"Azygous Vein Coil Implantation in Left Ventricular Assist Device Patients: Hands-on Approach"

Vijaywant Brar¹, Arooge Towheed¹, Susan O'Donoghue¹, and Seth Worley¹

¹MedStar Washington Hospital Center

January 30, 2024

Abstract

Background: Recently there have been reports of LVAD patients presenting with multiple ineffective ICD shocks. In such patients, azygous vein coil placement by providing an alternative anterior-posterior trajectory of the electrical shock vector can enable successful defibrillation. Objective: This review provides a hands-on approach to azygous vein coil implantation. Additionally, we compare our tools and technique to those that have been previously described by other operators. Methods: From 2018 to 2021, 8 patients were identified who underwent azygous vein coil implantation at MedStar Washington hospital center using specific tools and technique. Demographic and procedural data were obtained by retrospective review of patient charts, procedure logs, fluoroscopy, and venography performed during device implantation. Results: The indication for azygous vein coil implantation was ineffective ICD shocks in 7 patients. The presenting rhythm was VF in 6/8 (75%) cases and sustained VT in 2/8 (25%) cases. Using the approach described, we were able to successfully implant an azygous vein coil in all 8 (100%) patients. There were no procedure-related complications. Post implantation, defibrillation testing (DFT) was successfully performed in 6/8 (75%) patients. One patient failed DFT testing despite the placement of an azygous vein coil. In another patient, DFT testing was not performed because the patient was in atrial fibrillation and was not systemically anticoagulated. Conclusion: Placement of an azygous vein coil in LVAD patients with failed ICD shocks using the tools and technique described in this review is safe and highly efficacious (successful in 100% cases).

- 1 "Azygous Vein Coil Implantation in Left Ventricular Assist Device Patients: Hands-on
- 2 Approach"
- 3
- 4 **Short Title:** Azygous Vein coil Implantation in LVAD patients.
- 5
- 6 Vijaywant Brar, MD^a; Arooge Towheed, MD^a; Susan O'Donoghue, MD^a; Seth J. Worley, MD,
- 7 FHRS^a.
- ⁸ ^a MedStar Heart and Vascular Institute, Suite 5B, 110 Irving St. NW, Washington, DC, 20010
- 9
- 10 Corresponding Author:
- 11 Vijaywant Brar, MD
- 12 Division of Cardiac Electrophysiology
- 13 MedStar Heart and Vascular Institute
- 14 110 Irving Street NW, Washington DC, 20010, USA
- 15 E-Mail: vijaywantbrar@gmail.com
- 16
- 17 **Conflict of Interest:** Dr. Seth Worley receives royalties from Pressure Products, and Merit
- 18 Medical. The other authors do not have any conflict of interests to disclose.
- 19 Funding: None
- 20 Word count: 3323
- 21

22 Abstract

23 **Background:** Recently there have been reports of LVAD patients presenting with multiple 24 ineffective ICD shocks. In such patients, azygous vein coil placement by providing an 25 alternative anterior-posterior trajectory of the electrical shock vector can enable successful 26 defibrillation. 27 **Objective:** This review provides a hands-on approach to azygous vein coil implantation. 28 Additionally, we compare our tools and technique to those that have been previously 29 described by other operators. 30 Methods: From 2018 to 2021, 8 patients were identified who underwent azygous vein coil 31 implantation at MedStar Washington hospital center using specific tools and technique. 32 Demographic and procedural data were obtained by retrospective review of patient charts, 33 procedure logs, fluoroscopy and venography performed during coil implantation. 34 Results: The indication for azygous vein coil implantation was ineffective ICD shocks in 7 35 patients. The presenting rhythm was VF in 6/8 (75%) cases and sustained VT in 2/8 (25%) 36 cases. Using the approach described, we were able to successfully implant an azygous vein 37 coil in all 8 (100%) patients. There were no procedure-related complications. Post 38 implantation, defibrillation testing (DFT) was successfully performed in 6/8 (75%) patients. 39 One patient failed DFT testing despite the placement of an azygous vein coil. In another 40 patient, DFT testing was not performed because the patient was in atrial fibrillation and was 41 not systemically anticoagulated. 42 Conclusion: Placement of an azygous vein coil in LVAD patients with failed ICD shocks using 43 the tools and technique described in this review is safe and highly efficacious (successful in 44 100% cases).

45 Keywords: LVAD, Azygous Vein, Ventricular Tachycardia, ICD

46 Introduction

47	Elevated defibrillation thresholds (DFTs) or ineffective shocks is a rarely encountered
48	scenario in the contemporary era of primary prevention ICD implantation, owing to the
49	effectiveness of modern devices. ¹ However, recently there have been many reports of
50	LVAD patients presenting with multiple ineffective ICD shocks. ² Methods to lower DFTs in
51	such patients include optimizing their hemodynamics, correcting any underlying electrolyte
52	abnormalities, eliminating any membrane active drugs (e.g., Amiodarone) that could
53	potentially raise DFTs, and implanting additional ICD leads to provide an alternative
54	electrical shock vector. Potential targets for the latter include the superior vena cava (SVC),
55	subclavian vein, the coronary sinus, and the azygous vein.
56	Implanting a defibrillation coil in the azygous vein to lower DFTs was first described
57	by Cesario et al in 2004. ³ Recently, this strategy was shown to allow effective defibrillation
58	in LVAD patients with previously failed ICD shocks. ² One can only expect that the need for
59	such interventions will continue to rise with the increasing prevalence of patients with
60	LVADs. ⁴ The purpose of this report is to provide a hands-on approach to azygous vein coil
61	implantation using our safe and highly efficacious technique. Additionally, we highlight the
62	advantages of using our technique, compared to those described by other operators in the
63	past.
64	Methods
65	From 2018 to 2021, 8 patients were identified in whom azygous vein coil
66	implantation was attempted at MedStar Washington hospital center using specific tools and
67	technique. Per institutional guidelines, all patients provided written informed consent for

68 the implant procedure and subsequent defibrillation testing. Institutional review board

69	approval was obtained to use anonymized medical information for this report. Patients'
70	electronic medical records including clinical notes, procedure notes, fluoroscopy and
71	venography performed during coil implantation were reviewed.
72	Azygous vein coil implantation Technique: Hands-on Approach. (Video 1)
73	• Prior to the actual azygous vein coil implantation procedure, process optimization ⁵
74	was performed including preprocedural hydration, and elevation of the patient's legs
75	to increase the central venous pressure.
76	• The axillary vein was accessed with a 21-gauge echo enhanced micro puncture
77	needle by sticking while the contrast was flowing through the target vein (10–20 ml
78	of full-strength contrast, followed by 30–50 ml of flush with normal saline).
79	• A stiffened micro-puncture dilator and 5-F catheter was advance over the .018-in
80	wire. The stiffened dilator was removed, and a 0.035-in glide wire was introduced
81	through the 5-F catheter, into the subclavian vein.
82	• A height adjustable table was placed perpendicular to the patient. The table
83	orientation allows long wires, catheters, and sheaths to remain in their natural
84	orientation as they exit the body. Hence minimizing the risk of them falling off the
85	table and eliminating unnecessary bends and curves.
86	• A standard vein selector (braided catheter with 5-F outer diameter (OD), 75 cm long
87	catheter with a soft tapered tip) was advanced over the 0.035-in glide wire to the
88	SVC/RA junction.
89	• The glide wire was removed, and a contrast injection system consisting of a 30 ml
90	contrast reservoir syringe, a 10–12 ml control syringe, a 3-way stopcock, a 12–18 in

91		tubing with male and female ends, and a Y adapter with hemostatic valve and
92		rotating hub, was assembled and connected to the standard vein selector.
93	•	The fluoroscopy camera was positioned in the left anterior oblique (LAO) 30 degrees
94		angulation.
95	•	The azygous vein starts at the level of the first and second lumbar vertebrae and
96		arises from the union of lumbar veins and the right subcostal vein. It courses along
97		the right vertebral column and arches posteriorly over the right main bronchus to
98		empty into the SVC. (Figure 1) Hence, we started searching for the azygous vein at
99		the beginning of superior vena cava using puffs of contrast rather than the "poke
100		and pray" wire technique.
101	•	The azygous vein was located using gentle contrast injections through the standard
102		vein selector. When possible, cannulating the azygous vein with a vein selector was
103		preferred, as they are much softer and easier to advance into the azygous vein than
104		the JL 3.5 diagnostic catheter. (Figure 2A)
105	•	If we had difficulty locating the azygous vein using the standard vein selector, we
106		switched to a Judkin's left (JL) 3.5 diagnostic catheter attached to the contrast
107		injection system. Since the azygous vein is a posterior structure, we applied
108		counterclockwise torque to the JL 3.5 diagnostic catheter to locate it.
109	•	After engaging the azygous vein, a 0.035-in glide wire was advanced as far as
110		possible. (Figure 2B)
111	•	The standard vein selector or the JL 3.5 diagnostic catheter was advanced deep into
112		azygous vein over the glide wire. (Figure 2C and Figure 2D)
113	•	The glide wire was then exchanged with a 0.035-in Amplatz extra stiff wire. Ideally
114		the Amplatz extra stiff wire was deposited below the level of the diaphragm.

115	•	The Worley sheath (9-F inner diameter peel-away platform) along with its hand			
116		shaped/curved stylet was advanced over the Amplatz wire, till the tip of the stylet			
117		was at the origin of the azygous vein. The pre curved Worley sheath reduced kinking			
118		as the sheath negotiated the curves at the brachiocephalic vein – SVC – azygous vein			
119		intersection. (Figure 2F)			
120	•	The Worley sheath was advanced over the Amplatz extra stiff wire deep into the			
121		azygous vein. (Figure 2H)			
122	•	The coil with the stylet in place was advanced through the Worley sheath adjacent to			
123		the Amplatz wire and placed deep in the azygous vein posterior to the heart. (Figure			
124		21)			
125	•	The Amplatz wire was then removed.			
126	•	The Worley sheath was then peeled away maintaining stable position of the coil.			
127		(Figure 2J)			
128	•	The Stylet of the azygous coil was then removed. (Figure 2K)			
129	•	Defibrillation testing was then performed.			
130	Result	S			
131		The mean age of our study participants was 51 years, and majority were men 6			
132	(75%).	. All study participants suffered from severe left ventricular systolic dysfunction and			
133	had ar	n LVAD in place. Additionally, 7 patients had preexisting ICDs, which were placed prior			
134	to the	ir LVAD implantation surgery. Six (75%) patients had history of successful ICD shocks			
135	prior t	o LVAD implantation surgery. The indication for azygous vein coil implantation in all			
136	cases	was failed defibrillation. The presenting rhythm in 6 (75%) of cases was VF, and			
137	sustained VT in 2/8 (25%) cases. Supported by their LVADs, all patients were awake at the				

138 time of VT/VF and majority 5 (62%) experienced greater than four consecutive ineffective

139 ICD shocks prior to their presentation. (Table 1)

In all 8 patients an azygous vein coil was successfully implanted using process
optimization plus the tools and technique described. (Table 2) There were no complications
related to azygous vein coil implantation procedure. Additionally, no changes in the
parameters of other non-targeted leads, including sensing, capture threshold, and
impedance was noted.

145 Defibrillation testing was performed in 7 patients. One patient was noted to be in 146 atrial fibrillation and was not receiving therapeutic anticoagulation at the time of the 147 implant procedure, hence DFT was not performed. In one patient DFT was not successful, 148 despite the azygous vein coil and using the highest energy generator available at the time 149 (Biotronik 45 J). In this patient we additionally placed a subcutaneous coil from the left 150 subclavian vein to the RV. VF was again induced and the patient was unsuccessfully shocked 151 from the azygous vein coil to the intravascular placed subcutaneous coil. Due to the lack of 152 other options for this patient, the patient was referred for urgent cardiac transplantation 153 workup.

154 Discussion

Most patients with severe stage D systolic heart failure necessitating LVAD therapy have ICDs implanted prior to their LVAD surgery. Although, ICD therapy has not been conclusively shown to provide mortality benefit in LVAD patients^{6,7}, owing to the high incidence of ventricular arrythmias^{8,9}, therapies including shocks are programmed in most patients. Recently an increasing number of LVAD patients have been reported to present with multiple ineffective ICD shocks.² The high DFT's in LVAD patients may be secondary to the severity of LV dysfunction or a post LVAD rise in defibrillation thresholds.^{10,11} Post LVAD rise in DFTs may be due to changes in cardiac geometry and shunting of the electrical shock due to vector shifts caused by the introduction of intrathoracic metal.¹⁰ Unfortunately, most patients with LVADs are fully conscious while being shocked by their ICD repeatedly as their hemodynamics are supported by the LVAD. The latter can lead to major psychological trauma to the patient.

167 Frequently used but often ineffective options for LVAD patients with appropriate but 168 failed ICD shocks include: 1. Programming changes including altering vector polarity, 169 adjusting tilt and pulse width of the biphasic shock¹² 2. Repositioning of the right ventricular 170 ICD lead, 3. Upgrade to a dual coil ICD system, 4. use of a higher energy generator, 5. The 171 addition of a second defibrillator coil in a different location e.g., in the subclavian vein or the 172 coronary sinus, and 6. Implantation of subcutaneous ICD. Although there have been case 173 reports of implantation of subcutaneous ICD in patients with an LVAD, these devices are not 174 considered optimal for such patients.^{13,14} Some potential issues include proximity of the ICD 175 pocket site to that of the LVAD, electromagnetic interference from the LVAD, and inability to 176 deliver anti-tachycardia pacing (ATP). By comparison, azygous vein coil placement, by 177 providing an alternative anterior-posterior trajectory of the electrical shock vector, can be 178 very effective in lowering DFTs.

179 In our series, the RV ICD lead position and parameters including shock impedance 180 were within normal limits for all patients, hence repositioning the RV lead would likely be of 181 minimal benefit. Four patients previously had a well-positioned superior vena cava coil (dual 182 coil RV lead). Additionally, 3 patients previously had biventricular ICDs. Even though LV 183 pacing is often turned off in patients with LVADs, the presence of a pacing lead in the CS makes addition of an ICD lead in the CS more challenging. Therefore, our approach was to
implant an azygous vein coil to provide an anterior posterior shock vector. We were able to
successfully place the azygous vein coil in all 8 (100%) patients. Additionally, we placed the
high energy generator in 4 (50%) of the patients.

188	The largest case series of azygous vein coil implantation (10 patients) was published by
189	Cooper et ¹⁵ al in 2009. In their series, they noted a greater than 90 % success rate of
190	azygous vein coil implantation using their tools and technique. Their failure to implant the
191	coil was secondary to their inability to advance the long sheath around the curve into the
192	azygous vein. In another series, Seow et al ¹⁶ published a series of 3 patients and noted a
193	success rate of 66%. In comparison, we were able to implant the azygous vein in all (100%)
194	LVAD patients using our tools and techniques, in whom it was attempted. Additionally, our
195	technique has some cardinal differences than those previously described.
196	• We emphasize the importance of pre procedure process optimization including pre-
197	hydration, height adjustable perpendicular table position etc. ⁵
198	• When implanting from the left side, a JL-3.5 catheter is better suited to engage the
199	azygous vein when compared to the JR-4 catheter as described by others. ^{15,16} The
200	secondary and tertiary curves direct the JL-3.5 catheter inferiorly and the primary
201	curve engages the azygous vein with counterclockwise torque. (Figure 3)
202	• We recommend using the AL-1 catheter to engage the azygous vein when implanting
203	from the right side. (Video 2)
204	• Cooper et al ¹⁵ , described using the right mainstem bronchus in the anterior posterior
205	fluoroscopy view as a reference starting point for locating the azygous vein. In

206 contrast, we encourage positioning the catheter in the SVC, central to the origin of

207	the left brachiocephalic vein and then using gentle pullback and counterclockwise
208	torque to point the catheter tip towards the left side of the patient while imaging in
209	LAO 30 degrees.

- 210 We strongly encourage using gentle contrast injections through specifically shaped 211 catheters to visualize the origin of the azygous vein rather than probing with a wire 212 to locate the azygous vein. "Poke and pray" with a wire compared to contrast 213 guided catheter engagement, adds time to the procedure and makes it more 214 challenging to locate the azygous vein.
- 215 Once the azygous vein is engaged and a catheter (standard vein selector, JL-3.5 or •
- 216 AL-1) is advanced to the level of the diaphragm over the glide wire, we recommend
- 217 routinely exchanging the glide wire with an Amplatz wire, and then advancing the
- 218 long pre curved sheath with a hand curved dilator over the Amplatz wire to prevent
- 219 kinking of the sheath at the SVC – azygous vein junction.
- 220 In contrast to previous reports, we recommend advancing the ICD coil adjacent to • 221 the retained Amplatz wire, which keeps the long sheath from kinking.
- 222 Conclusion
- 223 The prevalence of LVAD patients is expected to continue to rise in the coming
- 224 decades. Azygous vein coil implantation is probably the most effective bail out strategy for
- 225 such patients who present with ineffective ICD shocks. Azygous vein coil placement can be
- 226 accomplished safely and with a high success rate when a standardized meticulous
- 227 implantation technique such as the one described in this review is followed.
- 228

229 **References**

230	1.	Verma A, Kaplan AJ, Sarak B, et al.: Incidence of very high defibrillation thresholds
231		(DFT) and efficacy of subcutaneous (SQ) array insertion during implantable
232		cardioverter defibrillator (ICD) implantation. J Interv Card Electrophysiol 2010; .
233	2.	Shehadeh M, Brar V, Costello J, Hadadi C, O'Donoghue S, Worley S: Ineffective
234		implantable cardioverter-defibrillator shocks among patients on continuous left
235		ventricular assist device support: Clinical characteristics and management. Hear
236		Rhythm O2 2020; .
237	3.	D. C, M. B, M. V, G.C. F, B. W, K. S: Azygos vein lead implantation: A novel adjunctive
238		technique for implantable cardioverter defibrillator placement. J Cardiovasc
239		Electrophysiol 2004; .
240	4.	Kormos RL, Cowger J, Pagani FD, et al.: The Society of Thoracic Surgeons Intermacs
241		Database Annual Report: Evolving Indications, Outcomes, and Scientific Partnerships.
242		Ann Thorac Surg 2019; .
243	5.	Zou F, Brar V, Worley SJ: Interventional device implantation, Part I: Basic techniques
244		to avoid complications: A hands-on approach. J. Cardiovasc. Electrophysiol. 2020,.
245	6.	Garan AR, Yuzefpolskaya M, Colombo PC, et al.: Ventricular arrhythmias and
246		implantable cardioverter-defibrillator therapy in patients with continuous-flow left
247		ventricular assist devices: Need for primary prevention? J Am Coll Cardiol 2013; .
248	7.	Clerkin KJ, Topkara VK, Mancini DM, et al.: The role of implantable cardioverter
249		defibrillators in patients bridged to transplantation with a continuous-flow left
250		ventricular assist device: A propensity score matched analysis. J Hear Lung Transplant
251		2017; .

252 8. Lee W, Tay A, Subbiah RN, et al.: Impact of Implantable Cardioverter Defibrillators on

253	Survival of Patients with Centrifugal Left Ventricular Assist Devices. PACE - Pacing	Clin
254	Electrophysiol 2015; .	

255	9.	Ambardekar A V., Allen LA, Lindenfeld JA, et al.: Implantable cardioverter-defibrillator
256		shocks in patients with a left ventricular assist device. J Hear Lung Transplant 2010; .

- 257 10. Ambardekar A V., Lowery CM, Allen LA, et al.: Effect of Left Ventricular Assist Device
 258 Placement on Preexisting Implantable Cardioverter-defibrillator Leads. J Card Fail
- 259 2010; .
- 260 11. Thomas IC, Cork DP, Levy A, et al.: ICD lead parameters, performance, and adverse
- 261 events following continuous-flow LVAD implantation. PACE Pacing Clin
- 262 Electrophysiol 2014; .
- 263 12. Gold MR, Val-Mejias J, Cuoco F, Siddiqui M: Comparison of fixed tilt and tuned
 264 defibrillation waveforms: The PROMISE study. J Cardiovasc Electrophysiol 2013; .
- 13. Saeed D, Albert A, Westenfeld R, et al.: Left ventricular assist device in a patient with
- a concomitant subcutaneous implantable cardioverter defibrillator. Circ Arrhythmia
 Electrophysiol 2013; .
- 268 14. Pfeffer TJ, König T, Duncker D, et al.: Subcutaneous implantable cardioverter-
- defibrillator shocks after left ventricular assist device implantation. Circ. Arrhythmia
 Electrophysiol. 2016,.
- 271 15. Cooper JA, Smith TW: How to implant a defibrillation coil in the azygous vein. Hear
 272 Rhythm 2009; .
- 273 16. Seow SC, Tolentino CS, Zhao J, Lim TW: Azygous vein coil lowers defibrillation
- 274 threshold in patients with high defibrillation threshold. Europace 2011; .
- 275

Age, years	51 ± 11		
Female	2 (25)		
Hypertension			
Diabetes			
Dyslipidemia	4 (50)		
Smoker	4 (57)		
Etiology of cardiomyopathy			
Ischemic cardiomyopathy	1 (12)		
Non-ischemic cardiomyopathy	7 (88)		
LVAD type			
HeartMate III	4 (50)		
HeartMate II	1 (12)		
HeartWare	3 (38)		
Type of ICD			
None	1 (12)		
Single Coil	3 (38)		
Dual Coil	4 (50)		
Indication for ICD implantation			
Primary prevention	7 (88)		
Secondary prevention	1 (12)		
History of successful ICD shocks pre-LVAD	6 (75)		
Presenting arrhythmia			
Ventricular Fibrillation	6 (75)		
Sustained Ventricular Tachycardia	2 (25)		
Number of Ineffective ICD shocks at presentation			
0-3	3 (38)		
3-6	5 (62)		

276 Table 1. Baseline characteristics and clinical presentation.

- 277 Values are mean ± SD or n (%).
- 278 ICD = implantable cardioverter-defibrillator; LVAD = left ventricular assist device.

Patient	Subclavian Fibroplasty Performed	Side of Implant	Catheter Used	Lead Implanted	Success of DFT	Energy at which DFT was performed
1.	Yes	Right	AL-1	Medtronic SQ coil 6996SQ- 58	Successful	30 J
2.	Yes	Left	Std vein selector	Medtronic 6937A-58	Successful	45 J
3.	No	Left	Std vein selector	Medtronic 6937A-58	Failed	45 J
4.	No	Left	JL-3.5	Medtronic 6937A-58	Not performed	
5.	No	Left	JL-3.5	Medtronic 6937A-58	Successful	30 J
6.	No	Left	JL-3.5	Medtronic 6937A-58	Successful	30 J
7.	No	Left	JL-3.5	Medtronic 6937A-58	Successful	45 J
8.	Yes	Left	JL-3.5	Medtronic 6937A-58	Successful	45 J

280 Table 2. Procedural interventions and outcomes.

281 VF = Ventricular Fibrillation; VT = Ventricular Tachycardia; AL-1 = Amplatz left 1 diagnostic

catheter, JL-3.5 = Judkins Left 3.5 diagnostic catheter; Std = Standard; DFT = Defibrillation

283 Threshold testing.

Figure 1. Anatomy of the Azygous vein. The black line shows a Judkins left 3.5 catheter as it engages the Azygous vein.

Figure 2. Azygous vein Coil implantation Technique. Left sided technique 'A-K', Right sided
 technique 'L'.

- 314 Figure 3. Catheters used for engaging the Azygous vein.
- 315 AL-1 = Amplatz left 1 diagnostic catheter; JL-3.5 = Judkins Left 3.5 diagnostic catheter;
- 316 Standard vein selector.
- 317
- 318
- 319

- 320 Videos:
- 321 Video 1: Azygous vein coil implantation technique from the left side.
- 322 Video 2: Azygous vein coil implantation technique from the right side.