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Abstract

Background: Type 2 diabetes mellitus (T2DM), which has a high incidence and several harmful consequences, poses a severe

danger to human health. More research is being done on ferroptosis’ function in T2DM. This study uses a bioinformatics

technique to look for new diagnostic T2DM biomarkers associated with ferroptosis. Methods: In order to identify ferroptosis-

related genes (DEGs) that are differently expressed between T2DM patients and healthy individuals, we first obtained T2DM

sequencing data and ferroptosis-related genes (FRGs) from the Gene Expression Omnibus (GEO) database and FerrDb database.

Then, drug-gene interaction networks and ceRNA networks linked to the marker genes were built after marker genes were filtered

by two machine learning algorithms (LASSO and SVM-RFE algorithms). Finally, to confirm the expression of marker genes,

the GSE76895 dataset was utilized. The protein expression of some marker genes between T2DM and non-diabetic tissues

was also examined by Western Blotting, Immunohistochemistry (IHC) and Immunofluorescence (IF), respectively. Results: We

obtained 58 DEGs associated with ferroptosis. GO and KEGG enrichment analysis showed that these DGEs were significantly

enriched in hypoxia and ferroptosis. Subsequently, eight marker genes (SCD, CD44, HIF1A, BCAT2, MTF1, HILPDA, NR1D2

and MYCN) were screened by LASSO and SVM- RFE machine learning algorithms, and a model was constructed based on

these eight genes. These newly discovered marker genes may be linked to alterations in the immune microenvironment in T2DM

patients. In addition, based on these 8 genes, we obtained 48 drugs and a complex ceRNA network map. Finally, Western

Blotting, IHC and IF results of clinical samples further confirmed the results of public databases. Conclusions: The diagnosis

and etiology of T2DM can be greatly aided by eight ferroptosis-related genes, opening up novel therapeutic avenues.
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Abstract :

Background : Type 2 diabetes mellitus (T2DM), which has a high incidence and several harmful conse-
quences, poses a severe danger to human health. More research is being done on ferroptosis’ function in
T2DM. This study uses a bioinformatics technique to look for new diagnostic T2DM biomarkers associ-
ated with ferroptosis.Methods : In order to identify ferroptosis-related genes (DEGs) that are differently
expressed between T2DM patients and healthy individuals, we first obtained T2DM sequencing data and
ferroptosis-related genes (FRGs) from the Gene Expression Omnibus (GEO) database and FerrDb database.
Then, drug-gene interaction networks and ceRNA networks linked to the marker genes were built after
marker genes were filtered by two machine learning algorithms (LASSO and SVM-RFE algorithms). Finally,
to confirm the expression of marker genes, the GSE76895 dataset was utilized. The protein expression of
some marker genes between T2DM and non-diabetic tissues was also examined by Western Blotting, Im-
munohistochemistry (IHC) and Immunofluorescence (IF), respectively. Results : We obtained 58 DEGs
associated with ferroptosis. GO and KEGG enrichment analysis showed that these DGEs were significantly
enriched in hypoxia and ferroptosis. Subsequently, eight marker genes (SCD, CD44, HIF1A, BCAT2, MTF1,
HILPDA, NR1D2 and MYCN) were screened by LASSO and SVM- RFE machine learning algorithms, and
a model was constructed based on these eight genes. This model also has a high diagnostic power, and three
ferroptosis genes (HIF1A, HILPDA and SCD) are strongly associated with hypoxia and lipid metabolism in
T2DM. These newly discovered marker genes may be linked to alterations in the immune microenvironment
in T2DM patients. In addition, based on these 8 genes, we obtained 48 drugs and a complex ceRNA net-
work map. Finally, Western Blotting, IHC and IF results of clinical samples further confirmed the results
of public databases. Conclusions : The diagnosis and etiology of T2DM can be greatly aided by eight
ferroptosis-related genes, opening up novel therapeutic avenues.

Keywords : type 2 diabetes mellitus, bioinformatics, ferroptosis, diagnostic, machine learning, gene expres-
sion omnibus

1 INTRODUCTION

Diabetes mellitus (DM) is a chronic metabolic disease characterized by high blood glucose levels caused by
insulin resistance in peripheral tissues or insufficient pancreatic insulin secretion(Yanget al. 2019). Type 1
diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) are the two primary subtypes of diabetes,
with T2DM accounting for nearly 90% of all cases(Weyer et al.1999; Gheibi et al. 2020). As living standards
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rise, the population ages, and there is a global pandemic of nonalcoholic fatty liver disease (NAFLD),
the prevalence of T2DM will rapidly rise worldwide(Marin-Penalver et al. 2016; Younossiet al. 2019).
According to estimates, the prevalence of T2DM will be 9.3% (463 million) in the world in 2019, 10.2%
(578 million) in 2030, and 10.9% (700 million) in 2045(Saeedi et al.2019). Additionally, diabetes has a wide
range of intricate side effects, such as macrovascular conditions like coronary heart disease, peripheral artery
disease, and stroke, as well as microvascular conditions like diabetic nephropathy, peripheral neuropathy,
and retinopathy(Viigimaa et al. 2020; Tomicet al. 2022). Some patients don’t know they have T2DM until
they start experiencing major side effects. Therefore, finding potential biomarkers and understanding the
molecular causes of T2DM is essential for early detection and the avoidance of its consequences.

Ferroptosis was first hypothesized in 2012 and is a type of iron-dependent controlled cell death that is
accompanied by an aberrant buildup of lipid reactive oxygen species (L-ROS)(Dixon et al. 2012; Hadian
and Stockwell 2020). The majority of earlier research on ferroptosis focused on malignancies(El Houtet al.
2018). According to an increasing body of research, ferroptosis also plays a significant part in the onset
of non-neoplastic disorders such Parkinson’s(Cong et al. 2019), Alzheimer’s disease(Do Van et al. 2016),
pulmonary fibrosis(Tsubouchi et al. 2019), brain damage(Tsubouchi et al. 2019), etc. Additionally, elevated
ferritin levels have been seen in people with T2DM and gestational diabetes, indicating a link between excess
iron storage and the onset of T2DM(Liu et al. 2020; Gautamet al. 2021). Erastin, a ferroptosis inducer,
influences the development and operation of human pancreatic islet-like cell clusters by specifically inhibiting
the Xc-cystine/glutamate antiporter necessary for GSH biosynthesis(Linkermann et al. 2014; Li and Leung
2020). In vitro erastin treatment of human islet -cells resulted in considerably lower glucose-stimulated
insulin secretion (GSIS) capability, based on research. On the other hand, GSIS damage was prevented by
pretreatment with a ferroptosis inhibitor, such as Fer-1 or DFO(Bruni et al. 2018). According to recent
research, various T2DM medications on the market can prevent ferroptosis. For instance, ACSL4 is a crucial
element of ferroptosis, and rosiglitazone is the most potent ACSL4 inhibitor(Kim et al. 2001; Yuan et al.
2016). However, numerous genes involved in ferroptosis in T2DM have not yet been discovered, necessitating
more research on these genes.

The mechanism of ferroptosis in the pathogenic phase of T2DM and associated consequences is the major
focus of current studies on ferroptosis and T2DM. This study sought to add to previous research and establish
ferroptosis as a therapeutic target for T2DM by examining the genetic relationship between genes relevant
to ferroptosis and T2DM. It also used Cytoscape software to create a drug-gene interaction map. Then,
to investigate the possible regulatory effects of miRNAs and lncRNAs on ferroptosis-related marker genes
in T2DM, we built a competitive endogenous RNA (ceRNA) regulatory network of the marker genes. Our
findings offer a fresh viewpoint for the clinical diagnosis and management of T2DM and may be useful in
clarifying the possible contribution of the ferroptosis process to the pathogenesis of T2DM.

2 MATERIALS AND METHODS

2.1 Data acquisition

The Gene Expression Omnibus (GEO) database, accessible at https://www.ncbi.nlm.nih.gov/geo/, provided
the gene expression information used in this analysis for samples with T2DM and normal tissue. The RNA
sequences of 68 T2DM and 62 normal samples are included in the collection GSE78721. This dataset
served as a training set for the main body of this research’s study. The expression of the marker genes
was validated using the GSE76895 dataset, which included samples from 32 normal and 36 T2DM patients.
Additionally, FerrDb (http://www.zhounan.org/ferrdb/) was utilized to obtain the FRGs (n = 358) used in
this investigation. These FRGs included the three categories of driver, suppression, and marker FRGs.

2.2 Screening Ferroptosis-Related Differentially Expressed Genes

We examined differentially expressed genes (DEGs) between T2DM samples and normal samples using the
R software’s limma package. Significant genes were those with p<0.05. The heatmap was then used to
illustrate the overlap of DEGs and ferroptosis-related genes.
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2.3 Ferroptosis-Related DEGs: Functional Enrichment Analysis

The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of
ferroptosis-related DEGs were performed in R using the clusterProfiler package(Wu et al. 2021). The GO
analysis covered three categories: biological process (BP), cellular component (CC), and molecular function
(MF), which was useful in exploring biological functions(Ashburner et al. 2000). The KEGG analysis was
utilized to investigate probable biological activities, illnesses, substances, and drugs(Kanehisa and Goto
2000).

2.4 Identification of optimal diagnostic gene biomarkers for T2DM

The glmnet package was used to minimize the data dimensions by employing the least absolute shrinkage and
selection operator (LASSO) method (Friedman et al. 2010; Yang et al.2019). The ferroptosis-related DEGs
found in T2DM patients and normal samples were then cross-validated in the LASSO logistic regression
approach to look for disease hallmark genes. Simultaneously, a support vector machine-recursive feature
elimination (SVM-RFE) model was created using SVM software, and the average misjudgment rates of
their 10-fold cross-validations were compared(Wu et al. 2022). Finally, the outputs of the LASSO and
SVM-RFE algorithms were intersected to select the best T2DM biomarkers, which were depicted by a Venn
diagram. The logistic regression models based on these genes were created using the glmnet package of the
R programming language. Researchers might assess the diagnostic effectiveness of the logistic regression
models by computing receiver operating characteristic (ROC) curves and calculating the area under the
curve (AUC). ROC curves were also used to assess a gene’s ability to distinguish between samples with and
without T2DM.

2.5 Single-gene Gene Set Enrichment Analysis (GSEA)

To further explore the related pathways of the eight marker genes, we performed GSEA analysis to identify
pathways enriched in T2DM patients and “c2.cp.kegg.v7.0.symbols.gmt” from the MSigDB database was
adopted as the reference dataset. Patients were divided into high and low expression groups according to
the expression levels of the eight marker genes. Annotated gene sets were used to distinguish subtypes by
the identified differentially expressed genes. We computed the consistency P-value for each gene set, and
P-values less than 0.05 were considered significantly enriched. Subsequently, significantly enriched gene sets
were sorted according to their correlations from high to bottom.

2.6 Single-gene enrichment analysis using Gene Set Variation Analysis (GSVA)

The enrichment of transcriptomic gene sets may be determined using the non-parametric, unsupervised
GSVA approach. In order to assess the biological activities of the samples, GSVA first translates gene-level
changes into pathway-level changes by rating the sets of genes(Hanzelmann et al. 2013). We used the
KEGG pathway set as the background gene set for this analysis. GSVA evaluation of every marker gene.
The possible biological function alterations of various samples were assessed at the same time as the GSVA
score difference between samples from the high- and low-expression groups of the marker gene were analyzed
using the limma software.

2.7 Immune infiltration analysis

Immune cell infiltrations were calculated using the bioinformatics method CIBERSORT
(https://cibersortx.stanford.edu/), which was used to quantify the relative proportions of the 22 in-
filtrating immune cell types in the GSE78721 dataset. The total of all examined immune cell type fractions
for each sample was 1. Using violin plots created using the vioplot program, the differences in immune
cell infiltration between T2DM patients and controls were shown. Furthermore, immune cells and gene
expression were analyzed using Spearman correlation in this study.

2.8 Establishment of a Nomogram

Using the rms package, marker genes were included to create a nomogram. In addition, we assessed the
accuracy of this nomogram by calibration curves, decision curves, and clinical impact curves.

4



P
os

te
d

on
30

J
an

20
24

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
70

66
35

62
.2

09
26

29
4/

v
1

—
T

h
is

is
a

p
re

p
ri

n
t

a
n
d

h
as

n
o
t

b
ee

n
p

ee
r-

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

2.9 Drug-gene interaction

Screening for drugs that modulate marker genes Using Drug gene interaction database (DGIdb). This final
medicine list only contained medications that were DrugBank-sourced and authorized by the Food and Drug
Administration.

2.10 Construction of ceRNA network

To predict the binding of marker genes to miRNA, we used three different programs (miRanda, miRDB, and
TargetScan), which all regarded marker genes to be miRNA target genes. The spongeScan database provided
us with the targeting connection between miRNA and lncRNA. Then, using the Cytoscape program, we built
the lncRNA-miRNA-mRNA regulatory network.

2.11 Patients and tissue samples

Diabetic ulcers and normal skin tissues were prospectively collected from six patients that were enrolled in
Shandong Provincial Hospital of Traditional Chinese Medicine, Jinan, China. Tissue after ulcer debridement
surgery in 3 diabetic patients and after circumcision surgery in 3 non-diabetic patients. Half of the above
tissue was divided into two parts and rapidly frozen in a 1.5 ml snap cap tube in liquid nitrogen and stored
at - 80 °C for subsequent molecular analysis. This study was conducted in accordance with the Declaration
of Helsinki. All the experiments were approved by the ethics committee of Affiliated Hospital of Shandong
University of Traditional Chinese Medicine & Shandong Provincial Hospital of Traditional Chinese Medicine
(Approval Number: AF/SC-08/02.0) and were performed in accordance with the guidelines and regulations.

The other half of the above tissue was fixed in 10% paraformaldehyde fixative, embedded in paraffin and sec-
tioned at 3μm for histochemical analyses which were performed by haematoxylin eosin (H&E) staining and
immunohistochemical (IHC) staining. Deparaffinization, rehydration, antigen retrieval, endogenous peroxi-
dase blocking, and goat serum (#SP-9001; ZSGB-BIO, Beijing, China) blocking of paraffin sections. Next,
the wound skin tissue sections were incubated with primary antibody against CD44 (Proteintech; 60224-1-Ig)
and MYCN (Abcam; ab16898)at a dilution of 1:200 at 4°C overnight. On the second day, all sections were
incubated with biotin-labelled goat anti mouse IgG polymer for 15 min at room temperature and incubated
with horseradish enzyme-labelled streptavidin working solution for 15min at room temperature. Finally, the
slides were counterstained with diaminobenzidine (DAB; #ZLI-9018, ZSGB-BIO) and haematoxylin (CAS.
517-28-2; Beijing Solarbio Science & Technology). For H&E staining, after deparaffinization and rehydration,
slides were stained with haematoxylin and eosin (CAS. 17372-87-1; Beijing Solarbio Science & Technology)
according to the manufacturer’s instructions. All the sections were then dehydrated, cleared, and sealed. The
images were observed and captured using an Olympus IX73 microscope (Olympus, Tokyo, Japan). Using
ImageJ software to calculate the positive rate.

2.12 Western blot analysis

Total protein was extracted from tissue sample using RIPA lysis buffer (Beyotime Biotechnology) supplemen-
ted with Thermo Scientific Halt Protease Inhibitor Cocktail (Thermo Fisher Scientific). Protease inhibitors
and phosphatase inhibitors (1:100) were added during protein extraction (MedChemExpress), and a Pierce
BCA Protein Analysis Kit (Thermo Fisher Scientific) was used to measure protein concentrations. Protein
samples were separated by 10% SDS–PAGE and transferred to PVDF membranes. The membranes were
blocked in 5% skim milk and incubated with the respective primary antibodies over-night at 4 °C. The
samples were incubated with horseradish per-oxidase-conjugated secondary antibodies (1:5000 dilution; Cell
Signaling Technology) for 1 h at room temperature, and an iBright FL1500 imaging system (Invitrogen) and
Super Signal West Femto Maximum Sensitivity Substrate (Thermo Fisher Scientific, Invitrogen) were used
to detect and analyze protein expression levels. Antibody information was provided for anti-CD44 (Protein-
tech; 60224-1-Ig), anti-MYCN (Abcam; ab16898), and rabbit anti-GAPDH (Cell Signaling Technology; WB:
1/1000).

2.13 IHC and Immunofluorescence (IF) staining

5
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We performed IHC and IF staining of tissues. IHC of tissues was performed as described previously. IF
staining, paraffin sections were dewaxed to water, and the sections were sequentially placed in environmen-
tally friendly dewaxing solutionIfor 10 min-environmentally friendly dewaxing solutionIIfor 10 min- environ-
mentally friendly dewaxing The sections were then washed with anhydrous ethanolIfor 5 min - anhydrous
ethanolIIfor 5 min-anhydrous ethanolIIIfor 5 min - distilled water. The antigen repair was then carried out,
and the repair was completed by natural cooling. The slides were placed in PBS (PH7.4) and washed 3
times with shaking on a decolorization shaker for 5 min each time. the sections were slightly shaken dry
and then closed with a histochemical pen by drawing circles around the tissue and adding 3% BSA dropwise
for 30 min. the sections were incubated overnight at 4degC in a wet box after adding the prepared primary
antibody dropwise. The slides were placed in PBS (pH 7.4) and washed 3 times with shaking on a decolorized
shaker for 5 min each time. The slides were washed three times in PBS (pH 7.4) on a decolorization shaker
for 5 min each time. observed and recorded using a Nikon Eclipse Ti2 confocal microscope (Nikon Instru-
ments (Shanghai) Co., Ltd., Shanghai, China). The following primary antibodies were used: anti-CD44
(Proteintech; 60224-1-Ig), anti-MYCN (Abcam; ab16898).

2.14 Statistical analysis

R software 4.2.1 was used for the statistical analysis. The link between 58 ferroptosis-related DEGs was
discovered using Pearson correlation analysis. The data for all experiments were shown as means +- standard
deviation (SD) of three biological replicates, and all data analyses were performed using GraphPad Prism
version 9.0.0 (GraphPad Software, San Diego, CA). Statistical analysis between groups was performed using
Student’s t test to determine significance. A statistically significant P value is less than 0.05.

3 RESULTS

3.1 Identification of Ferroptosis-Related DEGs Between T2DM and Control

The GSE78721 dataset discovered 58 FRGs that showed differential expression between T2DM and normal
samples, including 20 down-regulated and 38 up-regulated genes (Table 1). The ferroptosis-related DEGs’
standardized expression was displayed in the clustering heatmap of Figure 1A. Figure 1B depicts the inter-
action between 58 genes that are associated with ferroptosis in diverse ways. The majority of these genes
have a high degree of correlation with one another.

3.2 Enrichment Analysis of Ferroptosis-Related DEGs

GO and KEGG enrichment analyses were done to further study the biological activities and pathways of these
ferroptosis-related DEGs, as shown in Figures 2A and 2B, respectively. The important GO-BP categories
were primarily connected with hypoxia, such as stress hypoxia, reduced oxygen levels, and oxygen levels. The
ferroptosis-related DEGs were highly enriched in the transcription regulator complex and the basal portion of
the cell in GO-CC analysis. The pathways enriched by GO-MF were mostly related to transcription factors.
The top 20 enriched pathways, according to KEGG analysis, were mostly involved in viral hepatitis, growth
and thyroid hormone production, autophagy-related processes, and ferroptosis. Surprisingly, ferroptosis-
related DEGs were clearly enriched in cancer-related signatures such as non-small cell lung cancer, renal cell
carcinoma, chemical carcinogenesis-receptor activation, viral carcinogenesis, central carbon metabolism in
cancer, and so on. These findings suggest that hypoxia and transcription factors may play a crucial role in
the development of T2DM, while also providing some novel paths for the link between T2DM and cancer.

3.3 8 Ferroptosis-Related DEGs were identified as diagnostic genes for T2DM

The LASSO and SVM- RFE were used to screen the significant ferroptosis-related DEGs to distinguish
T2DM from normal people in GSE78721. In the LASSO logistic regression algorithm, we selected the 15
genes at the time of minimum cross-validation error (Figure 3A, B). The best diagnostic genes for T2DM were
ultimately determined to be 18 genes (highest precision =0.731, minimum RMSE =0.269) after using the
SVM-RFE method to filter 58 ferroptosis-related DEGs (Figure 3C, D). The 8 genes (SCD, CD44, HIF1A,
BCAT2, MTF1, HILPDA, NR1D2, MYCN) that overlapped these two algorithms were selected (Figure 3E).
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The AUC for all genes was larger than 0.6 when we drew ROC curves for these eight biomarkers that were
identified by both machine learning systems (Figure 3F). We also create a logistic regression model using
the R glmnet package based on these eight biomarkers. According to our ROC curve results, the 8 marker
gene-based logistic regression model offered more sensitivity and precision than the independent marker
genes for discriminating T2DM samples from normal samples, with an AUC of 0.832 (95% CI 0.760-0.896).
(Figure 3G). Additionally, we display in Figure 4 the interactions and expression of the eight marker genes
in the GSE78721 dataset.

3.4 Various Pathways Associated with Marker Genes

We carried out a single-gene GSEA-KEGG pathway analysis to further investigate the distinct signaling
pathways connected to the marker genes. The first six routes for each marker gene are displayed (Figures
5A-H). After a thorough analysis, we discovered that these eight marker genes were primarily enriched
in the pathways for lysosome, cell cycle, ribosome, peroxisome, ubiquitin-mediated proteolysis, fatty acid
metabolism, and various disease pathways (including those for Parkinson’s disease and Huntington’s disease).
In addition, we discovered that the marker genes were enriched in the chemokine signaling route, B cell
receptor signaling pathway, olfactory transduction, and neuroactive ligand-receptor interaction.

3.5 GSVA

Then, we analyzed the differentially activated pathways between the high- and low-expression groups ac-
cording to the expression level of each marker gene in combination with GSVA results (see Supplementaly1,
Supplemental Content, which illustrates the GSVA results of these marker genes). We found that the high
expression of CD44 and HIF1A in the disease has a high similarity (Figures 6), probably through induc-
ing T2DM by activating LINOLEIC ACID METABOLISM and NEUROACTIVE LIGAND RECEPTOR
INTERACTION. In addition, they were associated with TASTE and OLFACTORY TRANSDUCTION.
The low expression of HILPDA and SCD in T2DM also has a high similarity, and they were mainly re-
lated to the synthesis, metabolism and degradation of substances such as BIOSYNTHESIS OF UNSAT-
URATED FATTY ACIDS, TERPENOID BACKBONE BIOSYNTHESIS, FATTY ACID METABOLISM,
BETA ALANINE METABOLISM, PYRUVATE METABOLISM, SELENOAMINO ACID METABOLISM,
VALINE LEUCINE AND ISOLEUCINE DEGRADATION, etc. In addition, low expression of SCD and
high expression of MTF1 were associated with SYSTEMIC LUPUS ERYTHEMATOSUS, PARKINSONS
DISEASE, and PATHOGENIC ESCHERICHIA COLIINFECTION. MYCN low expression in the disease
was only involved in ALPHA LINOLENIC ACID METABOLISM. High expression of NR1D2 has enriched
in OLFACTORY TRANSDUCTION and NEUROACTIVE LIGAND RECEPTOR INTERACTION. It is
worth noting that BCAT2, CD44 and HIF1A were directly related to the pathway MATURITY ONSET
DIABETES OF THE YOUNG.

3.6 Immune landscape analysis

We investigated immune cell infiltration between T2DM patients and normal samples using CIBERSORT.
The percentage of immune cells from 62 normal and 68 T2DM samples was shown in Figure 7A. The
interaction of the immune cells revealed that resting mast cells and active mast cells had the most pronounced
negative correlation with r = 0.51, while T cells CD4 naive and B cells naive had the most significant positive
connection with r = 0.83. (Figure 7B). Figure 7C demonstrates that whereas dendritic cells activated are
more prevalent in T2DM patients, dendritic cells resting are less common in T2DM patients than in normal
samples.

3.7 Eight Biomarkers and Infiltrating Immune Cells Correlation Analysis

As illustrated in Figure 8, the correlation analysis revealed a significant link between these 8 marker genes
and immune cells. We discovered that CD44 strongly correlated with the activation of NK cells and B
cells’ memories, respectively. HIF1A had a substantial negative correlation with both activated NK cells
and CD8 T cells. NR1D2, MYCN, MTF1, and HILPDA all had a negative correlation with dendritic cell
activation. Macrophages M0, mast cells that are activated, monocytes, and neutrophils all have a positive

7
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correlation with MTF1. Of course, marker genes related to neutrophils also include HILPDA and HIF1A.
This data implies that these newly discovered marker genes may be linked to alterations in the immune
microenvironment in T2DM patients.

3.8 Construction and assessment of the nomogram for patients with T2DM

A nomogram was created as a diagnostic tool for T2DM by including marker genes (Figure 9A). Each marker
gene in the nomogram was assigned a score, and the overall score was obtained by adding the scores of all
marker genes. Higher overall scores increased the chance of acquiring T2DM, while lower total scores were
linked to lower risks of developing T2DM. The nomogram’s great accuracy was shown by the calibration
and decision curve (Figures 9B and 9C). The nomogram also maintained excellent accuracy in identifying
high-risk T2DM patients, as seen in the clinical impact curves (Figure 9D).

3.9 Drug-gene interaction

We searched through the DGIdb database for drugs that might affect the marker genes. The Cytoscape
software-visualized results were displayed in (Figure 10). We had queried 48 medicines targeting marker
genes, including 30 for HIF1A, 9 for MYCN, 5 for SCD, 3 for CD44 and NTF1 targeted 1 drug. Unfortu-
nately, the medications connected to BCAT2, HILPDA, and NR1D2 were not predicted by us. In addition,
we also searched the structural formulae of the above 48 drugs using the DrugBank database. 32 drug
structures in all were found. A total of 16 drug structures were retrieved from 30 HIF1A-targeted drugs (see
Supplementaly2, Supplemental Content, which illustrates the structures of 32 drug). Among them, PX-478
and NITROGLYCERIN have known inhibitors of HIF1A. A total of 8 drug structures were retrieved from
the 9 targeted drugs of MYCN. The corresponding drug structures were derived for all five targets of SCD
and three targets of CD44.

3.10 Marker gene-based ceRNA networks

We built a ceRNA network based on these 8 marker genes to highlight the interaction between lncRNA,
miRNA, and mRNA, as shown in Figure 11. The network includes 671 nodes (7 marker genes, 349 miRNAs
and 315 lncRNAs). BCAT2 had 18 miRNAs associated with it, CD4 had 69 miRNAs connected with it,
HIF1A had 62 miRNAs associated with it, MTF had 115 miRNAs linked with it, MYCN had 96 miRNAs
associated with it, NR1D2 had 85 miRNAs associated with it, and SCD had 70 miRNAs related with it. We
discovered that 19 lncRNAs could control the expression of SCD and MTF1 through competitive binding to
hsa-miR-149-3p, 16 lncRNAs control the expression of SCD, MTF1, NR1D2 and HIF1A through competitive
binding to hsa-miR-149-3p, 15 lncRNAs control the expression of NR1D2, MTF1, and MYCN through
competitive binding to hsa-miR-515-5p, 15 lncRNAs control the expression of SCD, MTF1, and CD44
through competitive binding to hsa-miR-18a-3p, 8 lncRNAs control the expression of MYCN, NR1D2, and
CD44 through competitive binding to hsa-miR-590-3p, 14 lncRNAs control the expression of MTF1 through
competitive binding to hsa-miR-129- 5p, 20 lncRNAs control the expression of NR1D2 through competitive
binding to hsa-miR-766-3p.

3.11 Expression of the marker gene in the validation set

We verified the differential expression of these eight marker genes and the precision of the logistic regression
model using the GSE76895 dataset. We also discovered that BCAT2, HILPDA, MYCN, and CD44 had
differential expressions, and the patterns of these expression were consistent with those in the GSE78721
dataset (Figure 12A). Among these, CD44 expression (p = 0.0013) was greater in T2DM patients than in
controls, but BCAT2 expression (p = 0.043), HILPDA expression (p = 0.044), and MYCN expression (p =
4e-06) were lower in T2DM patients. The ROC curves for the marker genes in the validation set are shown
in Figure 12B. With an AUC of 0.872 (95% CI 0.782-0.948), the logistic regression model based on 8 marker
genes continued to be extremely precise and specific in the validation group (Figure 12C).

3.12 Protein expression of CD44 and MYCN in T2DM and non-diabetic tissues

We performed experimental validation by clinical tissues, and the experimental results were consistent with
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our results by bioinformatics analysis, CD44 was indeed highly expressed in diabetic tissues and low in
non-diabetic tissues; MYCN was low in diabetic tissues and high in non-diabetic tissues. As shown in
Figure 13A-B, Western blot showed a trend of high expression of CD44 and low expression of MYCN in
diabetic tissues. In Figure 13C-F, IHC also showed a trend of high expression of CD44 and low expression
of MYCN in diabetic tissues. Also, we performed IF validation, In Figure 13G-L, the expression trends
of CD44 and MYCN in diabetic tissues were consistent with Western blot and IHC. Our experimental
results are extremely suggestive for the prevention and development of diabetes, and future in vivo and in
vitro experimental interventions can be performed to further explore the role of CD44 and MYCN in the
development and genetic aspects of diabetes.

4 Discussion

T2DM is an increasingly common metabolic disease and poses a significant public health burden(Carbone et
al. 2019; Magliano et al. 2021). In recent years, the diagnosis and treatment of T2DM have been increasingly
studied, but the prognosis for patients with T2DM remains poor due to the limited understanding of the
pathogenesis of the disease and the numerous complications associated with drug therapy(Ali et al. 2022).
Many studies now suggest that ferroptosis plays a substantial role in T2DM and its consequences, and
that it is a risk factor for T2DM development. However, the precise process remains unknown (Sha et
al.2021; Li et al. 2022). In this study, we screened eight differential genes associated with ferroptosis by
two machine learning algorithms (LASSO and SVM) and finally constructed a diagnostic model based on
these eight differential genes (SCD, CD44, HIF1A, BCAT2, MTF1, HILPDA, NR1D2 and MYCN). In the
training cohort, the model had high predictive ability (AUC=0.832). It also demonstrated great accuracy
in the external validation cohort (AUC=0.872), offering fresh information for the quick and early diagnosis
of T2DM.

The most enriched GO categories, according to our analysis of KEGG pathway enrichment and GO enrich-
ment, were responses to hypoxia, decreased oxygen levels, the RNA polymerase II transcription regulator
complex, RNA polymerase II-specific DNA-binding transcription factor binding, and other processes. In ad-
dition, KEGG was also significantly enriched in the HIF-1 signaling pathway and ferroptosis. Erythropoietin
is synthesized by hypoxia inducible factors (HIFs)(Jelkmann 2011). In diabetic nephropathy, HIF-2 expres-
sion is decreased while HIF-1 expression is elevated, as has been demonstrated to be directly associated with
the dysregulation of HIF signaling(Olmoset al. 2018). In contrast, HIF-1α inhibition and hypoxia-mimicking
HIF-2α activation slow the progression of diabetic nephropathy (Ohtomo et al. 2008; Besshoet al. 2019).
In addition, hypoxia inhibits ferritin phagocytosis, increases mitochondrial ferritin, and protects from fer-
roptosis(Fuhrmann et al. 2020). Interestingly, the eight marker genes we screened contained HIF1A and
were highly expressed in T2DM. Among the thirty HIF1A target drugs retrieved, PX-478, its small molecule
inhibitor, preserved pancreatic β cell function and increased insulin levels in diabetic mice in the presence
of high glucose metabolism overload(Ilegems et al. 2022). In addition, targeted knockdown of HIF1A in
mice resulted in a reduction in the size of atherosclerotic lesions and a decrease in macrophage accumula-
tion(Akhtar et al. 2015). Similar results were shown in PX-478-treated mice, who showed a considerable
decrease in the amount of atherosclerotic plaque in their aorta(Villa-Roelet al. 2022). Therefore, the HIF1A
inhibitor PX-478 has the potential to be used as a therapeutic agent against diabetes and its complications,
but its exact mechanism remains to be investigated. HILPDA (hypoxia-inducible lipid droplet-associated
protein) is another marker gene that we screened for associated with hypoxia. HILPDA is a novel peroxi-
some proliferator-activated receptor (PPAR) target that can be expressed in multiple tissues as a small lipid
droplet-associated protein(Mattijssen et al. 2014). Different events, including as hypoxia, beta-adrenergic
stimulation, and PPAR transcription factors increase the production of HILPDA(Gimmet al. 2010; Matti-
jssen et al. 2014; Dijk et al. 2017; de la Rosa Rodriguez et al. 2021). It was shown that HILPDA is regulated
by PPARα through upstream PPRE (PPAR response element), and targeted overexpression increases hepatic
triglyceride (TG) storage by reducing TG secretion(Mattijssen et al. 2014). Rodriguez et al. also showed
a moderate reduction in triglycerides in the liver of mice with nonalcoholic steatohepatitis when they were
specifically deficient in HILPDA(de la Rosa Rodriguez et al. 2021). Norepinephrine (NE), a sympathetic
neurotransmitter, increases extracellular fatty acid absorption and triglyceride storage in macrophages by
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acting through HILPDA-activated beta2-adrenergic receptors (β2ARs) and decreasing free fatty acid release
from triglyceride-loaded macrophages(Petkevicius et al.2021). Thus, HILPDA could also provide new thera-
peutic directions for metabolism-related fatty liver disease as well as T2DM in the future. From the results
of our study above, we can show that hypoxia has a very important place in the development of diabetes.

SCD is an enzyme that regulates lipids and helps to desaturate saturated fatty acids(Wang et al. 2015). The
GSAV analysis of SCD also confirmed that it is involved in the biosynthesis of unsaturated fatty acids and
the metabolism of fatty acids. Previous animal studies have shown that defects in SCD-1 isoforms expressed
in human tissues result in reduced lipid synthesis, increased lipid oxidation, enhanced insulin sensitivity,
reduced hepatic glucose output and increased systemic glucose uptake(Ntambi et al. 2002; Flowers et al.
2007; Igarashi et al.2021). Among the targeted agents in SCD, Rosiglitazone is a thiazolidinedione that
enhances insulin sensitivity and was often used in the past for blood glucose control, but is now used sparingly
due to its significant cardiovascular side effects(Leal et al.2013; Raveendran et al. 2021). Animal studies
have shown that SCD is elevated in obese rats but returns to normal after rosiglitazone treatment(Song et al.
2008). MK-8245 is a potent liver-targeted SCD inhibitor that lowers blood lipids and blood glucose and has
been used in therapeutic trials to study type 2 diabetes(Xu et al. 2007; Oballa et al.2011). CLOFIBRATE
and ARAMCHOL can lower blood lipids and have been used to treat NAFLD, as well as to indirectly delay
the progression of T2DM(Gustafson et al. 2002; Ratziu et al.2021). However, the mechanisms associated
with SCD in T2DM need further investigation.

In addition, we verified the expression of two genes, CD44 and MYCN, in T2DM and non-diabetic tissues by
Western Blotting, Immunohistochemistry staining and Immunofluorescence Staining, and the results were
statistically significant. CD44 is a cell surface glycoprotein, and now more and more studies have indicated
that CD44 is involved in the regulation of glucose metabolism(Bogdani et al. 2014). It has been shown that
CD44 is elevated in diabetic tissues, which is also consistent with our analysis, and correlated with insulin
resistance and glycemic control levels. (Kodama et al.2012; Kang et al. 2013; Liu et al.2015). Related studies
have shown that hyaluronan (HA) activation of CD44 leads to increased vulnerability of β cells to damage
and increased insulin resistance, resulting in elevated blood glucose. (Assayag-Asherie et al. 2015; Hasib et
al. 2019). Conversely, disruption of HA-CD44 interaction reduces the inflammatory cascade involved in islet
destruction and exerts an antidiabetic effect (Weiss et al. 2000). In addition, treatment of obese mice with
anti-CD44 monoclonal antibody reduced fasting glucose levels, hepatic steatosis and insulin resistance to the
level of treatment with metformin and pioglitazone(Kodamaet al. 2015). MYCN is a member of the MYC
family of proto-oncogenes and is associated with the development of many tumors, especially neuroblastoma
(NB) (Alborzinia et al. 2022). In NB, MYCN maintains tumor growth by promoting fatty acid uptake(Tao
et al. 2022). It has been shown that MYCN can increase glycolysis and is associated with non-obese diabetes
mellitus(Wu et al. 2012; Zirath et al.2013). However, studies related to MYCN and diabetes are still scarce.

The development of T2DM is closely related to the disorders of immune status and function, abnormal
immune cell activation and the subsequent inflammatory environment makes glycemic control more diffi-
cult(Donath and Shoelson 2011). In the present study, immune infiltration analysis revealed that dendritic
cells activated were highly expressed in T2DM. In contrast, dendritic cells resting were lowly expressed
in T2DM. A study by SURENDAR J et al.(Surendaret al. 2012). Showed that the activation state of
myeloid dendritic cells(mDCs)and plasmacytoid dendritic cells(pDCs)in diabetic patients may be caused by
increased levels of granulocyte-macrophage colony-stimulating factor (GM-CSF) and other pro-inflammatory
cytokines. Hyperinsulinemia also stimulates dendritic cell (DC) activation and overexpression of the scav-
enger receptors SR-A, CD36, and LOX-1, which can boost DC oxidized low-density lipoprotein (oxLDL)
absorption capacity(Lu et al. 2013; Lu et al. 2015). Cardiovascular disease (CVD) remains the leading
cause of death in T2DM(Yun and Ko 2021). DC has an important role in the development of CVD and
atherosclerosis(Bacci et al. 2008; Bobryshev 2010). Recent research on relevant animals have also demon-
strated that DCs concentrate primarily in perivascular adipose tissue (PVAT) and are linked to an excess
of pro-inflammatory cytokines, which impairs PVAT’s capacity to increase vasorelaxation and perform anti-
contractile action in T2DM(Qiu et al. 2018). For T2DM and its complications, immune infiltration can be
thought of as one of the future therapy targets.
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The ferroptosis genes we looked for in T2DM were SCD, CD44, HIF1A, BCAT2, MTF1, HILPDA, NR1D2,
and MYCN. We mainly discussed five genes (SCD, CD44, HIF1A, HILPDA and MYCN) and selected two
genes, CD44 and MYCN, for clinical validation. In conclusion, more research is needed to determine if our
projected non-coding RNAs and gene-targeted medicines are involved in T2DM. Naturally, there are certain
limitations to our study. First, we only have verified experimentally the protein expression of CD44 and
MYCN in T2DM and normal tissues, and more experiments are needed in the future to further explore the
mechanisms of these genes in T2DM. Second, a higher sample size of T2DM might increase its accuracy
because the short sample size resulted in differential expression of several marker genes showing mistakes in
external validation. Thirdly, new ferroptosis-related genes are still to be found, and the FerrDb database is
always being updated.

Conclusion

In this study, we identified eight hub genes (SCD, CD44, HIF1A, BCAT2, MTF1, HILPDA, NR1D2 and
MYCN) that are closely associated with ferroptosis in T2DM. The three iron death genes, HIF1A, HILPDA
and SCD, are strongly related to T2DM, hypoxia and lipid metabolism, providing new research directions for
the development and treatment of T2DM and its complications. Based on these eight genes, we constructed
a model with a high ability to diagnose T2DM. We also predicted the drugs corresponding to these eight
genes as well as constructed a ceRNA network map. In addition, we verified the protein expression of CD44
and MYCN in T2DM and non-diabetic tissues by Western Blotting, Immunohistochemistry staining and
Immunofluorescence Staining, and the results were statistically significant. The above findings suggest that
further studies of ferroptosis may offer new therapeutic goals and biomarkers for patients with T2DM.
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TABLE 1. 58 of 358 FRGs were differentially expressed between T2DM and normal samples, including 38
up-regulated and 20 down-regulated genes.

FIGURE 1. Overview of the differentially expressed ferroptosis genes with T2DM and controls. (A) Heat
map of 58 ferroptosis-related DEGs. (B) The correlation of these genes. Most of these genes were strongly
correlated with each other.

FIGURE 2. Enrichment analysis of ferroptosis-related DEGs. (A) Gene Ontology (GO) functional analysis
showing enrichment of ferroptosis-related DGEs. (B) Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analysis of ferroptosis-related DGEs.

FIGURE 3. 8 ferroptosis-related DEGs were identified as diagnostic genes for T2DM. (A and B) 15
ferroptosis-related DEGs obtained using the LASSO algorithm based on the minimum lambda. (C and
D) 18 ferroptosis-related DEGs obtained using the SVM- RFE algorithm (maximum precision = 0.731, min-
imum RMSE = 0.269). E Eight marker genes were obtained from the LASSO and SVM-RFE algorithm. F
ROC curves for the 8 marker genes. G Logistic regression model to identify the AUC of disease samples.

FIGURE 4. The interaction relationships and expression of the eight marker genes in the GSE78721. (A)
Interaction of 8 marker genes. (B-I) Comparison of the expression of 8 marker genes in T2DM and healthy
samples.

FIGURE 5. Single gene KEGG-GSEA analysis of these 8 genes

FIGURE 6. High-and low-expression groups based on the expression levels of each marker gene combined
with GSVA inHIF1A (A) and SCD (B).

FIGURE 7. Immune feature analysis. (A) Bar charts of 22 immune cell proportions in T2DM and controls.
(B) Correlation heatmap depicting correlations between infiltrated immune cells in sepsis. The darker the
colour is, the stronger the correlation. (C) Differential expression of different types of immune cell marker
expression betweenT2DM and controls.

FIGURE 8. Correlation between the expression of these 8 marker genes and immune cells.

FIGURE 9. Construction of the nomogram based on the logistic regression model. (A) Nomogram specifically
quantified the odds ratio of T2DM based on 8 ferroptosis characteristics. (B) The calibration curves of
nomogram. (C) The decision curve of nomogram. (D) The clinical impact curves of nomogram.

FIGURE 10. Prediction of marker gene- targeted drugs. The drugs may target marker genes through the
DGIdb database and the interaction relationship between the two.

FIGURE 11. A ceRNA network based on these 8 genes. The network includes 671 nodes (7 marker genes,
349 miRNAs and 315 lncRNAs).

FIGURE 12. Expression status and diagnostic ability of marker genes in the validation set. (A) The
expression of marker genes in the GSE76895 dataset. (B) ROC curves for the 8 marker genes in the GSE76895
dataset. (C) Logistic regression model to determine the AUC of the validation set T2DM samples.

FIGURE 13. After ethical approval we took tissues from diabetic ulcers and non-diabetic patients and
performed Western blot, immunofluorescence, and immunohistochemistry, and CD44 and MYCN differed in
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expression. (A, B) Protein blotting assays were conducted to detect changes in CD44 and MYCN expression
in diabetic ulcers and normal skin tissue. (C, D, E, F) IHC analysis and quantification of percentage of
CD44 with MYCN in diabetic ulcers and normal skin tissue positive cells. Scale bar = 50 μm.(G, H, I, L)
Immunofluorescence assay and quantification of the percentage of CD44 versus MYCN in diabetic ulcers and
normal skin tissue positive cells. Scale bar = 50 μm. *P < 0.05, **P < 0.01, ***P < 0.001.
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