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Abstract

In this paper, we analyze a certain class of timelike ruled surface in one-parameter hyperbolic dual spherical motions by means

of the E. Study map. Then, some new formulae of surfaces theory into Minkowski line space and their geometrical explanations

are derived. In addition to that, timelike Pl¨ucker conoid associated with the motion has been obtained and investigated in
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1 Introduction

A ruled surface is defined by the property that through each point in the
surface, there is at least one straight line which also lies in the surface. A ruled
surface may be thought of as a one-parameter family of oriented lines. This
surface is significant in the research of mechanism design problems because
it is generally the trajectory of the oriented line embedded in a moving rigid
body in spatial motion [1-3]. One of the ultimate suitable methods to research
the motion of line space seems to found a relationship between this space and
dual numbers. Via the E. Study map in screw and dual number algebra, the
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set of all oriented lines in Euclidean 3-space E3 is directly linked to the set
of points on the dual unit sphere in the dual 3-space D3. It leads to that the
differential geometry of ruled surfaces can be researched by considering one-
parameter dual curves lying completely on dual unit sphere. More specifics
about the needful basic concepts of the dual elements, and the connection
between ruled surfaces and one-parameter dual spherical motions can be
found in [4-9].

In E3
1 (the 3-dimensional Minkowski space) the study of ruled surfaces

is more interesting than the Euclidean case, since Lorentzian metric is not
positive definite metric, the distance function can be negative, positive or
zero, whereas the distance function in the Euclidean 3-space E3 can only
be positive. Therefore, the kinematics and geometric interpretations can be
more different. Thus, if we replace the Minkowski 3-space E3

1 instead of
the Euclidean 3-space E3 the E. Study map can be defined as follows: the
timelike and spacelike oriented lines are represented with the timelike and
spacelike dual points on hyperbolic and Lorentzian dual unit spheres H2

+

and S2
1 in the Lorentzian Dual 3-Space D3

1, respectively [10-12]. It means
that a differentiable curve on H2

+ corresponds to a timelike ruled surface at
E3

1. Similarly the spacelike (resp. timelike) curve on S2
1 corresponds to any

timelike (resp. spacelike) ruled surface at E3
1. Due to its relationship with

physical sciences in Minkowski space, many geometers and engineers have
studied and gained many ownerships of the ruled surfaces (see [10-16]).

In this inquiry we examine timelike ruled surfaces with constant Disteli-
axis based upon the curvature theory of a dual hyperbolic (resp. Lorentzian)
spherical curve which matches in a timelike ruled surface in Minkowski 3-
space E3

1. It is shown that if timelike ruled surfaces are considered in the
context of line geometry, then a definition analogous to the concept of helix
can be developed for such surfaces. Especially, if all the generators of a
timelike ruled surface have a constant spatial distance with a definite timelike
line then the timelike ruled surface is a constant Disteli-axis ruled surface.
Furthermore, the locus of a timelike line, fixed in a body undergoing a screw
motion of constant pitch, is a timelike general helicoid if the striction curve
is a timelike or spacelike helix, a Lorentzian sphere if the striction curve is
Euclidean circle, and a timelike cone if the striction curve becomes a fixed
point.
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2 Basic concepts

We start with basic concepts on the Minkowski 3–space E3
1, the theory of

dual numbers, dual Lorentzian vectors and E. Study map, for example [1-3,
17-21].

A dual number A is a number a + εa∗, where a, a∗ in R and ε is a dual
unit with the property that ε2 = 0. Then the set

D3 = {A:= a + εa∗ =(A1, A2, A3)},

together with the Lorentzian scalar product

< A,A >= −A2
1 + A2

2 + A2
3,

forms the so called dual Lorentzian 3-space D3
1. Thus, a pointA = (A1, A2, A3)

t

has dual coordinates Ai = (ai + εa∗i ) ∈ D. If A is spacelike or timelike dual
vector the norm ‖A‖ of A is defined by

‖A‖ =
√
|< A,A >| =

√
|< a, a >|+ε 1

2
√
|< a, a >|

< a, a >

|< a, a >|
.2 < a, a∗ >

= ‖a‖+ ε
1

‖a‖
< a, a >

|< a, a >|
< a, a∗ > .

If a is spacelike, we have

‖A‖ = ‖a‖+ ε
1

‖a‖
< a, a∗ >= ‖a‖

(
1 + ε

1

‖a‖2
< a, a∗ >

)
.

If a is timelike, we have

‖A‖ = ‖a‖ − ε 1

‖a‖
< a, a∗ >= ‖a‖

(
1− ε 1

‖a‖2
< a, a∗ >

)
.

Therefore, A is called a spacelike dual unit vector if <A,A>=1 and a timelike
dual unit vector if <A,A>= −1. The hyperbolic and Lorentzian dual unit
spheres, respectively, are

H2
+ =

{
A ∈D3

1 | −A2
1 + A2

2 + A2
3 = −1

}
,

and
S2
1 =

{
A ∈D3

1 | −A2
1 + A2

2 + A2
3 = 1

}
.
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Theorem 1. There is a one-to-one correspondence between spacelike (resp.
timelike) oriented lines in E3

1 and ordered pairs of vectors (a, a∗) such that

‖A‖2 = ±1⇐⇒ ‖a‖2 = ±1, < a, a∗>=0, (2.1)

where ai, a
∗
i (i = 1, 2, 3) of a, and a∗ are called the normed Plücker coordi-

nates of the line.

Via Theorem 1 we have the following map (E. Study’s map): The dual
unit spheres are shaped as a pair of conjugate hyperboloids. The ring shaped
hyperboloid represents the set of spacelike lines, the common asymptotic cone
represents the set of null (lightlike) lines, and the oval shaped hyperboloid
forms the set of timelike lines, opposite points of each hyperboloid perform
the pair of obverse vectors on a line (see Fig. 1).

Figure 1: The dual hyperbolic and dual Lorentzian unit spheres.

Applying to E. Study map, a differentiable curve on H2
+ corresponds to a

timelike ruled surface in E3
1. Similarly the dual curve on S2

1 corresponds to a
spacelike or timelike ruled surface in E3

1. In view of Eq. (1), four independent
parameters locating a line complex, so it is reasonable to intersect any two
of line complexes and gain a finite number of lines (line congruence) with
common properties. The intersection of two independent linear congruences
carry outs a differentiable family of straight lines (a ruled surface). Ruled
surfaces (such as cylinders and cones) include rulings where the tangent plane
relates the surface over the entire line (torsal lines) [3].
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Definition 1. Let T and Z are two non-null dual vectors in D3
1:

i) Let us consider that T and Z are spacelike dual vectors, then
• If they span a spacelike dual plane; there is a unique dual number

Ψ = ψ + εψ∗; 0 ≤ ψ ≤ π, and ψ∗ ∈ R such that <T,Z>= ‖T‖ ‖Z‖ cosh Ψ.
This number is called the spacelike dual angle between T and Z.
• If they span a timelike dual plane; there is a unique dual number Ψ =

ψ + εψ∗ ≥ 0 such that <T,Z>= ε ‖T‖ ‖Z‖ cosh Ψ, where ε = +1 or ε = −1
according to sign(T2) = sign(Z2) or sign(T2) 6= sign(Z2), respectively. This
number is called the central dual angle between T and Z.
ii) Let us consider that T and Z are timelike dual vectors, then there is a
unique dual number Ψ = ψ + εψ∗ ≥ 0 such that <T,Z>= ε ‖T‖ ‖Z‖ cosh Ψ,
where ε = +1 or ε = −1 according to T and Z have different time-orientation
or the same time-orientation, respectively.
iii) Let us consider that T is spacelike dual, and Z is timelike dual, then
there is a unique Lorentzian timelike dual angle Ψ = ψ + εψ∗ ≥ 0 such
that <T,Z>= ε ‖T‖ ‖Z‖ sinh Ψ, where ε = +1 or ε = −1 according to
sign(T2) = sign(Z1) or sign(T2) 6= sign(Z1).

2.1 One-parameter hyperbolic dual spherical motions

Let H2
+m and H2

+f be two hyperbolic dual unit spheres with dual coordinate
frames {O; R1(timelike), R2, R3}, and {O; F1(timelike), F2, F3}, respec-
tively. We suppose that the elements of the set {O; R1, R2, R3} are func-
tions of a real parameter t ∈ R (say the time) whilst the set {O; F1, F2, F3}
is fixed. Then H2

+m moves with respect to H2
+f . Such motion is called

a one-parameter hyperbolic dual spherical motions, and will denoted by
H2

+m/H2
+f . If the hyperbolic dual unit spheres H2

+m and H2
+f corresponds

to the Lorentzian line spaces Lm and Lf , respectively, then H2
+m/H2

+f is
being congruous with the one-parameter Lorentzian spatial motion Lm/Lf .
Therefore Lm is the moving space with respect to the fixed space Lf . In
Lorentzian sense, by putting < Fi,Rj >= Lij and introducing the dual ma-
trix L = (Lij), we can write the E. Study map in the matrix form as follows:

H2
+m/H2

+f :

 F1

F2

F3

 =

 L11 L12 L13

L21 L22 L23

L31 L32 L33

 R1

R2

R3

 . (2.2)
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The dual matrix L = (Lij) + ε(L∗ij) has the possession that LT = εL−1ε,
where the matrix ε is a signature matrix and will be denoted by [14]

ε =

 −1 0 0
0 1 0
0 0 1

 . (2.3)

Since LT = εL−1ε, and L−1 = εLT εL, then

LL−1 = LεLT ε = εLT εL = I, (2.4)

where I is the 3 × 3 unit matrix. Hence, the set of dual orthogonal 3 × 3
matrices, denoted by O(D3×3

1 ), form a group with matrix multiplication as the
group operation (real orthogonal matrices are subgroup of dual orthogonal
matrices). The identity element of O(D3×3

1 ) is the 3× 3 unit matrix.
The Lie algebra L(OD3×3

1
) of the group GL of 3 × 3 positive orthogonal

dual matrices L is the algebra of skew-adjoint 3× 3 dual matrices

Ω(t) := L
′
εLT ε =

 0 Ω3 −Ω2

Ω3 0 Ω1

Ω2 −Ω1 0

 =

 −Ω1

Ω2

Ω3

 , (2.5)

where dash indicates the differential of L with respect to the real parameter
t ∈ R. Then the derivative equation of H2

+m/H2
+f is: R

′
1

R
′
2

R
′
3

 =

 0 Ω3 −Ω2

Ω3 0 Ω1

Ω2 −Ω1 0

 R1

R2

R3

 = Ω×

 R1

R2

R3

 . (2.6)

where Ω(t)= ω+εω∗ = (Ω1,Ω2,Ω3) is called the instantaneous dual rotation
vector of H2

+m/H2
+f . ω and ω∗, respectively, corresponding to the instanta-

neous rotational differential velocity vector and the instantaneous transla-
tional differential velocity vector of Lm/Lf .

3 Main results

During the motion Lm/Lf , any fixed timelike line X ∈Lm, generally, traces
a timelike ruled surface in Lf will be indicated by (X). In kinematics, this
timelike ruled surface is indicate to as timelike line trajectory. In order to
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analyze its geometrical properties, we set up a moving frame coincident with
the point on H2

+m. Then the Blaschke frame can be construct as:

X = X(t), T(t) = X
′

‖X′‖ , G(t) = X×T,

G×X = T, T×G = −X,
< X,X > =− 1, < T,T >= < G,G >=1,

< X,T >=< X,G >=< G,T >= 0.


The dual unit vectors X, T = t + εt∗, and G = g + εg∗ match to three
synchronous alternately orthogonal lines in Minkowski 3-space E3

1. Their
point of intersection is the central point C on the ruling X. G is the limit
position of the common perpendicular to X(t) and X(t+dt), and is called the
central tangent of the ruled surface at the central point. The line T is called
the central normal of X at the central point. Thus, the motion H2

+m/H2
+f is

given by [16]

H2
+m/H2

+f :

 X
′

T
′

G
′

 =

 0 P 0
P 0 Q
0 −Q 0

 X
T
G

 = Ω×

 X
T
G

 , (3.1)

where

P = p+ εp∗ =
∥∥∥X′

∥∥∥ , Q := q + εq∗ = det(X,X
′
,X

′′

)
∥∥∥X′

∥∥∥−2 ,
are Blaschke invariants of (X), and Ω(t) =QX+PG. The tangent of the
striction curve can be written as

C
′
= −q∗x + p∗g.

The invariants p, p∗, q, and q∗ are said to be the structure functions of the
ruled surface. The distribution parameters of the ruled surfaces (X), (T ),
and (G), respectively, are:

µ(t) =
p∗

p
, δ(t) =

pp∗ + qq∗

q2 + p2
, and Γ(t) =

q∗

q
.

Definition 2. A non-developable ruled surface is defined as a constant pa-
rameter ruled surface if the structure functions µ(t), δ(t), and Γ(t) are all
constant.

7



Under the hypothesis that |Q| > |P |, we specify the evolute of X ∈ H2
+

as:

B(t) = b(t) + εb∗(t) =
Ω

‖Ω‖
=
QX+PG√
Q2 − P 2

. (3.2)

It is apparent that B is the Disteli-axis (striction-axis or curvature-axis) of
(X). Hence, we may write B of the form

B(t) = cosh ΨX+ sinh ΨG, (3.3)

where

coth Ψ =
Q

P
.

Notice that Ψ = ψ+εψ∗ is the Lorentzian dual spherical radius of curvature.
The trigonometric hyperbolic function Ψ can be written as:

coth Ψ = cothψ − εψ∗ 1

sinh2 ψ
=
q + εq∗

p+ εp∗
. (3.4)

The function

Σ(t) := γ + ε (Γ− µγ) =
Q

P
, (3.5)

is called the dual geodesic curvature. Here γ(t) = q
p

is the geodesic curvature

of the hyperbolic spherical image curve t ∈ I 7→ x(t) of (X). Thus, by means
of the real and dual parts of Eqs. (10), and (11), respectively, we find

γ(t) = cothψ =
q

p
, (3.6)

and

ψ∗(t) =
1

2
(µ− Γ) sinh 2ψ, (3.7)

ψ∗ is the normal distance along T measured from B to X.

3.1 Kinematic-geometry and timelike Plücker conoid

Now, we study the kinematic-geometry of the timelike line trajectory (X).
To do this, we are do a detailed study of the Blaschke invariants P (t), and
Q(t). From Eq. (7), we can write the following equations:

X
′

(t) = (‖Ω‖B)×X, T
′

(t) = (‖Ω‖B)×T, G
′

(t) = (‖Ω‖B)×G. (3.8)

8



Hence, at any instant, it is seen that:‖Ω‖ = Ω = ω+ εω∗ is the dual angular
speed of the motion H2

+m/H2
+f about B. Thus,

ω(t) =
√
q2 − p2, and ω∗(t) =

qq∗ − pp∗√
q2 − p2

, (3.9)

corresponding to the rotational angular speed and translational angular speed
of the motion Lm/Lf along B, respectively.

Hence, the following corollary can be given:

Corollary 1. During the motion Lm/Lf , at any instant t, the pitch of
the motion can be given as

h(t) :=
< ω, ω∗>

‖ω‖2
= Γ cosh2 ψ − µ sinh2 ψ. (3.10)

It is very apparent that if the dual vector Ω = ω+εω∗ is given, then the
following can be specified:
(i) The timelike Disteli-axis B is specified by Eq. (9).
(ii) The dual angular speed of its dual angular velocity is ‖Ω‖ = ω(1 + εh).
(iii) If y indicate to a point on the timelike Disteli-axis B, then

y(t, v)= b× b∗ + vb, v ∈ R, (3.11)

is a non-developable timelike ruled surface (B). Note that if the motion
Lm/Lf is pure rotation, that is, h(u) = 0, then

B(t)= b(t) + εb∗(t) =
1

‖ω‖
(ω + εω∗). (3.12)

Note also that if h(t) = 0, and ‖ω‖2 = −1, then Ω is an timelike oriented line.
However, in the case of the motion is pure translational, i.e. Ω =0+εω∗, we
set ω∗ = ‖Ω∗‖ , ω∗b =ω∗ and select an arbitrary b∗under ω∗ 6= 0, otherwise
the timelike unit vector b can be chosen arbitrarily, too.

The Eqs. in (13), and (16), respectively, are Minkowski versions of the
Mannhiem and Hamilton formulae of surfaces theory in Euclidean 3-space.
Now, let us to give geometrical significances of these formulae. ψ∗ in Eq.
(13) is timelike Plücker conoid has the parametric exemplification as follows:
T is coincident with the spacelike y−axis of a fixed Minkowski frame (oxyz);
while the position of the timelike dual unit vector B is given by angle ψ

9



and distance ψ∗ along the spacelike positive y−axis. The timelike dual unit
vector X and the spacelike dual unit vector G can be selected in sense of
x and z-axes, respectively. This shows that the dual unit vectors X and G
together with T create the essential coordinate system of the Plücker conoid,
as shown in Fig. 2. If y denote a point on this timelike surface, then we have

M : y(t, v)=(0, ψ∗, 0) + v(coshψ, 0, sinhψ), v ∈ R, (3.13)

Employing this parametrization, the timelike dual unit vectors B are obvi-
ously visible crossing through the y−axis. Thus,

ψ∗ := y =
1

2
(µ− Γ) sinh 2ψ, x = v coshψ, and z = v sinhψ, (3.14)

where ψ∗ gives us the intersection point of the principal axes X and G lies at
a half of the conoid height. It can easily be confirmed by direct calculations
that (

x2 − z2
)
y − (µ− Γ)xz = 0, (3.15)

which is the algebraic equation for timelike Plücker conoid occasionally also
called the cylindroid. The timelike Plücker conoid given by Eq. (21) has two
structure functions and it depends only on their difference; µ−Γ = 1, −.9 ≤
ψ ≤ .9, −1.5 ≤ v ≤ 1.5 (Fig. 3). Furthermore, solving for x

z
, the roots of the

second-order algebraic equation are given by:

x

z
=

1

2y

[
µ− Γ±

√
(µ− Γ)2 − 4y2

]
. (3.16)

The Plücker conoid has also two torsal planes π1, π2, and each one of them
contains one torsal line L as as follows:
1) If h(u) 6= 0 then there are two real torsal lines L1, and L2 passing
through the point (0, y, 0) only if y < (µ− Γ) /2; for the two limit points
y = ± (µ− Γ) /2 they coincide with the principal axes X and G,
2) If h(u) = 0 then the two torsal lines L1, and L2 are represented by

x

z
:= cothψ = ±

√
µ/Γ, y = ±

√
Γµ. (3.17)

Eq. (23) shows that the two torsal lines L1, and L2 are perpendicular each
other in Lorentzian sense.

10



Furthermore, transition from polar coordinates to Cartesian coordinates
could be completed by substituting

x =
coshψ√

h
, z =

sinhψ√
h
,

into Hamilton’s formula, one obtain the following conic section

D : |Γ|x2 − |µ| z2 = 1.

This conic section is Minkowski version of the Dupin indicatrix of surfaces
theory in Euclidean 3-space. If (X) is a timelike developable ruled surface,
that is µ = 0, in this case the Dupin’s indicatrix is a set of parallels lines
represented by

y2 =

∣∣∣∣ 1Γ
∣∣∣∣ with µ = 0.

Figure 2: B = cosh ΨX+ sinh ΨG, Figure 3: Timelike Plucker conoid

3.2 The constant Disteli-axis timelike ruled surfaces

A timelike ruled surface (X) is defined as a constant Disteli-axis ruled surface
if the dual angle between the ruling of (X) and the Disteli-axis is always
constant. Thus, when we say (X) is a timelike constant Disteli-axis, we
mean that all the rulings of (X) have a constant Lorentzian dual angle from
its Disteli-axis.

11



The dual arc length dŝ = ds+ εds∗ of X(t) ∈ H2
+ is

ŝ(t) =

t∫
0

Pdt =

t∫
0

p(1 + εµ)dt. (3.18)

After that, we will use the dual arc length parameter ŝ instead of t. If the
prime means to differentiation as ŝ, then from Eq. (7), we get X

′

T
′

G
′

 =

 0 1 0
1 0 Σ
0 −Σ 0

 X
T
G

 = Ω×

 X
T
G

 , (3.19)

where Ω = ΣX + G. Thus, we may write the following relationships:

κ̂(ŝ) := κ+εκ∗ =
√

Σ2 − 1 =
1

sinhψ
=

1

ρ̃
, τ̂(ŝ) := τ+ετ ∗ = ± Σ

′

√
Σ2 − 1

= ±Ψ
′
,

(3.20)
where κ̂ and τ̂ are the dual curvature function and the dual torsion function
of X(ŝ) ∈ H2

+, respectively. The terms found in Eqs. (26) are such as to
their counterparts in 3-dimensional hyperbolic spherical geometry.

Definition 3. For a one-parameter hyperbolic dual motion, at an instant
ŝ ∈ D, an oriented timelike line Z in fixed space will be said to be timelike
Bk-Disteli-axis of (X) if for all i such that 1 ≤ i ≤ k, <Z,Xi(ŝ) >= 0, but
<Z,Xk+1(ŝ) >6= 0. Here Xi denotes the i-th derivatives of X.

Via this definition, consider the Lorentzian dual angle

ρ̃ = cosh−1 (< Z,X >) ,

such that X and Z have the same time-orientation, Z, and ρ̃ stay fixedt up
to the second order at ŝ = ŝ0, i.e.

ρ̃
′ | ŝ = ŝ0 = 0, X

′ | ŝ = ŝ0 = 0,

and
ρ̃
′′

| ŝ = ŝ0 = 0, X
′′

| ŝ = ŝ0 = 0.

We have for the first order

< X
′
,Z > = 0,

12



and for the second order properties

< X
′′

,Z > |= 0.

Then, ρ̃ will be invariant in the second approximation if and only if Z is the
timelike Disteli-axis B of (X), that is,

ρ̃
′
= ρ̃

′′
= 0⇔ Z=

X
′ ×X

′′

‖X′ ×X′′‖
=±B. (3.21)

By the definition of the timelike Disteli-axis, we have the dual frame;

U1 = B(ŝ), U2(ŝ) =
B
′

‖B′‖
, U3(ŝ) = B×U2, (3.22)

as the Blaschke frame along B Thus, the calculations give that: U1

U2

U3

 =

 cosh Ψ 0 sinh Ψ
sinh Ψ 0 cosh Ψ

0 −1 0

 X
T
G

 . (3.23)

The variations of this frame are analogous to Eqs. (7) and is given by: U
′
1

U
′
2

U
′
3

 =

 0 Ψ
′

0
Ψ
′

0 κ̂
0 −κ̂ 0

 U1

U2

U3

 = Ω̃×

 U1

U2

U3

 , (3.24)

where Ω̃(ŝ)=κ̂U1 + Ψ
′
U3. Comparing Eq. (25) with Eq. (30) we have that

the relative dual velocity is

Ω− Ω̃ = Ψ
′
T. (3.25)

This shows that, the Blaschke frame involves a further rotation around the
central tangent T, whose speed equals the dual torsion τ̂(s). Hence, we ob-
tain that: If τ̂(ŝ) = τ + ετ ∗ = 0(Σ

′
= 0), i.e. ψ and ψ∗ are constants, then

the timelike Disteli-axis is fixed up to the second order and the timelike line
X moves on it with constant pitch h. Thus kinematically the timelike ruled
surface (X) is generated during a hyperbolic one-parameter screw motion of
pitch h about the constant timelike Disteli-axis B, by the timelike line X
situated at a constant Lorentzian distance ψ∗ and constant Lorentzian angle
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ψ relative to B. Hence, we have:

Theorem 2. A non-developable timelike ruled surface (X) is a constant
timelike Disteli-axis if and only if (a) γ =constant, and (b) Γ−µγ =constant.

Now, we construct the timelike ruled surfaces for which the Disteli-axis
is constant. Thus, from Eq. (25), we have the following ordinary differential
equation

X
′′′

+ κ̃2X′ = 0. (3.26)

Then without loss of generality, we may assume X
′
(0)=(0, 1, 0). Under such

initial condition, a spacelike dual unit vector X
′

is given by

X
′
(ŝ)=A1 sin (κ̃ŝ) F1 + (cos (κ̃ŝ) + A2 sin (κ̃ŝ)) F2 + A3 sin (κ̃ŝ) F3,

where A1, A2, and A3 are some dual constants satisfying A2
1 − A2

3 = 1, and
A2 = 0. From this, we can obtain

X(ŝ)= (−ρ̃A1 cos (κ̃ŝ) +D1) F1 + ρ̃ sin (κ̃ŝ) F2 + (−ρ̃A3 cos (κ̃ŝ) +D3) F3,

where D1, D3, are some dual constants satisfying A3D3 − A1D1 = 0, and
D2

3−D2
1 = ρ̃2 +1. If we adopt the dual coordinates transformation such that X1

X2

X3

 =

 A1 0 −A3

0 1 0
−A3 0 A1

 X1

X2

X3

 ,

with respect to the new coordinates Xi , the dual vector X(ŝ) becomes

X(ŝ)=ρ̃ cos (κ̃ŝ) F1+ρ̃ sin (κ̃ŝ) F2 +DF3, (3.27)

for a dual constant D = A1D3 − A3D1, with D = ∓ cosh Ψ. It is noted that
X(ŝ) does not depend on the choice of the lower sign or upper sign of ∓.
Therefore through the paper we choice upper sign, that is,

X(Φ)= sinh Ψ cos (κ̃ŝ) F1+ sinh Ψ sin (κ̃ŝ) F2 − cosh ΨF3. (3.28)

where Θ = ϑ + εϑ∗ = κ̃ŝ. This means that the timelike lines B and F3 are
coincident, and

ψ = f1(real const.), ψ
∗ = f2(real const.). (3.29)
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Since ϑ, and ϑ∗ are two-independent parameters, we can say that (X) is, in
generally, a timelike line congruence in Lf−space.

Now we locate the equation of this timelike line congruence in terms of
the Plücker coordinates. By separating the real and dual parts of Eq. (34),
respectively, we have

x(ϑ, ϑ∗)= (sinhψ cosϑ, sinhψ sinϑ,− coshψ) , (3.30)

and

x∗(ϑ, ϑ∗) =

 x∗1
x∗2
x∗3

 =

 ψ∗ cosϑ coshψ − ϑ∗ sinϑ sinhψ
ψ∗ sinϑ coshψ + ϑ∗ cosϑ sinhψ

−ψ∗ sinhψ

 . (3.31)

Let α(α1, α2, α3) denote a point on X. Since α×x = x∗ we have the system
of linear equations in α1, α2, and α3:

−α3 sinϑ sinhψ − α2 coshψ = x∗1,
α3 cosϑ sinhψ + α1 coshψ = x∗2,

−α1 sinϑ sinhψ + α2 cosϑ sinhψ = x∗3.


The matrix of coefficients of unknowns α1, α2, and α3 is 0 − coshψ − sinϑ sinhψ

coshψ 0 cosϑ sinhψ
− sinϑ sinhψ cosϑ sinhψ 0

 ,

and therefore its rank is 2 with ψ 6= 0, and ϑ 6= 0. In addition the rank of
the augmented matrix 0 coshψ − sinϑ sinhψ x∗1

− coshψ 0 cosϑ sinhψ x∗2
− sinϑ sinhψ cosϑ sinhψ 0 x∗3

 ,

is 2. Hence this system has infinitely many solutions represented with

α1 = ψ∗ sinϑ+ (ϑ∗ − α3) tanhψ cosϑ,
α2 = −ψ∗ cosϑ+ (ϑ∗ − α3) tanhψ sinϑ,
−α1 sinϑ sinhψ + α2 cosϑ sinhψ = x∗3.

(3.32)

Since α3 is taken at random, then we may take ϑ∗ − α3 = 0. In this case,
Eq. (38) reduces to

α1(ϑ) = ψ∗ sinϑ, α2(ϑ) = −ψ∗ cosϑ, α3(ϑ) = −ϑ∗. (3.33)
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Thus, the director surface of this timelike line congruence is given by

α(ϑ, ϑ∗) = (ψ∗ sinϑ,−ψ∗ cosϑ,−ϑ∗) . (3.34)

Let m(m1, m2, m3) denote a point on this timelike line congruence.
Hence, we obtain:

m(ϑ, ϑ∗, v) = α(ϑ, ϑ∗) + vx(ϑ, ϑ∗), v ∈ R, (3.35)

which consists of family of timelike ruled surfaces m(ϑ, ϑ∗0, v), m(ϑ0, ϑ
∗, v),

and m(ϑ(t), ϑ∗(t), v). Here ϑ∗0, ϑ0, and t, respectively, are real constants. By
means of Eqs. (36), (39), and (41) we simply find that

m1 = ψ∗ sinϑ+ v sinhψ cosϑ,
m2 = −ψ∗ cosϑ+ v sinhψ sinϑ,

m3 = −ϑ∗ − v coshψ,

 (3.36)

or by eliminating ϑ, we have

(X) :
m2

1

ψ∗2
+
m2

2

ψ∗2
− M2

3

n2
= 1, (3.37)

where n = ψ∗ cothψ, and M3 = m3 + ϑ∗. Then (X) is two-parameter
Lorentzian spheres. The intersection of each Lorentzian sphere, and the
corresponding spacelike plane M3 := m3+ϑ∗ = 0 is m2

1+m2
2 = ψ∗2. Therefore

the envelope of (X) is the timelike cylinder m2
1 + m2

2 = ψ∗2. Notice that if
ϑ∗ = 0, then

(X) :
m2

1

ψ∗2
+
m2

2

ψ∗2
− m2

3

n2
= 1. (3.38)

3.3 Constant parameter timelike ruled surfaces

Based on the properties of the Disteli-axis is constant, we can discuss the
constant parameter timelike ruled surfaces. For this aim, a relation such as
F (ϑ, ϑ∗) = 0, between the parameters restricts Eq. (34) (resp. (41)) to a
one-parameter set of timelike lines, that is, a timelike ruled surface in the
congruence. Therefore, if we select ϑ∗ = hϑ, h indicating to the pitch of
the motion H2

+m/H2
+f , and ϑ as the motion parameter, then Eq. (34) (resp.

(41)) performs a timelike ruled surface in Lf−space. Thus, X
T
G

 =

 sinh Ψ cos Θ sinh Ψ sin Θ − cosh Ψ
− sin Θ cos Θ 0

cosh Ψ cos Θ cosh Ψ sin Θ − sinh Ψ

 F1

F2

F3

 .

16



In this case we get:

d

dϑ

 X
T
G

 =

 0 (1 + εh) sinh Ψ 0
(1 + εh) sinh Ψ 0 (1 + εh) cosh Ψ

0 −(1 + εh) cosh Ψ 0

 X
T
G

 .

Thereby, the Blaschke invariants are

P = (1 + εh) sinh Ψ, Q = (1 + εh) cosh Ψ, and coth Ψ =
Q

P
. (3.39)

By means of the real and dual parts of Eq. (45), we obtain

µ = h+ ψ∗ cothψ, Γ = h+ ψ∗ tanhψ, γ = cothψ, (3.40)

where µ, Γ, and γ are constants. Hence, as a direct consequence of Definition
2, (X) is a constant parameter timelike ruled surface. We simply find the
base curve as;

α(ϑ) = (ψ∗ sinϑ,−ψ∗ cosϑ,−hϑ) . (3.41)

It can be show that < dα
dϑ
, dx
dϑ
>= 0; so the base curve of (X) is its striction

curve. Moreover, it can be show that α(ϑ) is a spacelike (resp. a timelike) if
and only if |ψ∗| > |h| (resp. |ψ∗| < |h|). For the curvature κ, and the torsion
τ , we can find the following calculations simply;

κ(ϑ) =
ψ∗

ψ∗2 − h2
, and τ(ϑ) =

h

ψ∗2 − h2
.

Hence, α(ϑ) is a spacelike (resp. a timelike) helix if and only if |ψ∗| > |h|
(resp. |ψ∗| < |h|). Furthermore, we have

(X) : m(ϑ, v) = (ψ∗ sinϑ+ vc1 cosϑ,−ψ∗ cosϑ+ vc1 sinϑ,−hϑ− c2v) ,
(3.42)

where c1 = sinhψ, and c2 = coshψ;.ψ = 0.7, ϑ ∈ [0, 2π], v ∈ [−4, 4]. Ac-
cording to Eq. (48), we have the following types;
(1) Timelike general helicoid: For h = 0.5(resp. h = 1), and ψ∗ = 1 (resp.
ψ∗ = 0.5), respectively, the graph of the surfaces are shown in Figs. 4, and
5;
(2) Lorentzian sphere: For h = 0, ψ∗ = 1, the graph of the surface is shown
in Fig. 6;
(3) Timelike Cone: Figure 7 shows the surface (X) with ψ∗ = h = 0.
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Figure 4: (X) with h = 0, and
ψ∗ = 0.5

Figure 5: (X) with h = 0.5, and
ψ∗ = 1

Figure 6: (X) with h = 0, and ψ∗ = 1 Figure 7: (X) with h = 0 = ψ∗ = 0
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4 Conclusion

In this work, we analyze a certain class of timelike ruled with constant Disteli-
axis in Minkowski 3-space E3

1. As a result, the timelike ruled surface gener-
ated by a timelike line undergoing a Lorentzian screw motion is examined in
detail. We believe that the study of spatial kinematics in Minkowski 3-space
E3 via line geometry may shed some light on current research problems and
perhaps suggest new ones.
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