is not stable. An equilibrium point x∗ is
called globally asymptotically stable if it is asymptotically stable and for all initial values converge to the equilibrium point.

Criteria for stability of a system of linear/linearized differential equation is given by

Theorem 1. (Theorem 7.2,1)
Let J (x∗) be the n × n Jacobian matrix, corresponding to the system of equations ẋ = f (x). If the real parts of all eigenvalues
of J (x∗) are negative, then the equilibrium point x∗ is globally asymptotically stable. If J (x∗) has n distinct eigenvalues and if
the real parts of all eigenvalues of J (x∗) are non-positive, then x∗ is stable.

2.1 Social contact matrix
We intend to mathematically model the spread of COVID-19 in India under the influence of various intervention strategies and
control measures. In order to account for the heterogeneous and local in nature contact patterns among various age groups, we
consider a India specific social contact matrix of 16 age groups based on the Demographic and Health Survey (DHS) data. Due
to significant presence of asymptomatic individuals, there is a very high potential of rapid disease transmission. In view of mild
or no symptoms, the asymptomatic population would follow normal social contact pattern. We incorporate the social contact
matrix in our models for more realistic modelling of the disease transmission and the impact of other control strategies.

Research using social-contact networks has shown its efficiency in measuring the transmission scale, and analysing the relative
merits and effectiveness of several proposed mitigation and intervention strategies17. Early epidemiological models were based
on population-wise random-mixing, but in practice, each individual has a finite set of contacts to whom they can pass infection;
whereas, the essential service providers are prone to higher degrees of contact out of which some of them may turn out to
be super-spreaders45,47. Knowledge of network structures allow models to estimate the epidemic dynamics at the population
scale rather than individual level. Several methods that allow mixing of network or network approximation are reviewed in30.
Detailed mathematical models characterizing early epidemic growth patterns incorporating inhomogeneous mixing of popula-
tion networks are reviewed in8. The heterogeneous social contact networks are more likely to result in epidemic spreading than
their homogeneous counterparts, thus having a major role in determining whether an infection would turn out to be an epidemic
or persist at endemic levels10,57,58. Therefore, epidemic models with interventions towards the goal of successfully preventing
an outbreak need to account for social structure and mixing patterns. Contact patterns vary across age and locations (e.g. home,
work, and school), therefore, integrating them with the transmission dynamics models of pathogens significantly improves the
models’ realism.

Let C(t) denotes the contact matrix ofM individual age-groups at a certain time t. The i j-th entry of the matrix C(t) represent
the number of contacts of an individual in age-group i with another individual of age-group j. By the reciprocity relation, the
number of contacts must satisfy

Ci jNi = Cj iNj , where 1 ≤ i, j ≤M.
The contact matrix C consists of four component contact matrices, namely, workplace (CW ), home (CH ), school (CS) and
others (CO). Thus, C = CW +CH +CS +CO. The contact structure data for India and its subdivisions are obtained from49,53,55.

2.2 COVID-19 data source
The growth in SARS-CoV-2 infection is recorded for the available Indian data set. The data may be influenced by different
unavoidable constraints like variation in testing strategy and facilities of different states, nonuniform policies of state govern-
ments and public awareness levels. But our model parameters are basically data driven, and intended to predict and compute the
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total number of infections and death cases. The data available at27 are most reliable in terms of recording daily COVID-19 cases
in India. This data has been used in forecasting future transmission scenario; determining the rate and extent of infection spread;
and determining the longevity and level of lockdown measures along with the social distancing norms. Further, the available
data with the mathematical model has been considered to understand the possibility of second wave of COVID-19 infection and
its size.

3 SEAIRD EPIDEMIC MODEL

Mathematical models have become important tools in analyzing the spread and control of infectious diseases. Furthermore,
mathematical models have been used in comparing, planning, implementing, evaluating, and optimizing various detection, pre-
vention, therapy, and control programs. In this section, we consider an SEIR type model for the COVID-19 disease transmission
with two additional compartments of population. One of the compartments consist of asymptomatic individuals while the other
one represent the number of death cases at any instant of time. The entire population size N(t) = N , is divided into six dis-
tinct epidemiological compartments of individuals, namely, susceptible, exposed, asymptomatic, symptomatic, recovered from
disease and died due to the disease at any instant of time and their sizes are denoted by S(t), E(t), A(t), I(t), R(t) and D(t),
respectively. We assume that individuals enter the population by birth or immigration with a constant recruitment as susceptible
(S) and exit by death or by infection as sub-case. We incorporate the social contact matrix in the SEAIRD model via the inci-
dence function to account for contact patterns among various age groups of the population under consideration. The modified
incidence functions are given by

�i(t) = �
M
∑

j=1

(

Ca
i j

Aj(t)
Nj

+ Cs
i j

Ij(t)
Nj

)

, where i = 1, 2,⋯ ,M.

The modified SEAIRD model equations are
Ṡi(t) = Λ − �i(t)Si(t) − dSi(t),
Ėi(t) = �i(t)Si(t) − (� + d)Ei(t),
Ȧi(t) = ��Ei(t) − (ar + as + d)Ai(t),
İi(t) = (1 − �)�Ei(t) + asAi(t) − (sr + � + d)Ii(t),
Ṙi(t) = arAi(t) + srIi(t) − dRi(t),
Ḋi(t) = �Ii(t),

(2)

subject to the following initial conditions at time t = 0:

Si = S0i ≥ 0, Ei = E0
i ≥ 0, Ai = A

0
i ≥ 0, Ii = I

0
i ≥ 0, Ri = R0i ≥ 0, Di = D0

i ≥ 0. (3)

The model is schematically depicted by the transmission diagram in Fig. 1 , where the incidence due to contact between
infected individuals (A and I) and susceptible population (S) introduces new members in the exposed class with � as the
transmission rate on contact. Parameter Λ denotes the rate of recruitment (birth, immigration) of new members to the suscep-
tible population, whereas d is the natural death rate in the population compartments Si, Ei, Ai, Ii, Ri. The rates at which the
exposed class depletes into A and I classes are �� and (1 − �)� , respectively. Further, the asymptomatic class A transition to
symptomatic class I at rate as and to the recovered class R at rate ar. The symptomatic infectious population either recovers
at rate sr or eventually meet death due to the disease at rate �. All parameters in the model are assumed to be positive.

Feasible region for the system : In small time frames, a population may be assumed to be free from demographic changes
(birth, death, aging). Without demography (d = 0) our model imply constant population in each age group. That is, Ni =
Si(t) + Ei(t) + Ai(t) + Ii(t) + Ri(t) + Di(t) is constant for all t ≥ 0, and 1 ≤ i ≤ M . If we assume demography (d ≠ 0), the
model is no longer conservative. Letting N̂i(t) = Ni(t) −Di(t), it is easy to see that

dN̂i

dt
= Λ − dN̂i − �Ii ≤ Λ − dN̂i. Then

lim
t→∞

sup N̂i(t) ≤
Λ
d
.
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FIGURE 1 Disease transmission diagram (SEAIRD Model)

Hence, feasible region Ωi for age-group i may be chosen as the closed set

Ωi =
{

(Si, Ei, Ai, Ii, Ri) ∈ ℝ5
+ | 0 ≤ Si + Ei + Ai + Ii + Ri ≤

Λ
d

}

.

3.1 Basic reproduction number and stability
The basic reproduction number or basic reproductive ratio,R0, is defined as the average number of secondary cases generated by
a single infectious person in a completely naive population. Here, we introduce the next-generation-matrix approach for finding
R0 of SEAIRD model. From now on we remove the subscript index i while considering only one age-group. By linearising
the dynamics about the disease free equilibrium point Dfree

0 = (N, 0, 0, 0, 0, 0), we obtain the transmission matrix, F , and the
transition matrix,W as follows

F =
⎡

⎢

⎢

⎣

0 � �
0 0 0
0 0 0

⎤

⎥

⎥

⎦

, and W =
⎡

⎢

⎢

⎣

� + d 0 0
−�� ar + as + d 0

−(1 − �)� −as sr + � + d

⎤

⎥

⎥

⎦

.

FW −1 =
⎡

⎢

⎢

⎣

a11 a12 a13
0 0 0
0 0 0

⎤

⎥

⎥

⎦

,

where

a11 =
���(sr + � + d) + �(ar + d)(1 − �)� + �as�

(� + d)(ar + as + d)(sr + � + d)
,

a12 =
�(� + d)(sr + � + d) + �(� + d)as
(� + d)(ar + as + d)(sr + � + d)

,

a13 =
�(� + d)(ar + as + d)

(� + d)(ar + as + d)(sr + � + d)
.

R0 is the maximum of the absolute eigenvalues of the next generation matrix FW −1. Therefore,

R0 =
���(sr + � + d) + �(ar + d)(1 − �)� + �as�

(� + d)(ar + as + d)(sr + � + d)
. (4)

If Λ = 0, d = 0, then

R0 =
��(sr + �) + �ar(1 − �) + �as

(ar + as)(sr + �)
=

��
(ar + as)

+
�ar(1 − �) + �as
(ar + as)(sr + �)

. (5)

Showing local or the global stability for nonlinear dynamical system such as SIR and SIS type epidemic model were never easy
for the researchers. People have tried multiple approach and several years to show the stability of these models and prove them
with minimal conditions. The higher dimensional dynamical systems like SEIR and SEIS were known to be globally stable
at the disease free equilibrium (DFE) subject to R0 ≤ 1. Global stability of the endemic equilibrium for these systems were
conjectured when R0 > 1 but remained open for a long time. This conjecture was solved by Li and Muldowney40 in 1995. To
establish this, they have used Poincaré Bendixson criterion in three dimensions. Following this, the global stability properties
of SEIRS type has been improved by Fan, Li, Driessche, Wan7,18. Thereafter, Korobeinikov and Maini35,36 studied the global
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stability of SEIR and SEIS type models using Lyapunov functions. In this paper, we discuss local stability results for DFE and
endemic equilibrium. Recent contributions41,42,43,52 may be referred for local stability results on epidemic models. The stability
analysis will support our mathematical model and the subsequent computational investigations. We now discuss local stability of
the disease free equilibrium for the SEAIRD model (2). For this purpose, we need to drop the demographic parameters (natural
birth and death) in the model.

Theorem 2. The disease free equilibrium point Dfree
0 is locally stable if R0 < 1.

Proof. To prove local stability of the disease free equilibrium, we need to establish the stability of the system linearised about
the equilibrium point. Therefore, it is enough to show that the eigenvalues of the corresponding Jacobian have only non-positive
real parts. The Jacobian of the system (2) at Dfree

0 is given by

J (Dfree
0 ) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 −� −� 0 0
0 −� � � 0 0
0 �� −(ar + as) 0 0 0
0 (1 − �)� as −(sr + �) 0 0
0 0 ar sr 0 0
0 0 0 � 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Since the rank of the Jacobian matrix is 3, its characteristic equation has three zero roots. The non-zero roots, also three in
number, are obtained as roots of the cubic equation

y3 + a1y2 + a2y + a3 = 0, (6)

whose coefficients a1, a2, a3 are as follows:

a1 = ar + as + � + sr + � (7)
a2 = �(ar + as) + (� + sr)(ar + as + �) − ��, (8)
a3 = �(ar + as)(sr + �) − �ar(1 − �)� − �as� − ���(sr + �). (9)

By Routh-Hurwitz Criterion ( see,34:1.6-6), the roots of the equation (6) have negative real parts if and only if a1 > 0, a3 >
0, and a1a2 > a3. From relation (7) it is obvious that a1 > 0. Relation (9) may be rewritten as

a3 = �(ar + as)(sr + �)

(

1 −
��(sr + �) + �ar(1 − �) + �as

(ar + as)(sr + �)

)

= �(ar + as)(sr + �)(1 − R0) > 0, if R0 < 1.

The last condition a1a2 > a3 may be easily verified in some simple steps. Multiplying (7) and (8), we obtain

a1a2 = (ar + as)(sr + �)(ar+as + sr + �) + a1 ⋅ (ar + as + sr + � − �)
+a3 + �ar(1 − �)� + �as� + ���(sr + �).

In view of the above relation, we now need to show that the second term is positive. From (5) and the condition R0 < 1, we
obtain

ar + as − �� > 0 and �ar(1 − �) + �as < (ar + as)(sr + �), (10)
since R0 is the sum of two positive quantities. Again, with the help of the inequalities in (10), we obtain the desired inequality

ar + as + sr + � − � > 0.

Existence of endemic equilibrium point : We now discuss the existence of endemic equilibrium for the SEAIRD model (2)
assuming demography. If R0 > 1, then relation (4) result in the following inequality

��
(

�(sr + � + d) + (1 − �)(ar + as + d) + �as
)

>
(� + d)(ar + as + d)(sr + � + d).

(11)
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To obtain endemic equilibrium point for the SEAIRD model, we set S′ = 0, E′ = 0, A′ = 0, I ′ = 0, and R′ = 0, so that,

0 = Λ −
�
N
(A∗ + I∗)S∗ − dS∗,

0 =
�
N
(A∗ + I∗)S∗ − (� + d)E∗,

0 = ��E∗ − (ar + as + d)A∗, (12)
0 = (1 − �)�E∗ + asA∗ − (sr + � + d)I∗,
0 = arA∗ + srI∗ − dR∗.

By solving the homogeneous system (12) in terms of I∗ we obtain the following

S∗ = Λ
�
N
(��m + 1)I∗ + d

, E∗ = (ar + as + d)mI∗,

A∗ = ��mI∗, R∗ = 1
d
(��arm + sr)I∗, (13)

where m =
sr + � + d

P
, and P = (1 − �)�(ar + as + d) + ��as.

Substituting the expression for S∗ in the second equation of (12) lead to

I∗ =

�
N
(��m + 1)Λ − d(� + d)(ar + as + d)m

�
N
(��m + 1)(� + d)(ar + as + d)m

.

Non-trivial solution of the homogeneous system (12) exists when I∗ > 0. It is easy to see that denominator part of I∗ is positive.
To establish the positivity of I∗, first we rewrite inequality (11) in the form

�(��m + 1) > (� + d)(ar + as + d)m. (14)

Making use of inequality (14) in the expression for I∗ leads to

I∗ > N
�(��m + 1)

( Λ
N
− d

)

> 0, since Λ
N

> d.

Therefore, endemic equilibrium exists when R0 > 1. Next, we present stability result for the endemic equilibrium point Dend
0 .

Theorem 3. The endemic equilibrium point Dend
0 = (S∗, E∗, A∗, I∗, R∗) of the SEAIRD model (2) is asymptotically stable if

R0 > 1.

Proof. As in Theorem 2, one may compute the Jacobian at Dend
0

J
(

Dend
0

)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−(� A
∗

N
+ � I

∗

N
+ d) 0 −� S

∗

N
−� S

∗

N
0

� A
∗

N
+ � I

∗

N
−(� + d) � S

∗

N
� S

∗

N
0

0 �� −(ar + as + d) 0 0
0 (1 − �)� as −(sr + � + d) 0
0 0 ar sr −d

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

The characteristic equation of the matrix J
(

Dend
0 ) is given by

|

|

|

J
(

Dend
0 ) − �I||

|

= 0. (15)

Simplifying equation (15), one may easily obtain � = −d as an eigenvalue. Other eigenvalues are roots of the equation
(

� + m1
)

(� + m2)(� + m3)(� + m4) −
��S∗

N
(� + d)

(

� + �m4 + (1 − �)m3 + �as
)

= 0 (16)

where
m1 =

�A∗

N
+
�I∗

N
+ d > 0, m2 = � + d > 0,

m3 = ar + as + d > 0, m4 = sr + � + d > 0,
(17)

More succinctly, equation (16) may be expressed as

�4 + a1�3 + a2�2 + a3� + a4 = 0, (18)
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with coefficients

a1 = m1 + m2 + m3 + m4,

a2 = (m1 + m2)(m3 + m4) + m1m2 + m3m4 −
��S∗

N
,

a3 = (m1 + m2)m3m4 + (m3 + m4)m1m2 −
��S∗

N
(�m4 + (1 − �)m3 + �as + d),

a4 = m1m2m3m4 − d
��S∗

N
(�m4 + (1 − �)m3 + �as).

To show that the roots of equation (18) have negative real parts, we use the Routh-Hurwitz Criterion (see,34:1.6-6) for fourth
degree polynomial, which in terms of the coefficients translates to the following conditions

a1 > 0, a3 > 0, a4 > 0, a1a2a3 > a23 + a
2
1a4. (19)

It is obvious that a1 > 0. The second equation in (12), in view of (13) and the conditions R0 > 1, � < 1 lead to
�
N
S∗ =

(� + d)E∗

(A∗ + I∗)
=

m2m3m4
�
(

�m4 + (1 − �)m3 + �as
) =

�
R0

< 1. (20)

Making use of (20), expressions of a3, a4 may be rewritten in the following form establishing their positivity

a3 = m1(m3m4 + m2m3 + m2m4) − d
��S∗

N
> d

(

m3m4 + m2m3 + m2m4 −
��S∗

N

)

> 0,

a4 = m1m2m3m4 − dm2m3m4 =
(�A∗

N
+
�I∗

N
)

m2m3m4 > 0.

In the same way, it can be shown that a2 > 0. Finally, to establish the last condition in the Routh-Hurwitz Criterion (19), it is
enough to verify the following two inequalities :

a1a2a3 > 2a23 ⇒ a1a2 > 2a3, (21)
a1a2a3 > 2a21a4 ⇒ a2a3 > 2a1a4. (22)

To prove inequality (21), we begin with

a1a2 − 2a3 = (m1 + m2 + m3 + m4)
(

(m1 + m2)(m3 + m4) + m1m2 + m3m4 −
��S∗

N

)

−

2
(

m1m3m4 + (m3 + m4)m1m2
)

.

Following some simple algebraic manipulations, we get

a1a2 − 2a3 =
1
P1

(

(

m21m3 + m
2
1m4 + m

2
1m2 + m1m

2
2 + m1m

2
3 + m1m

2
4 + m3m

2
4 + m

2
3m4+

m1m3m4 + m2m3m4
)

(�m4 + (1 − �)m3 + �as) + C1

)

,

where P1 = �m4 + (1 − �)m3 + �as and

C1 = (m22m3 + m
2
2m4 + m2m

2
3 + m2m

2
4 + m1m2m3 + m1m2m4 + 2m2m3m4)×

(�m4 + (1 − �)m3 + �as) − (m1 + m2 + m3 + m4)m2m3m4
=
(

m1m2m3
(

(1 − �)m3 + �as
)

+ m1m2m4(�m4 + �as)
)

+
(

m22m3
(

(1 − �)m3 + �as
)

+ m22m4(�m4 + �as)
)

+
(

m2m
2
3
(

(1 − �)m3 + �as
)

+ m2m3m4(�m4 + �as)
)

+
(

m2m
2
4(�m4 + �as) + m2m3m4

(

(1 − �)m3 + �as
)

)

> 0.

Therefore, a1a2 − 2a3 > 0. Next we rewrite the expression for a2a3 − 2a1a4

a2a3 − 2a1a4 =
(

(m1 + m2)(m3 + m4) + m1m2 + m3m4 −
��S∗

N

)

(

m1m3m4+

(m3 + m4)m1m2
)

− 2(m1 + m2 + m3 + m4)(m1m2m3m4 − dm2m3m4).
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FIGURE 2 SEAIRD : Only symptomatic infected class is present without any lockdown (� = 0.0, � = 0.19, � = 0.29, as =
0.0, � = 1∕30, ar = 0.0, sr = 1∕7, fsa = 0.1).

Performing similar algebraic manipulations, one may verify inequality (22).

In the next subsection, we computationally validate the effect of asymptomatic infections in rapid transmission of COVID-19.
The open-source python3 inbuilt ODE solver odeint25 has been used to simulate the SEAIRD model along with the social
contact data of 16 different age-class available in28, for all our computational results.

3.2 Asymptomatic and symptomatic infections
A significant proportion of COVID-19 infections are asymptomatic in nature. Various agencies have estimated the propor-
tion of asymptomatic infections differently23,37. As per World Health Organization (WHO) and Indian Council of Medical
Research (ICMR) estimates, proportion of asymptomatic infections is very large in comparison with symptomatic infections.
Asymptomatic individuals do not show any noticeable symptoms but continue to transmit the infection. The basic SEAIRD
model is incorporated with the social contact matrix, therefore, disease transmission by asymptomatic population would take
place under the usual social contact pattern. Whereas the symptomatic population may be assumed to transmit at most 10% of
the social contact pattern due to reduced contact levels. To understand the contributions of symptomatic and asymptomatic
individuals in further transmitting the infection to the susceptible population, we distinguish the infected individuals into two
sub-classes asymptomatic (A) and symptomatic (I). First in Fig. 2 , we consider the model with zero asymptomatic cases, that
is, all the infected cases are symptomatic and obtain the corresponding epidemic evolution curve.

Next, we investigate the influence of asymptomatic infections A on the resulting epidemic evolution curve. We assume that the
contact patterns of asymptomatic individual age-groups are same as those of the usual social contact matrix i.e. Ca = C . On
the other hand, it is customary to believe that contact pattern of symptomatic individuals would be significantly reduced due
to ongoing social epidemic prevention campaigns. Since the contact rate of asymptomatic individuals is greater than that those
of symptomatic infected, we let Cs = fsaCa, where fsa lies between 0 and 1. Let us assume a situation where 80% infections
are asymptomatic and exposed to the susceptible subject to natural social contact pattern. This situation leads to rapid spread
of the disease and almost the entire susceptible population gets infected as evident from Fig. 3 . The susceptible curve quickly
falls to zero. Further, the active case peak size is almost three times the 100% symptomatic infections scenario, see Fig. 2 . A
very important point to be observed here is that when asymptomatic cases are more, the number of death cases is significantly
reduced. Furthermore, the peak of the active cases is attained around 140 days earlier as compared to the purely symptomatic
scenario. This indicates quick disease transmission when asymptomatic infections are more in number. This model is perfect
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FIGURE 3 SEAIRD : Both symptomatic and asymptomatic infections are present with no lockdown (� = 0.8, � = 0.19, � =
0.29, as = 0.1, � = 1∕30, ar = 2∕7, sr = 1∕7, fsa = 0.1)

when no control measures are adopted by the policy makers and when the population is very large in size, like 1.3 billion in
India. Then the active case count may hit 400 million level and about 5% of the active cases, that is, about 20 million individuals
would turn out to be critical cases needing ICU and ventilator support. Thus, overwhelming the hospital facilities. Therefore,
necessary control measures are essential to bring down the peak size of active cases. One of them could be lockdown measures
to confine the normal social contact to home contact only. These measures have been adopted by most of the countries till now.
Estimating the expected impact of the lockdown, and the potential effectiveness of different exit strategies is critical to inform
decision makers on the management of the COVID-19 health crisis.

3.3 Impact of lockdown
Rapid transmission and spread of SARS-CoV-2 infections across the globe has led to a situation where more than half of the
global population has been put through strict lockdowns and other forms of social distancing measures. More than 90 countries,
including India has been under some form of lockdown simultaneously. This phase has generated global economic turmoil and
human miseries. In this context, modelling the impact of various lockdown strategies is of paramount importance. Estimating
the expected impact of the lockdown, and the potential effectiveness of different exit strategies is critical to inform decision
makers involved in managing the COVID-19 health crisis.

We would like to understand whether a prolonged lockdown can just defer the advent of epidemic peak or it would also
reduce the peak size significantly and what would be the percentage of reduction? A case study of China reported in39, a
significant increase in doubling time from 2 days (95% CI: 1.9 – 2.6) to 4 days (95% CI: 3.5 – 4.3), after imposing lockdown.
Researchers also investigated the impact of lockdown in France14 and estimated the basic reproduction number at 3.18 (95%
CI: 3.09 – 3.24) before lockdown and reduced to 0.68 (CI: 0.66 – 0.69) during the lockdown.

The average number of contacts is assumed to be reduced by 80% during lockdown, thereby, leading to a substantial reduction
in the reproduction number. But then question arises, can we extend the lockdown longer enough to bring down the number
of active case to zero. A study on France COVID-19 data13, based on SEIR model observed that the social distancing is not
enough to control the outbreak. We can see in Fig. 5 that the lockdown can reduce the active case and also the peak may
be deferred but full lockdown can’t stop the growth of the epidemic. We are trying to see the influence of different lockdown
strategies in a 200 days window. Full lockdown (100% implementation) disconnect all forms of contacts and only the home
contact is allowed, which is imposed for 200 days. Staggered easing of lockdown, in Fig. 4 , is made phase wise for 93 days
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FIGURE 4 Lockdown Strategy: white color: no lockdown; sky blue: 80% lockdown; greenish yellow: 60% lockdown; coral:
40% lockdown; grey and green: 20% lockdown.

FIGURE 5 SEAIRD : Effect of different lockdown (� = 0.8, � = 0.19, � = 0.29, as = 0.1, � = 1∕30, ar = 2∕7, sr =
1∕7, fsa = 0.1)

only and remaining days are fixed controls by only 20 percent lockdown, which very marginal and only for the containment
zones. As per the lockdown strategy made by Govt. of India there are five different phases until June 30, Phase 1 (25 March –
14 April), Phase 2 (15 April – 3 May), Phase 3 (May 4 – May 17), Phase 4 (May 18 – May 31), and Phase 5 (June 1 – June 30).
These two lockdown strategies compare with 0%, 60% and 80% uniform lockdown for 100 days.

Lockdown basis function: Lockdown implementation in the epidemic models is achieved through the social contact matrix. For
this purpose the contact matrix is assumed to be a function of time. We consider a time-dependent control

u(t) = 1 +
Pld
2

{

tanh
( t − toff − twoff

twoff

)

− tanh
( t − ton
twon

)}

,

where ton and toff , respectively, denote lockdown start and end dates. Initially, the function value is ‘1’ and gradually decrease
and meet at ‘0’ when lockdown is released. The delay in implementation of lockdown is tuned by twon and twoff . Effectiveness
of lockdown, expressed in percentage, may be controlled by parameter Pld . Partitioning contacts into spheres of home, work-
place, school and all other categories, the time-dependent contact matrix may be written as

Cij(t) = CH
ij + u

W (t)CW
ij + u

S(t)CS
ij + u

O(t)CO
ij

where uW (t), uS(t) and uO(t) are the corresponding lockdown control functions on the contact matrices of workplace, school
and others. Fig. 4 is obtained by a suitable linear combination of the control basis functions (3.3).
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The observation in Fig. 5 in all cases except the staggered lockdown, can be seen clearly, the peak of the active infections
appear within the uniform lockdown period. With increased intensity of lockdown, peak of the infection gets delayed and also
the peak size reduces gradually. It is interesting to observe that when the staggered lockdown of 93 days (see Fig. 4 ) duration
ends, the exponential growth of infections sets in and the peak appears around 170 days. Delay in the advent of peak infection
and reduction in its size is significantly better in the staggered lockdown scenario, than that of all other uniform lockdown
scenarios except the unrealistic 100% lockdown case.

There are still some questions which need to be investigated and answered. For instance, what is the optimal number of days for
which the lockdown should be implemented and what is the impact of lockdown for prolonged time periods. Again, the current
model does not have any scope for the interventions like the quarantine, hospitalization/isolation and social distancing practices.
In the next section, we also analyse the influence of various intervention strategies on the real data.

4 SEAIRD MODELWITH CONTROL MEASURES

In this section, we extend our SEAIRD model to an SEAIRD-control measure model by incorporating two additional compart-
ments of quarantined (Q) individuals and hospitalized (H) individuals, motivated by the works11,19,20,29,53. A very important and
interesting feature of this new model is the reverse flow from quarantine class (Q) to susceptible class (S) due to the preventive
control measure quarantine, see Fig. 6 . Later in this section we will see the effectiveness of this feature in significantly bringing
down the infection levels. Let �i(t) denote the incidence function of the age group i due to infected individuals from all other
age groups. Then

�i(t) = �(t)
M
∑

j=1

(

Ca
i j

Aj(t)
Nj

+ Cs
i j

Ij(t)
Nj

+ Cℎ
i j

(1 − �)Hj(t)
Nj

)

, where � ∈ [0, 1].

We have already described about Ca
i j and C

s
i j earlier. Here C

ℎ
i j denote the number of contacts of the hospitalized person in age

group i with susceptible individuals of age group j. The new control parameter � represent the effectiveness of hospitalization
or isolation measure applied on symptomatic individuals. The parameter � = 0, 0 < � < 1, and � = 1, respectively, describe
completely effective, partially effective, and completely ineffective isolation measure. The epidemic age and contact-structured
SEAIRD model with control measures quarantine and isolation (or hospitalization) may be described by the following system
of ODEs:

Ṡi(t) = −�i(t)Si(t) + (1 − q)�qℎQi, Ėi(t) = �i(t)Si(t) − �Ei,
Q̇i(t) = �1�Ei − �qℎQi, Ȧi(t) = �2�Ei − (as + �ar)Ai,
İi(t) = �3�Ei + asAi − (�sℎ + �sr)Ii, Ḣi(t) = �sℎIi + q�qℎQi − (�ℎr + �)Hi,
Ṙi(t) = �arAi + �srIi + �ℎrHi, Ḋi(t) = �Hi, i = 1, 2,⋯ ,M,

subject to the initial conditions considered in (3) along with the additional ones Qi = Q0
i ≥ 0 and Hi = H0

i ≥ 0. As usual i
denotes the i-th age-group and parameters �1, �2, �3 are non-negative and satisfy the constraint �1+�2+�3 = 1. For the i-th age-
group, Qi(t) andHi(t), respectively, denote the number of quarantined and hospitalised individuals at time t. The transmission
and transition parameters are described in the Table 1 .

The parameter q describe the strength of the reverse flow feature, as discussed earlier, in the model. Parameter values q = 0,
q ∈ (0, 1), and q = 1, respectively, denote completely effective, partially effective, and ineffective reverse flow. In our model,
there is a latency period or exposed period (1∕� days) after transmitting the disease from susceptible to potentially infective
persons but before these potential infectives gain symptoms and can transmit infection, which is well discussed in5. We assume
that no one gets the disease during the exposed period. The exposed who are not quarantined become infective at the rate �2� as
asymptotic infections (A) and at the rate �3� as symptomatic infections (I). The fractional part q�qℎ goes to isolated class and
rest of the fractional part (1−q)�qℎ again moves back to the susceptible population, who are quarantined. From the asymptomatic
class, some individuals recover at the rate �ar and some persons gain symptoms at the rate as. All the symptomatic members
are monitored and leaving from the symptomatic class to isolated class (H) at the rate �sℎ. Finally, all the isolated members
either recover (R) at the rate �ℎr or eventually meet death due to the disease (D) at the rate �.
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TABLE 1 Control-based SEAIRD model parameters

�(t) rate of infection due to contact at time t � rate of infected from exposed population
�qℎ rate of transition from quarantine to hospitalization as rate of transition of asymptomatic
�ar rate of recovery of asymptomatic infected individual population to symptomatic population
�sℎ rate of transition of symptomatic population to �ℎr rate of recovery of hospitalized

hospitalization individual
� death rate of the population sr rate of recovery of symptomatic
�1 fraction part of � from Ei to Qi class infected individual
�3 fraction part of � from Ei to Ii class �2 fraction part of � from Ei to Ai class
q control parameter for quarantined class

S E

I
�3�

A
�2�

Q H

DR(�2 + �3)� as

�sℎ

�ar

�sr

�ℎr �

�1�

q�qℎ

(1 −
q)�

qℎ

�(t)

FIGURE 6 Disease transmission diagram (SEAIRD-Control model)

4.1 Controlled reproduction number
To find the control reproduction number, we linearise the dynamical system (4) at a disease free equilibrium point (S0i , 01×7),
where S0i = Ni, (1 ≤ i ≤ M). Let Y = [E,Q,A, I,H]T where each of the compartments E, Q, A, I , H represent M
dimensional vectors. From the linearised system (4), we obtain

Ẏ = (F −W )Y , (19)

where F and W , respectively, denote transmission (new infections) and transition (compartmental change). Therefore,
expressions for F andW are

F =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0 � �fsa fsℎ�(1 − �)
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⊗K,

W =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

� 0 0 0 0
−�1� �qℎ 0 0 0
−�2� 0 as + �ar 0 0
−�3� 0 −as �sℎ + �sr 0
0 −q�qℎ 0 −�sℎ �ℎr + �

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⊗ IM ,

where⊗ is the kronecker product andKi j =
Ci jNi

Nj
, (1 ≤ i, j ≤M). LetRc denote control reproduction number as it is guided

by the disease control parameters � and q corresponding to the isolated and quarantined populations. Then Rc is defined as the
maximum of absolute eigenvalues of the next generation matrix FW −1 i.e. Rc = �(FW −1). In more realistic model, we need
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FIGURE 7 SEAIRD-Control : Figure shows active case profiles for different values of quarantine control parameter q and
fixed hospitalization control parameter, � = 1.0. The profiles are reducing in size when q value changes from 1.0 to 0.0. The
other parameters are as follows: �d = 0.05, � = 0.37, � = 0.29, �1 = 0.7, �2 = 0.2, �3 = 1 − (�1 + �2), �qℎ = 1∕10, as =
0.1, �ar = 2∕7, �sℎ = 1∕2, �sr = 1∕7, �ℎr = (1−�d)∕10, � = �d∕10, fsa = 0.1, fsℎ = 0.1 under lockdown strategy of Fig. 4 .

to consider the rate of new infection � as time dependent, which will be discussed in more detail later in the social distancing
subsection.

Effective control reproduction number : To find the time dependent effective reproduction numberRec(t), we replaceNi by Si(t)
and Ci, j by Ci, j(t) in the linearised system. Similar to Rc , we compute the effective control reproduction number

Rec(t) = �
(

FW −1(t)
)

at any time t. One may refer Feng et al.19 for control reproduction number of the control model and how it is different from
basic reproduction number. Again Feng20 has discussed the exponential and gamma distribution models of latent and infectious
periods due to Quarantine (Q) and Hospitalization (H) measures.

4.2 Quarantine and hospitalization as new interventions
In this subsection, we computationally analyse the impact of the control measures on the epidemic spread. The contact matrix in
themodel is of orderM(= 16), the number of age groups. For each age group, there are 8 coupledOrdinaryDifferential Equations
(ODEs) in the SEAIRD-control model. Therefore, a total of 8M(= 128) ODEs are required to be solved simultaneously. The
open-source25 python3 inbuilt ODE solver odeint has been used to simulate the control based epidemic model. Our solver is
a modified and extended version of the python based open-source pyross26.

The SEIR type mathematical models in epidemiology have been studied in the past with control policies and validated with the
real data. Those studies helped in choosing the control parameters appropriately. Many SEIR type control models have been
studied to measure the effectiveness of different types of control parameters. In 2003 Lipsitch et al.44 studied the control of
Severe Acute Respiratory Syndrome (SARS) spread from 2002 to 2003, by taking into account two interventions: (i) Isolation
of symptomatic cases to prevent further transmission and (ii) Quarantine and monitoring of exposed contacts of active cases, so
that possible new infections may be identified and isolated easily.

Fig. 7 depict the influence of Quarantine (Q) measure on the epidemic spread when hospitalization is assumed to be completely
effective, that is, � = 1. As q value changes from 1 (ineffective quarantine) to 0 (completely effective quarantine), the active
infections peak size accordingly reduce. Next we fix the quarantine parameter at q = 1 and simulate the control model (4) while
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FIGURE 8 SEAIRD-Control : The figure shows active case profiles for different values of hospitalization control parameter �
and fixed quarantine control parameter, q = 1. The profiles shift from left to right as well as reduce in size when � value changes
from 0 to 1.0. The other parameters are same as specified in Fig. 7 .

varying � value from 0 to 1. Fig. 8 display the active infections profiles for different values of � (0.0, 0.25, 0.5, 0.75, 1.0). One
may see that the profiles shift from left to right, indicating delay in peak arrival, along with peak size reduction. A combination
of this two control measures may lead to significant reduction in active infections peak size along with delay in peak arrival.

4.3 Social distancing
Here we consider social distancing as a behavioural change in the general population, which need some amount of time to
successfully percolate in a society. As the epidemic progress with increased intensity of infection, awareness level for social
distancing norms among the population also rises. Due to this behavioural change new infections rate starts falling. To capture
the effect of this behavioural change, we need to introduce time dependent incidence parameter �(t) gradually decreasing with
time. We consider the logistic function as a model for time dependent incidence parameter �(t) and refer it as social distancing
function

�(t) = �min +
�max − �min
1 + e−k(t−tm)

. (19)

The parameters in (4.3) are explained in the caption of Fig. 9 . We intend to model the impact of social distancing practices
along with lockdown policies. During strict lockdown phase (80%), we assume that the impact of social distancing practices
are not very significant because the prevailing social contact pattern is essentially confined to home. But as the lockdowns are
gradually relaxed (< 80%), other forms of social contact increase. This is when the impact of social distancing awareness and
practices comes into play. Therefore, we introduce social distancing function �(t) in our model during 60% and subsequent
lockdown phases with suitable time parameter tm.

We have seen the impact of the control measures quarantine and hospitalization in subsection 4.2. Their combined effect helps
in further reducing the number of infections and delaying the advent of its peak significantly. Thus, allowing civic and health
authorities with minimum time to ramp up the infrastructure required for better managing the ensuing epidemic outbreak. In
addition to these control measures, if a large class of the population develops awareness for social distancing and personal
hygiene, the disease transmission can be slowed down further. In the next subsection, we simulate the SEAIRD control model
with social distancing practices.
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FIGURE 9 Here in the social distancing function
�max = maximum value of �(t), �min = minimum
value of �(t), k= steepness of the function or growth
rate of the function, and tm = the midpoint of the sig-
moid. This can reduce the contact matrix or the rate
of infection by �max − �min fractions.

4.4 Analysis based on real data
In this subsection, we numerically simulate (using Python based solver) the SEAIRD control model (4) laced with the social
distancing function (4.3) and match the computed results with real COVID-19 data of India. By matching the computed results
with the real data, we intend to trace back the model parameters to the best possible extent. The lockdown policy in Fig. 4 is
used to convert the contact matrix as a matrix function of time variable. The initial time (t = 0) of the model (4) is March 04,
2020, that begins with non-zero infection, and the computation is carried out for 300 days. There are three important rapidly
growing daily counts named as active cases, symptomatic and asymptomatic total, and hospitalized individuals and steadily
increasing number of deaths due to the disease, see Fig. 10 .[a]. The active case count is seen to attain its peak around day
163 (August 14, 2020) and about 5 % of the entire population is infected by the peak day. Furthermore, 1 % of the population
is estimated to meet death due to the disease this year. Finally, the epidemic is seen to wither out after 300 days, diminishing
gradually in 135 days. The epidemic spreads with exponential growth for the first 50 days. Fig. 10 is again reproduced in a
smaller window to show the match between the numerically computed data and the real data up to May 15, 2020.

In Fig. 10 .[b], we have plotted the numerically computed growth of active cases in absence of both lockdown and social
distancing function (‘Base line’). The ‘Base line’ is seen to match with the real data only up to first 21 days before it gains its
exponential growth. Next, we have traced the active case curve (‘Lockdown’) under the influence of lockdown intervention.
This curve is in agreement with the real data up to the first 45 days and then exponential growth has been observed. In another
simulation run, along with lockdown measure behavioural change due to social distancing practices is also accounted for with
tm = 49 days. Effect of this behavioural change is reflected in the numerically computed active case profile which agrees very
closely with the real data till May 15, 2020. Furthermore, the numerically computed death curve is also seen to completely
match with its real counterpart.

One may like to understand and compare the extent of reduction in infection peak size and delay in its arrival for the two models
proposed in Sections 3 and 4. If we carefully observe Fig. 5 plotted for the control free SEAIRD model (2), the staggered
lockdown peak at nearly 17% is seen to be lowest among all other peaks (except the 100% lockdown case) and also the most
delayed peak that appears around 117 days. With the control measures model, the active case peak is reduced by nearly 12 %
see Fig. 10 .

5 LOCKDOWN EXIT STRATEGY & SUBSEQUENTWAVES

There are 29 states in India governed by democratically elected state governments. The spread and impact of COVID-19 on
each state has been radically different due to various factors such as exposure to immigration, healthcare facilities, population
density, urbanization, and the local government’s policies and strategies for the pandemic management and control. Contact
tracing and isolation16 is one of the most efficient intervention strategies to significantly control the infection transmission.
However, this strategy is not being implemented by the states uniformly. It can be efficiently implemented on relatively small
and moderately dense populations like Singapore, Hong Kong and South Korea. For a large and densely populated country like
India it may be possible to implement this strategy locally on a small scale due to relatively lesser number of tests per million of
population and shortage of man power in administration of medical services38. Our model is not designed to study the contact
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FIGURE 10 SEAIRD-Control : Subplot [a] depicts active infections under lockdown strategy proposed in Fig. 4 with social
distancing parameters: �max = 0.37, �min = 0.21, tm = 49, k = 0.2. Model parameters: �d = 0.012, � = 0.75, � = 0.29, �1 =
0.7, �2 = 0.2, �3 = 1 − (�1 + �2), �qℎ = 1∕10, q = 0.1, as = 0.1, �ar = 2∕7, �sℎ = 1∕2, �sr = 1∕7, �ℎr = (1 − �d)∕10, � =
�d∕10, fsa = 0.1, fsℎ = 0.1. Subplot [b] depicts real data matching with simulated data. Base line : active case without social
distancing and no lockdown; Lockdown : active case without social distancing but with the lockdown. The remaining two
trajectories (active and death cases simulated) are with social distancing and lockdown matching with corresponding real data.

tracing strategy explicitly but it has been considered as part of our lockdown and social distancing strategy. Similarly, border
and travel restrictions are also part of the lockdown and social distancing strategy. Accordingly the modeler would have the
flexibility to choose the extent of permissible social contacts during a certain time period in the entire course of the epidemic.

Gilbert et al.21 have described three different approaches to the exit plans of lockdown which primarily emphasise on a contin-
uous process of intense testing followed by de-confinement of population regions where herd immunity has been attained. Also
suggest mathematical models are crucial to ensure that the proposed set of actions would be safe, to make certain that the level
of transmission and severe cases remain below the healthcare system’s capacity. Some countries, like UK9 and Sweden48,32,
have envisaged that early onset of herd immunity might be a good way to stop or control the spread of the novel coronavirus.



BARMAN M ET AL 19

FIGURE 11 SEAIRD-Control : Subplot [a] depicts model simulation results under LD-I policy as in Table 2 with social
distancing parameters �max = 0.379, �min = 0.21, tm = 61, k = 0.5. Model parameters are same as in Fig. 10 . Subplot [b]
displays the agreement between real data and simulation results of Subplot [a]. Also, display the simulated active case trajectory
(LD-I) where social distancing is not considered.

There are many reasons54 to argue why herd immunity approach is not very efficient in stopping or slowing down the spread
of SARS-CoV-2 transmission, rather, entailing into potentially uncontrollable situation and significant increase in effective
reproduction number. Gradually releasing and re-establishing lockdown (when active infections become too high) type on-off
exit strategy is discussed in50. An analysis carried on UK COVID-19 data based on SEIR epidemic model reveals that on-off
type exit strategy helps in containing the critical cases below the available hospital facilities.

Table 2 presents three distinct lockdown policies, namely, LD-I, LD-II, and LD-III over a period of 900 days. Policy LD-I
mean 80% lockdown implementation for 40 days starting from day 21 since the first reported infection (04 Mar 2020). The
assumption of 80% lockdown is based on the fact that essential services remain functional. After the first phase of lockdown,
whole of India was categorised into either of three zones – Red, Orange, or Green – depending on the intensity of infection.
Red zones (80% lockdown) correspond to containment zones; Orange zones (60% lockdown) for moderately infected zones;
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FIGURE 12 SEAIRD-Control : The growth in symptomatic individuals are plotted for three different lockdown policies as
given in Table. 2 and then quantitatively explain in Table. 3

TABLE 2 Three different Lockdown (LD) policies for 900 days.

Lockdown (LD) Policies

LD-I 80%(21-60) — Averaged: 60%(61-600) — 20%(601-900)

LD-II 80%(21-41) — 60%(42-74) — 40%(75-92) — 20%(93-127)— 60%(128-152)— 80%(153-
192) — 60%(193-232) — 40%(233-359) — 20%(360-900)

LD-III 80%(21-41) — 60%(42-74) — 40%(75-92) — 20%(93-129)— 60%(130-159)— 80%(160-
229) — 60%(230-299) — 40%(300-419) — 20%(420-900)

80% Lockdown 60% Lockdown 40% Lockdown 60% Lockdown

Red Zone Orange Zone Green Zone Average

FIGURE 13 Zone-wise lockdown and its averaging(Arithmetic Mean) is a part of LD-I

Green zones (40% lockdown) for zones below some threshold infection level. To represent the overall intensity of nationwide
lockdown in India, we have considered the arithmetic mean of zonal lockdown intensities, which is 60%. Thus, in LD-I policy,
first phase of strict lockdown is followed by 60% and 20% subsequent lockdown phases of 540 and 300 days, respectively.

Similarly, one may interpret the policies LD-II and LD-III in Table 2 . LD-I policy may be referred as a strict lockdown policy
implemented for a prolonged time period, whereas, policies LD-II and LD-III may be pertained to an on-off type lockdown exit
strategy as discussed earlier. We analyse the impact of these lockdown policies in containing the disease transmission in India
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FIGURE 14 SEAIRD-Control model : Three different effective reproduction numbers corresponding to their lockdown poli-
cies and then how they are monotonically decreasing and finally became less than one, when the pandemic has lost its strength
for growth.

by incorporating these policies in our SEAIRD-control model.

Fig. 11 depict the trajectories of asymptomatic and symptomatic infections (A + I), hospitalised cases (H), total active cases
(A + I +H), and death cases under the SEAIRD-control model with LD-I policy. The active cases trajectory is seen to have
two peaks – the first peak appear around day 300 and the second peak around day 700. Further, it may be observed that the
second peak size is nearly three times bigger as compared to the first one and a gap of nearly 400 days between the two peaks.
The advent of the second peak, although after a gap of 400 days, suggests that the policy of strict lockdown for a prolonged time
period does not break the virus transmission. Rather, it accumulates a large pool of completely naive susceptible population
prone to get eventually infected in a big way. Thus, a policy like LD-I, in addition to incurring heavy socio-economic cost does
not prove to be effective in eliminating the infectious disease. On the flip side this policy presents a fairly long time period (400
days) for carrying out vaccine development program and capacity building of the healthcare system. The effective reproduction
number in this scenario starts its final descent after 600 days and eventually falls below 1, see Fig. 14 .

Fig. 12 displays the evolution of symptomatic infections under the SEAIRD-control model influenced by the three intervention
policy scenarios, namely, LD-I, LD-II, and LD-III. In all the three scenarios, two infection peaks are observed. The peak size
and position of the LD-I influenced trajectory is seen to be in conformity with the trajectories in Fig. 11 . With regard to LD-
II and LD-III peaks, one may observe that both peaks in each trajectory are nearly same size. The major advantage of LD-III
peaks over LD-II peaks is the significant time gap between the two peaks. Therefore, LD-III may be perceived to be an optimal
lockdown policy. The effective reproduction number trajectories for all the three scenarios are plotted in Fig. 14 .

The basic reproduction number (R0) of COVID-19 has been initially estimated by the WHO to be in the range 1.4 to 2.5,
as declared in the statement regarding the outbreak of SARS-CoV-2, dated January 23, 2020. Later in33,56, the researchers
estimated the mean value of R0 to be higher than 3.28 and median higher than 2.79, by observing the super spreading nature
and the doubling rate of the novel Coronavirus. Our effective reproduction numbers are within the estimated range.

In Table 3 , we present the position (Date and No. of Days) and size (Symptomatic %) of both the symptomatic infections peaks
achieved in the three lockdown policy scenarios.
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TABLE 3 Symptomatic count during different lockdown policies

Policy First Peak Second Peak Symptomatic (%)
Date (No. of Days) Date (No. of Days) First Peak — Second Peak

LD-I 28 Dec 2021 (299) 23 Jan 2022 (692) 0.08% — 0.29%

LD-II 2 Aug 2020 (151) 01 Jan 2021 (303) 0.15% — 0.15%

LD-III 29 Jul 2020 (147) 21 May 2021 (451) 0.175% — 0.175%

6 FUTURE SCOPE AND CONCLUSIONS

6.1 Future scope
There are multiple challenges we have realised during the simulation and analysis of computational results while also targeting
to match with the real data.

(i) The stability result for the SEIARD-control model is difficult to establish due to a large number of parameters involved in
it. Theoretical results on stability are open for future work.

(ii) Theoretically, there is no proof of how and when the subsequent peaks will appear after the first peak. Based on
computational observations the possibility of a second wave is predicted.

(iii) The model parameters are assumed to be independent of both time and age group. If the model parameters can be estimated
corresponding to each age group then predicted numbers may change significantly.

(iv) As time progresses containment zones distribution also changes, and due to this, the lockdown intensity varies with time
and locations. How efficiently one can measure the effective lockdown of a highly populated country at a particular instant
of time and its impact on the predictions?

6.2 Conclusions
In this paper, we have proposed a mathematical study of the evolution of COVID-19 using the SEAIRD type epidemiologi-
cal models. An improvised model that takes into consideration various factors such as age-structured social contact pattern,
lockdown measures, contact tracing, quarantine, hospitalization, time dependent incidence parameter as another form of social
distancing measure has been developed. The proposed model is shown to match with the real COVID-19 data of India, active
cases and death cases till the end of July 2020. Further, we have studied the impact of three different types of lockdown policies
with exit plans over a period of 900 days. Several interesting observations are made in the process of fine tuning the mathematical
model towards the goal of capturing the realistic phenomena. Here we summarise the observations.

(a) The SEAIRD-control pandemic model parameters are traced back to match the real data for Indian COVID-19 cases.

(b) Effective reproduction number is computed for the SEAIRD-control model. Disease free and endemic equilibrium points
are proved to be locally stable for the SEAIRD model.

(c) In Subsection 3.3, we have computationally established that slowly decreasing staggered lockdown is comparatively better
lockdown exit strategy in terms of keeping the infection levels low.

(d) The social distancing function in subsection 4.3 is another control function incorporated to slowdown the rate of new
infection with time and account for behavioural change in the population.

(e) The consequence of implementing strict lockdown for prolonged time period may lead to the advent of a bigger second
wave of infections, albeit after a fairly long time gap and in the event of no progress in potent vaccine development.

(f) The staggered lockdown policies proposed in Section 5 are designed in such a way that both the waves can be kept under
control in order to facilitate hospital treatments for the critical patients.

(g) Zone-wise lockdown policy implemented in India has been modeled to match with the real data as accurately as possible.
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