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Abstract

This article extracts exact solutions for the perturbed nonlinear Schrödinger’s equation (PNLSE) with Kerr law nonlinearity

forced by multiplicative noise in Itˆo sense by utilizing the unified solver method. The presented solutions involve three types:

rational function, trigonometric function and hyperbolic function solutions. These stochastic solutions may be applicable for

investigation various complex phenomena in applied science and new physics. We exhibit the influence of multiplicative noise

on the solution of the PNLSE forced by multiplicative noise in Itˆo sense. The study and acquired solutions clarify that the

unified solver technique is sturdy and efficient. Finally, some 3D proles to some of the gained solutions are also illustrated.
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sense by utilizing the unified solver method. The presented solutions involve three

types: rational function, trigonometric function and hyperbolic function solutions.

These stochastic solutions may be applicable for investigation various complex phe-

nomena in applied science and new physics. We exhibit the influence of multiplica-

tive noise on the solution of the PNLSE forced by multiplicative noise in Itô sense.
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1 Introduction

The structure of various special solitary waves of the nonlinear partial differential equa-
tions (NPDEs) is explained in terms of solitons [1–6]. Recently, several techniques for
getting exact solutions to NPDEs have been proposed and developed, see [7–16]. Solitary
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wave solutions also appear on propagating systems, which are represented by nonlinear-
ity and dissipation. Many complex nonlinear phenomena emerging in various branches
of natural sciences, like, plasma physics, quantum mechanics, biology, nonlinear optics,
electro magnetic wave propagation, nuclear physics, deep water, optoelectronics and fluid
dynamics can be depicted in the form of NLSEs [17–22]. The NLSEs describe the prop-
agation of waves in media with both nonlinear and dispersive response. Considering
stochastic effects for the NPDEs is so important and reflect many vital phenomena in
natural sciences [23–27].

Let us consider the NPDEs forced by multiplicative noise in Itô sense given by:

Λ(G,Gx,Gt,Gxx,Gxt,Gtt, ...) = 0. (1.1)

Using wave transformation:

G(x, t) = G(ξ), η = cx− ν t, (1.2)

the Eq. (1.1) reduced to SODE:

H(G,G ′,G ′′,G ′′′, ...) = 0. (1.3)

It is well known that there are various models in new physics and applied science in forms
of Eq. (1.1) reduced to the following ODE:

LG ′′ +MG3 +NG = 0, (1.4)

see for example [28–36]. As a result of the importance of the deterministic Eq. (1.3) we
demonstrate the powerful unified solver for the wide range of NPDEs [37]. In this work,
we can develop this solver to solve Eq.(1.3) in a random case.

In this article we consider the 1-D stochastic PNLSE with Kerr law non-linearity
for propagation of light in single-mode fibers; existence of attenuation, dispersion and
nonlinear effects [38–41],

iχt + χxx + α | χ |2 χ+ i
(
δ1χxxx + δ2 | χ |2 χx + δ3(| χ |2)xχ

)
+ σ χβt = 0 , i =

√
−1,
(1.5)

where δ1, δ2, δ3 indicate, third order dispersion, nonlinear dispersion, another version of
nonlinear dispersion and σ is the noise strength. The noise βt is the time derivative of
the brownian motion β(t). This equation describes the propagation of optical solitons in
fibers that displays a Kerr law non-linearity forced by multiplicative noise in Itô sense.
Eq. (1.5) has vital applications in the field of theoretical physics.

We aim to present closed-form structures of solutions for the widely used families of
NPDEs with noise term in Itô sense. This structure will be utilized as a box solver to
the engineers, physicists and mathematicians. The main characteristic of the presented
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solver, is that it present various new solutions with additional free parameters. These
solutions are very important to clarify pivotal complex phenomena in natural sciences.
The presented technique is simple, functional and powerful. One of the main feature for
the proposed solver is that it gives various new solutions such rational solutions, soli-
tons, dissipative, breathers, rough or periodic. The type of these solutions depend on the
physical parameters in dispersion & nonlinear coefficients. The given solutions of the per-
turbed NLSE with Kerr law nonlinearity are vital in various fields of natural sciences, such
as optical fibers communications, superfluids, semiconductor materials, plasma physics,
telecommunications experiments and femtosecond pulse [42–46].

The rest of the paper is arranged as follows. Sec. 2 gives the closed-form wave
structures for LG ′′ + MG3 + NG = 0. Sec. 3 introduces some new stochastic solutions
for the perturbed NLSE forced by multiplicative noise in Itô sense. Sec. 4 presents
the explantation for the presented solutions of the SPNLSE with Kerr law nonlinearity.
Finally, conclusion is reported in Sec. 5.

2 The closed-form solutions

The closed-form solutions of the following equation [37]:

LG ′′ +MG3 +NG = 0, (2.1)

given by :

Rational function solutions: (when N = 0)

G1,2(x, t) =

(
∓
√
−M
2L

(η +$)

)−1
. (2.2)

Trigonometric function solutions: (when N
L
< 0)

G3,4(x, t) = ±
√
N

M
tan

(√
−N
2L

(η +$)

)
(2.3)

and

G5,6(x, t) = ±
√
N

M
cot

(√
−N
2L

(η +$)

)
. (2.4)

Hyperbolic function solutions: ( when N
L
> 0)
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G7,8(x, t) = ±
√
−N
M

tanh

(√
N

2L
(η +$)

)
(2.5)

and

G9,10(x, t) = ±
√
−N
M

coth

(√
N

2L
(η +$)

)
. (2.6)

Here $ is an arbitrary constant.

3 The solutions for PNLSE

We use the traveling wave solution of the form [38]:

χ(x, t) = ei(kx−rt+σ β(t))q(η), η = x− v t, (3.1)

where k, r and v are constants and σ is the noise strength. Superseding Eq. (3.1) into
Eq. (1.5) gives

i
(
δ1q
′′′−3δ1k

2q′+δ2q
2q′+2δ3q

2q′ − v q′+2k q′
)
+
(
ru+q′′−k2q+α q3+3δ1kq

′′+δ1k
3q−δ2ku3

)
= 0.

(3.2)
Then we have [38]:

δ1k
2 q′′ +

1

3
(δ2 + 2δ3) q

3 + (2k − v − 3δ1k
2)q = 0 , (3.3)

In the light of the above closed-form structure, Eq. (1.5) has the following solutions:

Family I:

The rational solutions are

q1,2(x, t) =

∓√−(δ2 + δ3)

6δ1k2
(x− v t+$)

−1 . (3.4)

Thus the stochastic solutions of the Eq. (1.5) are

χ1,2(x, t) = ei(kx−rt+σ β(t))

∓√−(δ2 + δ3)

6δ1k2
(x− v t+$)

−1 . (3.5)

Family II :
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The trigonometric solutions are

q3,4(x, t) = ±

√
3(2k − v − 3δ1k2)

δ2 + 2δ3
tan

(√
v + 3δ1k2 − 2k

2δ1k2
(x− v t+$)

)
(3.6)

and

q5,6(x, t) = ±

√
3(2k − v − 3δ1k2)

δ2 + 2δ3
cot

(√
v + 3δ1k2 − 2k

2δ1k2
(x− v t+$)

)
. (3.7)

Thus the stochastic solutions of the Eq. (1.5) are

χ3,4(x, t) = ±ei(kx−rt+σ β(t))
√

3(2k − v − 3δ1k2)

δ2 + 2δ3
tan

(√
v + 3δ1k2 − 2k

2δ1k2
(x− v t+$)

)
(3.8)

and

χ5,6(x, t) = ±ei(kx−rt+σ β(t))
√

3(2k − v − 3δ1k2)

δ2 + 2δ3
cot

(√
v + 3δ1k2 − 2k

2δ1k2
(x− v t+$)

)
.

(3.9)

Family III:

The hyperbolic solutions are

q7,8(x, t) = ±

√
3(v + 3δ1k2 − 2k)

δ2 + 2δ3
tanh

(√
2k − v − 3δ1k2

2δ1k2
(x− v t+$)

)
(3.10)

and

q9,10(x, t) = ±

√
3(v + 3δ1k2 − 2k)

δ2 + 2δ3
coth

(√
2k − v − 3δ1k2

2δ1k2
(x− v t+$)

)
. (3.11)

Thus the stochastic solutions of the Eq. (1.5) are

χ7,8(x, t) = ±ei(kx−rt+σ β(t))
√

3(v + 3δ1k2 − 2k)

δ2 + 2δ3
tanh

(√
2k − v − 3δ1k2

2δ1k2
(x− v t+ µ)

)
(3.12)

and

χ9,10(x, t) = ±ei(kx−rt+σ β(t))
√

3(v + 3δ1k2 − 2k)

δ2 + 2δ3
coth

(√
2k − v − 3δ1k2

2δ1k2
(x− v t+ µ)

)
.

(3.13)
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Figure 1: Real of χ1 with δ1 = 1.5, δ2 = 2.3, δ3 = 2.1, $ = 1, k = 2.8, r = 0.6, σ = 1.

4 Results and discussion

We have implemented the unified solver for extracting explicit exact solutions to PNLSE
with Kerr law nonlinearity forced by multiplicative noise in Itô sense. The unified solver
technique has been efficiently introduced to construct many new stochastic solutions.
The presented stochastic solutions including rational, trigonometric, hyperbolic functions.
These solutions exhibit some vital complex phenomena in applied science and new physics,
such as solid mechanics, optical fibers communications, modeling of deep water, plasma
physics, semiconductor materials and magneto-static spin waves. To our knowledge, the
proposed results in this work have not been presented in the literature. The attitude of
these solutions are soliton, rough, breather, periodic, explosive, shock or dissipative, is
based on the physical parameters in the PNLSE with Kerr law nonlinearity. For exam-
ple, the behaviour of wave varies at critical points from compressive to rarefactive and
stability regions become unstable regions at certain values of wave number named critical
values [47–49]. The dependence of the presented solutions features based on coefficients
of dispersion δ1, δ2, δ3 and nonlinearity α has an important role in the stable & unstable
regime and wave amplitude modulations on the optical explosive excitations. The results
illustrate the efficiency and reliability of the proposed technique for finding stochastic so-
lutions of some complicated NPDEs. In Figs. 1-4, we show the behaviour of the solutions
for the PNLSE forced by multiplicative noise in Itô sense.
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Figure 2: Imaginary of χ1 with δ1 = 1.5, δ2 = 2.3, δ3 = 2.1, $ = 1, k = 2.8, r = 0.6, σ = 1.

Figure 3: Real of χ7 with δ1 = −1.6, δ2 = 1.8, δ3 = 0.5, $ = 0, k = −0.6, r = 1.2, σ = 1.

Figure 4: Imaginary of χ7 with δ1 = 1.5, δ2 = 2.3, δ3 = 2.1, $ = 1, k = 2.8, r = 0.6, σ = 1.
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5 Conclusions

We have given some new stochastic solutions for the PNLSE with Kerr law nonlinearity
in presence of noise term in Itô sense. We have employed the unified solver method, which
offers closed form of solutions. Indeed, the acquired solutions clearly exhibit the reliability
of the presented technique. We deduced that the proposed approach can be prolonged
to solve various equations of NPDEs arising in different fields of natural sciences, such as
biology, fluid mechanics, engineering, physics, chemistry and other more.
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