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Abstract

In this study, we will implement new perceptions for the bright and dark soliton solutions to the modified nonlinear Schrödinger

equation (MNLSE)or forms of the rogue wave modes for a derivative nonlinear Schrodinger model with positive linear dispersion

which describe the propagation of rogue waves in Ocean engineering as well as all similar waves such as dynamics waveguides

that have unexpected large displacements, the waves which occur only in the regime of positive cubic nonlinearity, regime that

coincides exactly with the existence of instabilities of plane waves , long-wave limit of a breather (a pulsing mode). Two famous

different schemas are involved for this purpose. The first schema is the solitary wave ansatze method (SWAM), while the second

scheme is the extended simple equation method (ESEM). The two schemas are implemented in the same vein and parallel to

construct new perceptions to the soliton solutions of this model. A comparison between the obtained new perceptions with the

old perceptions that achieved previously by other authors has been demonstrated.
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ABSTRACT 

 
In this study, we will implement new perceptions for the bright and dark soliton solutions to 

the modified nonlinear Schrödinger equation (MNLSE)or forms of the rogue wave modes for 

a derivative nonlinear Schrodinger model with positive linear dispersion which describe the 

propagation of rogue waves in Ocean engineering as well as all similar waves such as 

dynamics waveguides that have unexpected large displacements, the waves which occur only 

in the regime of positive cubic nonlinearity, regime that coincides exactly with the existence 

of instabilities of plane waves , long-wave limit of a breather (a pulsing mode). Two famous 

different schemas are involved for this purpose. The first schema is the solitary wave ansatze 

method (SWAM), while the second scheme is the extended simple equation method (ESEM). 

The two schemas are implemented in the same vein and parallel to construct new perceptions 

to the soliton solutions of this model. A comparison between the obtained new perceptions 

with the old perceptions that achieved previously by other authors has been demonstrated.    

Keywords: The modified nonlinear Schrödinger equation; the solitary wave ansatze method, 

the extended simple equation method; soliton solutions. 

1-Introduction 

The Schrödinger equation is considered as the main base of many phenomena arising in 

different branches of physics such as atomic and nuclear physics, optics, plasma physics, 

fluid-dynamics, etc. Recently several different forms of this equations have been discovered 

to represent many phenomena in different branches of physics. This article focused on the 

famous one of these forms of this equation which is the MNLSE that represents the 

propagation of random waves in Ocean engineering as long-wave which widely occurs in 

fluid dynamics and optical waveguides that have unexpected large displacements. Two 

different perceptions for the accurate solution to this model have been established via two 

different techniques. The first technique is implemented through the SWAM [1-3], while the 

second technique is implemented via the ESEM [4-6]. These two perceptions are 

implemented successfully by these two distinct schemas which are invited for this purpose.  
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Several different forms of the Schrödinger equation have been studied via big number of 

authors through their suggested methods which treat many phenomenon behavior in various 

branches of sciences to achieve the exact and hence the solitary solutions of these 

phenomenon. See for example, Bekir and Zahran [6] who achieved the  bright and dark 

soliton solutions to the complex Kundu-Eckhaus equation which represents a general form of 

integrable system that is governed by  the equivalent to the mixed nonlinear Schrodinger 

equation, Bekir and Zahran [7] who extracted three distinct and impressive visions for the 

soliton solutions to the higher-order nonlinear Schrodinger equation, Mirzazadeh et al. [8] 

who obtained the optical soliton solutions to the Kundu–Eckhaus equation with general 

coefficients using the  Riccati–Bernoulli's sub-ODE method as well as Kudryashov's scheme, 

Biswas et al. [9] who extracted the soliton solutions from the Lakshmanan–Porsezian–Daniel 

model by the aid of the modified simple equation method, Biswas [10] who extracted the 

optical soliton cooling with polynomial law of nonlinear refractive index via the perturbation 

theory, Seadawy et al. [11] who achieved the bright and dark solitary wave soliton 

solutions for the generalized higher order nonlinear Schrödinger equation and its 

stability, Vinita and Ray [12] who used the Lie symmetry analysis  to achieve the 

invariant solution and similarity reduction of the resonance nonlinear Schrödinger 

equation, Raza et al. [13] who established the optical solitons and stability analysis for 

the generalized second-order nonlinear Schrödinger equation in an optical fiber. 

Moreover, big number of manners which were applied to solve many forms of the 

NLPDE arising in different nonlinear phenomenons was listed through references [14-

31]. 
Specially, few tries were constructed through some authors to demonstrate the soliton 

solutions to the MNLSE using different methods namely, Stéphane et al. [32] who apply the 

extended (G'/G) method  to the  modified nonlinear Schrodinger equation in the case of ocean 

rogue waves,  Chan et al. [33] who calculated the rogue waves of a derivative non-linear 

Schrödinger equation as a long-wave limit of a breather ( a pulsing mode) which widely 

occurs in fluid dynamics and optical waveguides that have unexpected large displacements, 

Yu and Yan [34] who constructed explicit rouge wave solutions and dark-bright solutions for 

the inhomogeneous coupled nonlinear Schrödinger equation with variable coefficients by 

means of similarity transformations and  Younis et al. [35] who used the extended Fan sub-

equation method with five parameters to achieve new families of exact traveling wave 

solutions for the modified nonlinear Schrödinger equation. 

 According to [32-35], the MNLSE can be proposed in the form, 

 
2 2 * 2

1 2 1 2 3 4t xx xxx x xiQ Q Q Q i Q i Q Q i Q Q Q                                         (1) 

Where the slightly changes in the boundary region of the random waves in Ocean engineering 

are governed by the complex function ( , ),Q x t  
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And ,k w  are the wave number and frequency of the carrier wave respectively. 
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This paper is organized as follow, in sections two and three we will give description of the 

SWAM and its application to find the soliton solution of MNLSE respectively. In sections 

four and five the ESEM schema and its application to find other new perceptions of soliton 

solution of this model respectively. In section six brief conclusion of our work has been 

established.  

The main purpose of this study is to implement new different perceptions of the optical 

soliton solution to the MNLSE (in terms of some parameters) using these two various 

schemas which are introduced above.  If we give definite values for the appearing parameters 

in these exact solutions, new perceptions of the solitary solutions could be demonstrated. 

2. Description of the SWAM 

According to [1, 3] the SWAM solutions can be proposed as follows,             

Consider the wave transformation, 

  
( , )( , ) ( , ) iR x tQ x t x t e                                                                                          (2)                                                                 

Where ( , )x t and ( , )R x t are the amplitude portion and the phase portion of soliton 

respectively. Hence, via simple calculation of Eq.(2) we get the following relations,   

( ) iR

t t tQ i R e                                                                                                  (3)                                                                                                                                              

  ( ) iR

x x xQ i R e                                                                                                 (4)                                                                                      

    
2( 2 ) iR

xx xx x x xx xQ i R i R R e                                                                      (5)                                                       

3 2( 3 3 3 3 ) iR

xxx xxx xx x x x x xxx x xx x xxQ i R i R R i R i R R R e                     (6) 

Consequently, the bright and dark soliton solutions can be implemented as follows, 

 (I) The bright soliton solutions 

  1

1 1 1 1 1( , ) sech , ( ) ( , )
R

x t A t where t B x w t and R x t kx t                             (7)              

     1

1 1 1 1 1sech tanh
R

t A Bw R t t                                                                                      (8)                                                      

       1

1 1 1 1sech tanh
R

x A BR t t                                                                                           (9) 

1 122 2 2

1 1 1 1 1 1 1(1 )sech sech
R R

xx A B R R t A B R t 
                                                    (10) 

1 123 3 3

1 1 1 1 1 1 1 1 1 1( 1)( 2)sech tanh sech tanh
R R

xxx A B R R R t t A B R t t 
               (11) 

(II) The dark soliton solutions 

   2

2 2 2 2 2( , ) tanh , ( ) ( , )
R

x t A t where t B x w t and R x t kx t                          (12) 



 

    2 21 1

2 2 2 2 2[tanh tanh ]
R R

t A w BR t t  
                                                       (13)           

       2 21 1

2 2 2 2[tanh tanh ]
R R

x A BR t t  
                                                           (14) 

 2 2 22 22 2 2 2

2 2 2 2 2 2 2 2 2 2 2( 1) tanh 2 tanh ( 1) tanh
R R R

xx A R R B t A R B t A R R B t  
           (15) 

1 1

1 1

3 13 3 3 3

1 1 1 1 1 1 1 1 1 1 1 1

1 33 2 3

1 1 1 1 1 1 1 1 1 1 1

( 1)( 2) tanh ( ) [2 ( 1)( 2) ]tanh ( )

[2 ( 1)( 2)]tanh ( ) ( 1)( 2) tanh ( )

R R

xxx

R R

A R R R B t A B R A R R R B t

A B R R R R t A B R R R t

  

 

      

      
     (16)                 

3. The bright and dark soliton solutions to MNLSE  

Substituting about , , , ,t x xx xxxQ Q Q Q Q the relations (2-6) at equation (1), we get, 

2

1

3 2

1

2 2 2

2 3 4

( ) [ 2 ]

[ 3 3 3 3 ]

( ) ( )

iR iR

t t xx x x xx x

iR

xxx xx x x x x xxx x xx x xx

iR iR iR iR

x x x x

i i R e i R i R R e

i i R i R R i R i R R R e

i e i R e i i R e e

      

       

        

    

       

   

                   (17) 

This can be splits into two parts one real and the other is imaginary which are given 

respectively as, 

   
3

1 1 2 3 1 1 4( 3 ) ( ) ( ) 0,xxk k                                                       (18) 

      
2 2

1 2 3 1 1( ) (3 2 ) 0.xxx x x tk k                                                           (19) 

3.1 The bright soliton solution  

Now; use the constructed relations (7-11) into the real part equation (18) we obtain:   

1 1

1

2 32 3

1 1 1 1 1 1 2 3 1 1

2 2

1 1 1 1 1 4 1 1

( 3 ) ( 1)sech ( ) sech

[( 3 ) ( )] sech 0,

R R

R

k A B R R t k A t

k B R A t

   

    


   

      
                            (20) 

1 1

1

2 33 3

1 1 1 1 1 1 1 1 2 3 1 1 1

2 2 2

1 1 1 1 1 1 1 1 1

( 1)( 2)sech ( ) tanh ( ) sech tanh

[(3 2 ) ]sech tanh 0.

R R

R

A B R R R t t BR A t t

A BR k k B R w t t

  

  


   

    
          (21) 

From equations (20), (21), by equating the highest exponents of 1sech i t we get 1 1R  , hence, 

we can establish these relations, 
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                                                      (22) 

From which we can easily obtain, 
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                                                                      (23) 

Hence we will achieve these results 1 11.5, 0.6 , 16A B i w       under the same values 

used in [33], hence the solution is, 

( )( , ) 1.5sech( 0.6 ( 16 ) i x tQ x t i x t e                                                       (24) 

3Cos( )
Re ( , )

2Cos 0.6( 16 )

x t
Q x t

x t

 



                                                              (25) 

3Sin( )
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x t
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                                                              (26) 
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Figure 1. The bright soliton solution of the real part Eq.(25) in two and three dimensions when: 

1 1 0 1 2 1 2 3 41.5, 0.6 , 16, 0.3, 2.2, 3, 3.2, 4.5, 3.6, 1.8, 1A B i w k k                  
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Figure 2. The bright soliton solution of the imaginary part Eq.(26) in two and three dimensions when: 

1 1 0 1 2 1 2 3 41.5, 0.6 , 16, 0.3, 2.2, 3, 3.2, 4.5, 3.6, 1.8, 1A B i w k k                  

   

3.2 The dark soliton solution 

Now; via inserting the relations (12-17) into the real and imaginary parts Eq
,
s (18), (19) 

respectively we get,  

2 2

2 2

22 2 2

1 1 2 2 2 2 2 1 1 4 1 1 2 2

2 32 3

2 2 2 1 1 2 2 3 2 2

( 3 ) ( 1) tanh [( ) 2( 3 ) ]tanh

( 1) ( 3 ) tanh ( ) tanh 0,

R R

R R

k A R R B t A k R B t

A R R B k t k A t

      

   





       

     
    (27) 
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  2 2 21 1 1

2 2 2 2 2 2 2tanh ] [tanh tanh ] 0.
R R R

t A w BR t t
  

   

          (28) 

From equations (27), (28), by equating the highest exponents of 2tanh i t we get 2 1R  , 

hence, we can establish these relations, 

2
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2 1 1 4
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                                          (29) 

From which we get, 

1 1 4
1

2 3 1 1

2 1 1 4

1 1 2 3
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                                         (30) 

Hence we will achieve these results 2 20.1, 0.03 , 12.7A B i w      under the same 

values used in [33], hence the solution is, 

( )( , ) 0.1tanh( 0.03 ( 12.7 ) i x tQ x t i x t e                                               (31) 

Re ( , ) 0.1tan( 0.03 ( 12.7 ) Sin( )Q x t i x t x t                                   (32) 

Im ( , ) 0.1tan( 0.03 ( 12.7 ) Cos( )Q x t i x t x t                                (33) 
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x
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0.10

0.05

 
Figure 3. The dark soliton solution of the real part Eq.(32) in two and three dimensions when: 

2 2 0 1 2 1 2 3 40.1, 0.03 , 12.7, 0.3, 2.2, 3, 3.2, 4.5, 3.6, 1.8, 1A B i w k R k                  
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Figure 4. The dark soliton solution of the imaginary part Eq.(33) in two and three dimensions when: 

2 2 0 1 2 1 2 3 40.1, 0.03 , 12.7, 0.3, 2.2, 3, 3.2, 4.5, 3.6, 1.8, 1A B i w k R k                  

 

4. The second schema: the ESEM 

First of all to introduce the form of ESEM [4-6], let us firstly introduce the general form of 

the MNLSE by propose the function R as a function of E(x, t) and its partial derivatives as, 

 ( , , , , ..........) 0x t xx ttR E E E E E                                                                (34) 

That involves the highest order derivatives and nonlinear terms. 

With the aid of the transformation  ( , ) ( ),E x t E wx kt    equation (33) can be reduced 

to the following ODE:  

                                ( , , ...........) 0S E E E                                                                           (35) 

Where S  is a function in ( )E   and its total derivatives, while / d

d
  

The solution in the framework of this method is: 

( ) ( ).
M

i

i

i M

A   


                                                                                (36)   

Where ( )  achieves the equation,  

 
2

0 1 2( ) B B B      
                                                                           (37)  

The constant M appearing in Eq. (36) can be defined by applying the homogeneous balance 

between the orders of highest derivative and the nonlinear terms, while the other parameters 

iA will be located later, while the other parameters 0 1 2,B B and B will propose the following 

facts. 

(1) If 1 3 0B B  it will admit to the Riccati equation [34–36], whose solutions are; 

0 2

0 2 0 0 2

2

( ) tan( ( ), 0
B B

B B B B
B

                                                 (38) 



 

0 2 0
0 2 0 2

2

ln
( ) tanh( ), 0, 0, 1

2

B B
B B B B

B

 
    


                (39)  

(2) If 
0 3 0,B B  it will admit the Bernoulli equation [34], whose solutions are;  

1 1 0
1

2 1 0

[ ( )]
( ) , 0

1 [ ( )]

B Exp B
B

B Exp B

 
 

 




                                                            (40) 
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1

2 1 0

[ ( )]
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B
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                                                            (41)
 

And the above solutions have the general forms which are: 

2

1 2 12 2

1 1 2 1 0 1 2 1 2

2

41
( ) 4 tan ( ) , 4 , 0,

2

B B B
B B B B B B B B

B
   

  
      

  
  

      (42) 
 

2

1 2 12 2

1 1 2 1 0 1 2 1 2

2

41
( ) 4 tanh ( ) , 4 , 0,

2

B B B
B B B B B B B B

B
   

  
     

  
  

       (43)
 

 Where the integer 0 is the constancy of integration.  

Finally, via inserting Eq. (37) into Eq. (36), collecting and equating the coefficients of various 

powers of
i to zero implies system of equations through which we can calculate the values of 

the unknown variables. Moreover, via inserting these variables into equations (36) then we 

can establish the required solutions.    

 

5. The exact solutions in the framework of the ESEM 

We will implement this technique to the Eq. (1) mentioned above, 

2 2 * 2

1 2 1 2 3 4 .t xx xxx x xiQ Q Q Q i Q i Q Q i Q Q Q            

The solution according to the ESEM is, 

( , )( , ) ( ) , ,i x tQ x t e kx wt qx t                                                 (44)
 

,i i

tQ i e w e                                                                                    (45) 

,i i

xQ iq e k e                                                                                     (46) 

2 22 ,i i i

ttQ e i w e w e                                                               (47) 

3 2 2 33 3 ,i i i i

tttQ i e w e i w e w e                                             (48)
 



 

   2 2 2 2 2, 2 , 2 .i

t t
Q Q w Q Q w e                                             (48) 

Substituting about the above relations at the MNLSE we get, 

   

 

   

2 2 3

1 2

3 2 2 3

1
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2 3 4

2

3 3

i i i i i i
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i i e w e q e ikq e k e e

i iq e q k e iqk e k e

i e iq e k e i iq e k e e

     

   

     

       

    

          

       

      

      

                 (49) 

This splits into the following real and imaginary parts respectively, 

    2 3 3 2

1 1 2 2 3 1 4 1Re ( 3 ) 0,q k q q q q                               (50)                

3 2 2

1 2 3 1Im ( ) ( 2 3 ) 0.k k w kq kq                                                     (51) 

We will firstly implement the ESEM to the real part 

       2 3 3 2

1 1 2 2 3 1 4 1( 3 ) 0.q k q q q q                                  (52)             

Via balancing 
3,   appearing at Eq. (52) lead to 3 2 1M M  which implies 1M  , 

hence the solution is, 

1
0 1( )

A
A A  


                                                                              (53) 

Where 
2 3

0 1 2 3B B B B         

Case 1: The 1
st
 family which suppose 

2

1 3 0 20B B B B      , consequently 
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                                                                      (54)                                                             

2
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3 (3 3 ) ( 6 )

3 3 3
.

A A A A A A A A A A A
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                        (57) 

Via inserting the relations (53-57) into Eq. (52), collecting and equating the coefficients of 

various powers of
i  to zero, we get the following system, 



 

2 2 2

1 1 2 2 2 3 12 ( 3 ) ( ) 0,k q B q q A                                                           (58) 

              
2

2 2 3 0 13( ) 0,q q A A                                                                                 (59) 

2 2 3 2

0 2 1 1 2 2 3 0 1 1 1 4 12 ( 3 ) 3( )( ) ( ) 0,B B k q q q A A A q q                      (60)                

 
2 3 2

2 2 3 0 1 1 1 4 1( )( 6 ) ( ) 0,q q A A A q q                                          (61)              

 
2 2 2

1 1 0 2 2 3 12 ( 3 ) ( ) 0,k q B q q A                                                          (62)                                                              

               
2

2 2 3 0 13( ) 0,q q A A                                                                                   (63) 

2 2 3 2

0 2 1 1 2 2 3 0 1 1 1 4 12 ( 3 ) 3( )( ) ( ) 0.B B k q q q A A A q q                      (64)                            

It is clear that equations (59), (63) imply that 0 0A  , in addition equations (60), (64) are the 

same and by substitute from equation (61) at equation (60)  and put 0 0A  we can reduced the 

above system to,   

                           
2 2 2

1 1 2 2 2 3 12 ( 3 ) ( ) 0,k q B q q A                   

                           
2

0 2 1 1 2 2 3 1 12 ( 3 ) 3( ) 0,B B k q q q A A           

             
2 2 2

1 1 0 2 2 3 12 ( 3 ) ( ) 0.k q B q q A                                                 (65) 

Via solving this system the following results will be achieved, 
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iA q q
B B A

k q k

iA q q
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These results lead to that there are no solution because 2 0B  . 

Case 2: The 2
nd

 family which suppose 
2

0 3 1 20B B B B      , consequently 

1
0 1( ) ,

A
A A  


                                                                                   (67) 
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                         (70) 

Substituting for equations (67-70) at equation (52) and collecting the coefficients of different 

powers of
i and equating them to zero, we can easily obtain this system of algebraic 

2 2 2

1 1 2 2 2 3 12 ( 3 ) ( ) 0,k q B q q A                                                           (71) 

   
2

1 1 1 2 2 2 3 0 1( 3 ) ( ) 0,k q B B q q A A                                                           (72)                                                                             

2 2 2 3 2

1 1 1 2 2 3 0 1 1 1 4 1( 3 ) 3( )( ) ( ) 0,B k q q q A A A q q                      (73)                

2 3 3 2

1 1 1 1 2 2 2 3 0 0 1 1 1 4 1 0( 3 ) ( )( 6 ) ( ) 0,k q A B B q q A A A A q q A                     (74)                                          

 
2 3

1 1 1( 3 ) 0,k q A                                                                                                 (75)                                                              

               
2

2 2 3 0 13( ) 0,q q A A                                                                                   (76) 

2 2 2 3 2

1 1 1 2 2 3 0 1 1 1 4 1( 3 ) 3( )( ) ( ) 0.B k q q q A A A q q                      (77)                 

It is clear that (75, 76) will lead to 1 0A  , use this value of 1A and substituting by (74) at 

(73) and collecting the coefficients of different powers of
i and equating them to zero, then 

the above system will be reduced to, 

                               
2 2 2

1 1 2 2 2 3 12 ( 3 ) ( ) 0,k q B q q A           

                                
2

1 1 1 2 2 2 3 0 1( 3 ) ( ) 0,k q B B q q A A          

2 2 2

1 1 1 2 2 3 0( 3 ) 2( ) 0.B k q q q A                                              (78) 

By solving this system we get, 

2 2

1 2 2 3

2 2

1 10 2 2 3

1 1
2 2

2 2 31 1

2 2

1 2 2 3

2 2

1 10 2 2 3

1 1
2 2

2 2 31 1

(3 2 )

32
(1) , ,

3

(3 2 )

32
(2) , .

3

k q k q q
iS

k q ki A q q
B A

q qk q k

k q k q q
iS

k q ki A q q
B A

q qk q k

   

   

   

   

   

   

   
 
      

 

   
 
     

 

  (79) 

By substituting about the values of the parameters these solutions becomes, 



 

1 2

1 2

(1) 0.7, 0.1,

(2) 0.7, 0.1.

B B

B B

  

  
                                                                       (80) 

In the framework of the suggested method these two results implies only one solution which 

is, 

 
0.7 [0.7( 1)]

( ) ,
1 0.1 [0.7( 1)]

Exp x t

Exp x t
 

 


  
                                                        (81)                                                           
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Figure 5. The soliton solution Eq.(81) in 2D and 3D with values: 11, 1, 1q k   
 

1 0 1 2 0 1 2 1 2 3 41, 1, 0.7, 0.1, 0.3, 2.2, 3, 3.2, 4.5, 3.6, 1.8,A A B B k                  

 

We will secondly implement the ESEM to imaginary part 

               3 2 2

1 2 3 1( ) ( 2 3 ) 0.k k w kq kq                

By integrating once we get,  

3 3 2

1 2 3 1

1
( ) ( 2 3 ) 0.

3
k k w kq kq                                                       (82) 

Case 1: The first family, in which
2

1 3 0 20B B B B      . 

Via inserting the relations (53-57) into Eq. (82), collecting and equating the coefficients of 

various powers of
i  to zero, we get the following system,  

  
2 2 2

1 2 2 3 16 ( ) 0,k B A                                                                       (83) 

              
2

2 3 0 1( ) 0,k A A                                                                                 (84) 

3 2 2

1 0 2 2 3 0 1 1 12 ( )( ) ( 2 3 ) 0,k B B k A A A w kq kq                  (85)                

 
2 2 2

1 0 2 3 16 ( ) 0,k B A                                                                       (86)              

 
2

2 3 0 1( ) 0,k A A                                                                                (87)                                                              

      
3 2 2

1 0 2 2 3 0 1 1 12 ( )( ) ( 2 3 ) 0,k B B k A A A w kq kq                  (88)                                        



 

2 2

2 3 0 1 1 1

1
( )( ) ( 2 3 ) 0.

3
k A A A w kq kq                                  (89)                              

It is clear that equations (84), (87) imply that 0 0A  , in addition equations (85), (88) are the 

same thus this system could be reduced to, 

                               
2 2 2

1 2 2 3 16 ( ) 0,k B A               

                               
2

1 0 2 2 3 1 1( ) 0,k B B A A       

             
2 2 2

1 0 2 3 16 ( ) 0,k B A                                                                      (90)                                                                                             

By solving this system we get, 

1 3 2

0 2 1

1

1 3 2

0 2 1

1

(1) 0, , 0,
6

(2) 0, , 0.
6

A
B B A

k

A
B B A

k

 



 



 
  


  

                                                   (91) 

 From which we conclude that there are no solution because 0 0B  .                                                  

Case 2: The 2
nd

 family which suppose 2

0 3 1 20B B B B      , hence,  

Via inserting the relations (67-70) into Eq. (82), collecting and equating the coefficients of 

various powers of
i  to zero, we get the following system, 

               
2 2 2

1 2 2 3 16 ( ) 0,k B A                                                                               (92) 

              
2

1 1 2 2 3 0 13 ( ) 0,k B B A A                                                                         (93) 

3 2 2 2

1 1 2 3 0 1 1 1( )( ) ( 2 3 ) 0,k B k A A A w kq kq                                 (94)                

 
3

2 3 1

1
( ) 0,

3
k A                                                                                           (95)              

 
2

2 3 0 1( ) 0,k A A                                                                                         (96)                                                              

      
3 2 2 2

1 1 2 3 0 1 1 1( )( ) ( 2 3 ) 0,k B k A A A w kq kq                                 (97)                                        

3 3 2

1 1 1 2 2 3 0 0 1 1 1 0

1
( )( 6 ) ( 2 3 ) 0.

3
k A B B k A A A A w kq kq A              (98)                              

The equations (95), (96) imply that 1 0A  , in addition equations (94), (97) are the same thus 

this system could be reduced to, 



 

                               
2 2 2

1 2 2 3 16 ( ) 0,k B A               

                               
2

1 1 2 2 3 0 13 ( ) 0,k B B A A      

             
2 2 2

1 1 2 3 0

2
( ) 0.

3
k B A                                                                     (99)                                                                                             

By solving this system we get, 

0 3 2
1 3 2

2 1

1 1

0 3 2
1 3 2

2 1

1 1

2

3
(1) , ,

6

2

3
(2) , .

6

A
A

B B
k k

A
A

B B
k k

 
 

 

 
 

 


 

 

 


 

                                                   (100) 

By substituting about the values of the parameters these solutions become, 

1 2

1 2

(1) 0.4 , 0.2 ,

(2) 0.4 , 0.2 .

B i B i

B i B i

  

  
                                                                       (101) 

In the framework of the suggested method these two results implies only one solution which 

is, 

0.4 [0.4 ( 1)]
( ) ,

1 0.2 [0.4 ( 1)]

i Exp i x t

iExp i x t
 

 


  
                                                         (102) 

 
0.8 0.4Sin (0.4 0.4 0.4)

Re ( ) .
1.04 0.4 Sin (0.4 0.4 0.4)

x t

x t
 

  


   
                                                   (103) 

0.4Cos(0.4 0.4 0.4)
Im ( ) .

1.04 0.4 Sin (0.4 0.4 0.4)

x t

x t
 

 


   
                                                   (104)                                                                                                                 
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Figure 6. The soliton solution the real part Eq.(103) in 2D and 3D with values: 11, 1k  
 

1 0 1 2 0 1 2 3 41, 1, 0.4 , 0.2 , 0.3, 3.2, 4.5, 3.6, 1.8,A A B i B i k             
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Figure 7. The soliton solution the imaginary part Eq.(104) in 2D and 3D with values: 11, 1k  

 
1 0 1 2 0 1 2 3 41, 1, 0.4 , 0.2 , 0.3, 3.2, 4.5, 3.6, 1.8,A A B i B i k             

 

 

 

6. Conclusion 

          This study has success to establish multiple impressive accurate perceptions of the 

optical solution to MNLSE through two important various algorithms. The first one which is 

regrestsed with the name the SWAM which achieves new perceptions of the soliton solution 

to the suggested equation figures (1-4).While the second one is the ESEM which has been 

applied effectively to establish other new visions to the soliton solutions to the suggested 

equation figures (5-7). Our achieved solutions are new and demonstrate new distinct 

perceptions to the soliton solutions of this model compared with that obtained previously [32-

36] who applied different techniques. 
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