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Abstract

Space-based measurements of the Earth’s magnetic field with a good spatiotemporal coverage are needed to understand the

complex system of our surrounding geomagnetic field. High-precision magnetic field satellite missions form the backbone for

sophisticated research, but they are limited in their coverage. Many satellites carry so-called platform magnetometers that

are part of their attitude and orbit control systems. These can be re-calibrated by considering different behaviors of the

satellite system, hence reducing their relatively high initial noise originating from their rough calibration. These platform

magnetometer data obtained from non-dedicated satellite missions complement the high-precision data by additional coverage

in space, time, and magnetic local times. In this work, we present an extension to our previous Machine Learning approach

for the automatic in-situ calibration of platform magnetometers. We introduce a new physics-informed layer incorporating the

Biot-Savart formula for dipoles that can efficiently correct artificial disturbances due to electric current-induced magnetic fields

evoked by the satellite itself. We demonstrate how magnetic dipoles can be co-estimated in a neural network for the calibration

of platform magnetometers and thus enhance the Machine Learning-based approach to follow known physical principles. Here

we describe the derivation and assessment of re-calibrated datasets for two satellite missions, GOCE and GRACE-FO, which

are made publicly available. We achieved a mean residual of about 7 nT and 4 nT for low- and mid-latitudes, respectively.
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Abstract
Space-based measurements of the Earth’s magnetic field with a good spatiotemporal cov-
erage are needed to understand the complex system of our surrounding geomagnetic field.
High-precision magnetic field satellite missions form the backbone for research, but they
are limited in their coverage. Many satellites carry so-called platform magnetometers that
are part of their attitude and orbit control systems. These can be re-calibrated by con-
sidering different behaviors of the satellite system, hence reducing their relatively high
initial noise originating from their rough calibration. These platform magnetometer data
obtained from non-dedicated satellite missions complement the high-precision data by
additional coverage in space, time, and magnetic local times. In this work, we present
an extension to our previous Machine Learning approach for the automatic in-situ cal-
ibration of platform magnetometers. We introduce a new physics-informed layer incor-
porating the Biot-Savart formula for dipoles that can efficiently correct artificial distur-
bances due to electric current-induced magnetic fields evoked by the satellite itself. We
demonstrate how magnetic dipoles can be co-estimated in a neural network for the cal-
ibration of platform magnetometers and thus enhance the Machine Learning-based ap-
proach to follow known physical principles. Here we describe the derivation and assess-
ment of re-calibrated datasets for two satellite missions, GOCE and GRACE-FO, which
are made publicly available. We achieved a mean residual of about 7 nT and 4 nT for
low- and mid-latitudes, respectively.

Plain Language Summary

This study revolves around enhancing our understanding of Earth’s magnetic field
by leveraging satellite data. While certain satellites provide highly detailed magnetic field
information, their coverage is limited in geographical and temporal scope. Many satel-
lites carry basic magnetic sensors as part of their control systems, but these sensors are
initially rather inaccurate. We developed a computational method that combines ma-
chine learning and physics to refine these sensor readings. Our approach specifically ad-
dresses and corrects errors stemming from the satellite’s own magnetic interference. We
applied and tested this method on data from two specific satellites, namely GOCE and
GRACE-FO. The improved magnetic field data resulting from our method is made pub-
licly accessible, offering a more accurate and reliable dataset for researchers studying Earth’s
magnetic field.

1 Introduction

Platform magnetometers, commonly installed on various satellites in low Earth or-
bit, offer a promising means to expand the spatial and temporal coverage of Earth’s mag-
netic field measurements from space. However, these instruments, initially not dedicated
for geoscience applications, require calibration to ensure the scientific accuracy and us-
ability of the collected data. To achieve this, gathering information about the satellite
is essential to correct for artificial disturbances caused by other payload systems and other
influencing properties associated with the satellite.

To quantify the Earth’s magnetic field, several high-precision satellite missions have
been operated. From 1999 to 2004, magnetic field data from the Ørsted mission (Neubert
et al., 2001) are available. From 2000 to 2010, the CHAMP (Reigber et al., 2002) satel-
lite mission was in orbit, followed by a gap from 2010 to 2013 where no high-precision
mission measured the magnetic field. Since 2013, the Swarm constellation (Friis-Christensen
et al., 2006; Olsen et al., 2013) provides again high-precision measurements. Recently,
there have been ongoing efforts to complement the high-precision missions with addi-
tional data from non-high-precision or platform magnetometers with an analytical ap-
proach to the calibration. In this way, data from the GRACE, CryoSat-2, DMSP, GRACE-
FO, Swarm-Echo, AMPERE, and GOCE missions have been calibrated and made pub-
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licly available (Olsen, 2021; Olsen et al., 2020; Alken et al., 2020; Broadfoot et al., 2022;
Anderson et al., 2000; Stolle, Michaelis, et al., 2021; Michaelis et al., 2022). Although
having slightly higher noise these data complement dedicated magnetic field mission data
well for understanding the Earth’s magnetic field variations. They enlarge the spatiotem-
poral distribution, e.g., providing enhanced coverage of the altitudes or local times of mea-
sured phenomena mainly of magnetospheric or ionospheric origin. Section 2 provides a
brief overview of the geomagnetic field. Subsequent work has shown the analytical po-
tential of these additional data (e.g., Stolle, Olsen, et al. (2021); Xiong et al. (2021); Park
et al. (2020)).

In earlier works, we demonstrated the effectiveness of Machine Learning-based meth-
ods for the calibration of platform magnetometers (Styp-Rekowski et al., 2021, 2022b;
Bader et al., 2022). Leveraging Machine Learning (ML) techniques, we can adapt the
magnetometer signal to compensate for artificial disturbances originating from the pay-
load of the satellite. Our proposed non-linear regression approach automates the iden-
tification of relevant features and their interactions, broadening the range of inputs that
can be utilized. This reduces the analytical work required for the calibration of platform
magnetometers, resulting in faster, more precise, and easily accessible magnetic datasets
derived from non-dedicated satellite missions. These calibrated datasets are made pub-
licly available, promoting broader scientific access and utilization (Styp-Rekowski et al.,
2022a, 2023).

In this work, we propose an extension for the known approach by incorporating the
physical Biot-Savart law into a neural network (NN), which results in a physics-informed
neural network (PINN). This improves the modeling and correction of the impact of elec-
tric current-induced artificial magnetic fields on the satellite’s magnetic measurements,
as the PINN is more constrained to follow first-principle physical laws. In addition, the
B-field estimates of the Average Magnetic field and Polar current System (AMPS) model
(Laundal et al., 2018) are combined with the B-field estimates of the CHAOS-7 model
(Finlay et al., 2020), improving the reference model of the calibration, especially for the
polar regions. This extended approach is applied to the GOCE (Floberghagen et al., 2011;
Drinkwater et al., 2003) and GRACE-FO (Kornfeld et al., 2019) satellite missions and
their respective measurements. In the future, the proposed approach can be applied to
a wider variety of satellites to improve the accuracy of their platform magnetometer mea-
surements. We hope to enable other satellite operators to calibrate their magnetic in-
struments, improve the quality of their data, and make additional data available to the
scientific community.

In classic, on-ground calibration, a Helmholtz cage is used to determine the response
of the magnetic field instrument to different applied magnetic fields considering differ-
ent satellite states and the response of the instrument under calibration (Friis-Christensen
et al., 2006). Recently, Springmann et al. (2010) described the satellite noise signals by
dipoles, in terms of location, orientation, and strength, by employing multiple magne-
tometers in a research facility on-ground and a least-squares minimization. In this work,
we present an approach to determine a similar estimation of dipoles in-flight for single
magnetometers on board a satellite through data assimilation. Due to the availability
of a large set of electric current strengths and measured magnetic fields, the dipoles are
estimated as part of a larger optimization problem. The satellites in this study carry their
magnetometers at a single position, which makes the localization more inaccurate. How-
ever, this configuration offers the advantage of a large amount of data, encompassing var-
ious activation strengths. Consequently, numerous data points linking electric currents
with their induced magnetic fields are available for analysis.

Physics-informed neural networks (PINN) represent a powerful combination of tra-
ditional physics-based modeling and ML-based techniques (Cuomo et al., 2022). These
networks are designed to incorporate physical principles into their architecture, allow-
ing them to leverage data-driven insights and fundamental laws of physics. This inno-
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vative method has been applied in numerous fields, from fluid dynamics and materials
science to geophysics and beyond, making it a promising tool for complex physical sys-
tems (Yuan et al., 2020).

We evaluate our approach on multiple levels: First, a residual analysis comparing
the calibration quality to our reference model is conducted, followed by a feasibility study
assessing the ability of the trained PINN models to calibrate out-of-sample data of sub-
sequent months. This shows how the calibration could be adapted for a near real-time
application. We also show how disturbance sources can be extracted and analyzed uti-
lizing the proposed physics-informed approach, followed by an analysis of magnetic phe-
nomena, namely field-aligned currents (FAC) and magnetic storms, using the calibrated
magnetometer data.

The remainder of the paper is structured as follows. First, Section 2 gives an in-
troduction to Earth’s magnetic field, followed by Section 3 with an overview of the data
used within the presented methodology. Section 4 introduces the proposed approach, pre-
senting the improvements to the ML-based calibration. The results of the proposed ap-
proach are described in Section 5, while section 6 summarizes our findings.

2 Background

This chapter provides a brief overview of Earth’s magnetic field including its sources,
structure, and phenomena.

The geomagnetic field originates from Earth’s molten, electrically conducting outer
core, primarily composed of iron and nickel (Lowrie, 2023). The heat in the core drives
electric currents through thermal convection, and influenced by the rotation of the Earth,
results in the geodynamo mechanism. At Earth’s surface, this self-sustaining process es-
tablishes a dipole-dominated magnetic field. The field surrounding Earth is further af-
fected by external sources in the ionosphere, magnetosphere, and solar wind (Prölss, 2012).

Interactions between Earth’s magnetic field and the interplanetary magnetic field
(IMF), which is carried along with the solar wind, lead to various geomagnetic phenom-
ena, such as the formation of the magnetosphere the magnetospheric ring current, and
field-aligned currents (FACs) in polar regions, while the charged particles of the upper
atmosphere in the presence of the magnetic field form ionospheric currents, such as the
electrojet at the equator and the solar quiet daily magnetic variation (Sq), (Olsen & Stolle,
2012). Geomagnetic indices like the Kp (Matzka et al., 2021), Dst (Sugiura, 1964), or
Hp30-indices (Yamazaki et al., 2022) are indicators of the magnetic activity of these in-
teractions manifested as short-lived disturbances (of minutes to days) of the geomagnetic
field.

Various data including ground-based observatories, air and marine magnetic cam-
paigns, and space-based measurements contribute to empirical modeling of Earth’s mag-
netic field and its variations. While ground observatories offer continuous long-term ob-
servations, satellites provide global coverage, including remote areas and oceans. High-
precision data from missions like Ørsted, CHAMP, and Swarm have largely improved
geomagnetic field models. An overview on current capabilities to describe the geomag-
netic field are given in Stolle et al. (2017, and references therein).

3 Data

The newly derived calibration method we propose is applied to two satellite mis-
sions, namely the GOCE mission (from 2009 to 2013) and the GRACE-FO mission (from
2018 and ongoing).
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3.1 Satellite Data

The data collection process is very similar to previous works by Styp-Rekowski et
al. (2022b) for the GOCE satellite and by Styp-Rekowski et al. (2021) for the GRACE-
FO satellite duo. To summarize, all available data for the satellites are used, which means
any publicly available measurements taken onboard the satellites. Therefore, an inter-
polation onto common timestamps is needed, which was set to be the timestamps of the
position and attitude determination of the satellites. There has already been extensive
preprocessing of features in the form of One-hot encoding for textual features, removal
of non-informative features, addition of external features, scaling of the features to an
interval of [−1, 1], automatic filling of missing values, removal of outliers, and magnetic
quiet time filtering. For more details, please refer to the previous publications.

The GOCE mission has been completed in 2013. Therefore, we have a completed
dataset with no new measurements. It sums up to about 6.4 million data points with
984 features used within our calibration model. For the GRACE-FO mission, data have
been collected since June 2018 at a rate of 1Hz for the magnetic measurements. Together
with this publication, the datasets until July 2023 will be published, which means about
162 million data points with about 71 features.

The previous data collection process has been partly changed and extended. For
both satellite missions, the magnetic quiet time filtering based on the Kp (Matzka et al.,
2021) and Dst (Sugiura, 1964) indices has been replaced by a new filtering based on the
Hp30 (Yamazaki et al., 2022) and Dst indices. The increased resolution of a 30-minute
resolution, as compared to the previous 3-hour resolution, provides enhanced control over
the selection of filtered data points. As the Hp30 has been set up to contain the same
magnitudes as the Kp index, filtering for data points with Hp30 ≤ 2 has been applied.
The Dst-based filtering was changed to utilize the rate of change with |d(Dst)/dt| < 4nT/hr
to filter the data points.

In addition, previous data have been flagged if the magnetorquer control currents
were applied at their maximum value, which was interpreted as the satellite being out
of attitude. This has been extended to mark the whole time span of such occurrences
in what is described as a center-of-mass calibration maneuver, steering the magnetor-
quers with the maximum and minimum control currents alternatingly (Cossavella et al.,
2022). Such identified data is ignored during the training but added in the final calibrated
dataset with a corresponding flag.

In preparation for the PINN, it is necessary to identify the features that represent
electric currents onboard the satellite. For the GOCE satellite, these features have been
determined using a publicly available feature description list, which specifies the phys-
ical units of the measurements, such as ’A’ and ’mA’. In the case of the GRACE-FO satel-
lite mission, features were identified based on their names, specifically by including the
keyword ”current” in their names. These features are subsequently standardized to a com-
mon unit of Ampère and undergo no additional scaling during the feature preprocess-
ing stage.

3.2 Reference Model

As a reference model for the calibration, the CHAOS-7.15 model has been used,
which is based on ground observatories as well as space-based measurements of the mag-
netic field, e.g., from nearly ten years worth of Swarm data (Finlay et al., 2020). The
model has been evaluated at each satellite position to be calibrated and then rotated into
the satellite frame. This reference model will be combined with the AMPS model by com-
bining their respective B-field estimates into the finally used combined reference model.
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Laundal et al. (2018) introduced the AMPS model that describes the large-scale
structure of the current system in the polar regions, also known as FACs. The model is
based on several space weather parameters that are needed as input and can be used to
calculate the present magnetic field at a certain position and time, whereby the mag-
netic field is based only on these external phenomena that are not part of the CHAOS-
7 model. Thus, this model is well-suited to be used in conjunction with the CHAOS-7
model to enhance the quality of the used reference model. Recently, Kloss et al. (2023)
have presented a similar idea to co-estimate the core field with the ionospheric field while
creating models of the geomagnetic field, effectively combining the AMPS with the CHAOS-
7 model during the creation of a new model. Here, we combine the AMPS and CHAOS-
7 model by combining the magnetic field estimates.

For the introduction of the AMPS model, additional space weather properties are
needed for its parametrization. Therefore, By, Bz of the interplanetary magnetic field
(IMF), solar wind speed Vsw, the solar flux index F10.7, and the dipole tilt angle of the
Earth tilt have been added to the set of features that are only used for calculating the
reference model values.

Here, 1-min data available for the space weather parameters, provided by the Na-
tional Aeronautics and Space Administration (NASA)(Papitashvili & King, 2020), have
been used where missing data are interpolated as the gaps are small and changes are ex-
pected continuously. As recommended by Laundal et al. (2018), the space weather pa-
rameters are smoothed with a rolling 20-minute window mean before input into the AMPS
model. In addition, as the model is parameterized for the polar regions, only values pole-
wards of 40◦ quasi-dipole latitude (QDLat) have been used, otherwise set to 0. Within
the published datasets, the magnetic fields of the AMPS model are provided separately
from the CHAOS-7 data so the calibrated data can be investigated with either of the ref-
erence models. For the combination of the CHAOS-7 and the AMPS model, the eval-
uated B field estimates are added and subsequently used as the reference model.

A larger error of the calibration results is expected at high latitudes than at mid
and low latitudes due to increased ionospheric disturbances. The discrepancy can be partly
mitigated since

the AMPS model contains the mean large-scale structures, whereas the satellite like-
wise measures large-scale and small-scale features of the FACs. Thus, the inclusion of
the AMPS model improves the calibration process as the values provided by the com-
bined model cover the mean variation at high latitudes.

4 Physics-informed Calibration

Traditionally, platform magnetometer data have received a careful calibration where
features were preselected and new features created based on the experience of the do-
main expert (Olsen et al., 2020; Michaelis et al., 2022). These calibrations are well com-
prehensible and are excellent in extrapolation or generalization tasks. Similar approaches
have been applied to a variety of satellites, either calibrating the instrument directly or
co-estimating the instrument calibration with a model calculation (Alken et al., 2020).
Recently, a calibration utilizing ML tools has been proposed with several advantages,
like the possibility to use all available measurements on the satellite as the ML approach
can select the relevant features for the calibration itself (Styp-Rekowski et al., 2021). In
addition, non-linear interactions between measurements and the reference model are au-
tomatically found, thus yielding the possibility for an advanced calibration achieving lower
remaining noise in the produced dataset.
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4.1 Methods and Concepts

As presented in Styp-Rekowski et al. (2022b), there have been shortcomings in the
ML approach. First, the calibration underestimates the FACs in the calibrated datasets,
rendering the datasets less valuable for studying geomagnetic phenomena in high-latitude
regions. Second, the previous ML model is only analyzable by techniques like Shapley
Additive Explanations (SHAP) (Lundberg & Lee, 2017), allowing a view into the inner
workings of a black box. In addition, the generalizability of the previous models, e.g.,
when studying month-to-month models, could be improved. Within this work, we pro-
pose an extended approach to tackle these shortcomings.

The modeling of FAC in high-latitude regions has been found to be associated with
the distinct characteristics of the specific satellite mission’s orbit, i.e., GOCE. The com-
bination of the sun-synchronous polar orbit and magnetic local times (MLT) of about
6 and 18 LT for the descending and ascending orbit, respectively, the tilt angle of the
Earth towards the sun, and the Earth’s rotation in combination lead to the phenomenon
of the satellite flying through a larger area of shade around the south pole for the pe-
riod around June solstice. The spatially limited shading of the satellite leads to a cer-
tain uniqueness of the housekeeping parameters in this area. On the other hand, the FACs
also appear in this area and are not part of the CHAOS-7 reference model. This fact leads
to the previously purely statistically driven NN to correlate the unique property of the
housekeeping data with the unique signal property of the FACs in this region, thus op-
timizing for this correlation, which means that the housekeeping data are ’misused’ to
correct for the FAC signals present in the measured data.

Therefore, two extensive further developments of the previous approach have been
developed to tackle this problem. First, as described in Section 3.2, the AMPS model
by Laundal et al. (2018) is incorporated into our reference model, allowing us to include
the average large-scale features of the FAC regions in our calibration for a better cali-
bration result. Secondly, we will incorporate known laws from physics into the NN op-
timization, ensuring that the calibration will be physically more correct instead of purely
statistics-driven.

4.2 Physics-informed Component

One main contributor to the artificial disturbances relevant to the calibration of
platform magnetometers is known to be electric currents flowing within the electronics
system of a satellite. The disturbance mainly originates in the induced magnetic fields
caused by a flowing electric current, which influences the measurements of the magne-
tometers.

For this well-known phenomenon, the Biot-Savart Law gives a 3-dimensional rep-
resentation of Ampère’s Law. As the magnetometer measurements originate from a 3d
fluxgate magnetometer, the Biot-Savart law is the best fit to describe these processes in
the satellite that couple the electric currents with induced disturbances in the form of
magnetic fields. In a closed and compact system like a satellite, every circuit should be
considered and modeled as closed. Therefore, the search focuses on approximations for
dipoles of planar magnetic field-inducing coils. The Biot-Savart law for magnetic dipoles
is given in its vector form in Equation (1),

−→
B (−→r ,−→m) =

µ0

4π

(
3r̂(r̂ ∗ −→m)−−→m

|−→r |3

)
(1)

with µ0 as the permeability of free space,

µ0 = 4π10−7 V s

Am
(2)
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−→r as the position at which the magnetic field is calculated, r̂ as the unit vector in the
direction of −→r as defined by

r̂ =
−→r
|−→r |

(3)

and the magnetic dipole moment −→m, used in a similar way like by Springmann et al. (2010)
and defined by Jackson (1999). The magnetic dipole moment −→m, as defined in Equation (4),

−→m = IN−→a (4)

is the product of the electric current I, the area orthogonal vector −→a which is perpen-
dicular to the inner area of the coil and has the magnitude of the area itself, and the num-
ber of coil windings N . When substituting Equation (3) into Equation (1) and some re-
formatting, we arrive at our finally used formula in Equation (5).

−→
B (−→r ,−→m) =

µ0

4π

(
3−→r (−→m ∗ −→r )

|−→r |5
−

−→m
|−→r |3

)
(5)

This formula gives the induced magnetic field of a magnetic dipole generated by
a coil. There are some assumptions when using this formula to approximate the dipoles
of inducing electric currents within the satellite system. The main assumption is that
the complex induced magnetic fields onboard the satellite system are expected to be ap-
proximated by one dipole per sub-system. For this simple form of the equation, the cen-
ter of the coil is set to be at the origin while the position of the induced magnetic field
is calculated at the position −→r , which in our case corresponds to the position of the mag-
netometer relative to the center of the coil. As in the calibration scenario of the satel-
lites, the only given parameter in this equation is the electric current I, which is part
of the housekeeping datasets delivered together with the magnetometer data by the satel-
lite operators, the 3-dimensional position −→r and the area vector −→a as well as the coil
windings parameter N need to be estimated by the optimization function. This will be
done separately for every available electric current in the housekeeping data. We omit
the winding parameter N in our estimation and set it to 1, with the goal of fewer pa-
rameters to estimate. If a coil has more than one winding, the optimization would di-
rectly factor this property into the area vector since it acts as a factor for the dipole mo-
ment term. In addition, another assumption is to use the permeability of free space, which
is a good estimator within a satellite system.

Figure 1. BiSa (Biot-Savart) layer with the electric current I as the input, learnable parame-

ters −→r and −→a and the correction for the induced magnetic field.

For the satellite calibration within a PINN, this means that the input to the Biot-
Savart layer is the electric current of a particular subsystem of the satellite, as can be
seen in Figure 1 which shows the Biot-Savart layer schematically. This means that for
every electric current present in the data, a separate Biot-Savart layer is instantiated with
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random vectors −→r and −→a . After calculating the result of Equation (5), which corresponds
to the induced magnetic field, the field is inverted to correct for the artificial disturbance
introduced by the electric current being present. During the gradient-based optimiza-
tion of the PINN, the learnable parameters −→r and −→a will be changed to match the mea-
sured behavior of the satellite as a system. If an electric current present in our dataset
is not relevant for the measurements of the magnetometer at hand, the −→a will become
very small, and the position of the coil −→r will become very large relative to the mag-
netometer, thus neglecting the influence of this electric current.

This means that the calibration becomes physically more constrained as the pro-
ducing source for the induced magnetic fields is restricted to follow the Biot-Savart law.
In a feed-forward neural network, an arbitrary non-linear function with no constraints
would estimate the induced magnetic field of an electric current. With the PINN method-
ology, this function is limited to follow the Biot-Savart law, e.g., a non-present electric
current of 0A cannot induce any magnetic field.

1

2

837

836

… …

Input

…

Interp. HL(384) HL(128) Output

BiSa

BiSa147

1 -1

-1

Electric 
Currents

PIC Interm.
Output

……

Figure 2. Architecture of the PINN calibration model for the GOCE satellite: In yellow is the

time shift interpolation, in green is the FFNN, in blue is the PIC, and in red is the 3-dimensional

output. The final architecture was found through a hyperparameter optimization.

Figure 2 shows an illustration of the architecture of the calibration model for the
GOCE satellite. The architecture for the GRACE-FO is similar, with different dimen-
sions for the input. The number and size of the hidden layers were determined with a
hyperparameter optimization. The electric currents identified within the feature set are
excluded from the feed-forward neural network (FFNN), illustrated in green, and instead
form the new physics-informed component (PIC), shown in blue. Within the PIC, the
electric currents are translated into induced magnetic fields by the BiSa neurons and then
inverted to be corrected within the last concatenation step. Finally, the 3-dimensional
output layer, representing the X-, Y-, and Z-axes, illustrated in red, combines the inter-
mediate outputs from the FFNN and the PIC and thus generates the final PINN cal-
ibration model.

During the network training, the gradient of the model predictions is compared to
our reference model, from which the weights and biases of the network are adjusted ac-
cording to the gradient. For the PINN, this means that the location, encoded in −→r , and
the magnetic moment, encoded in −→a , are adjusted by translating the magnetic field-related
gradient into a position-related gradient, effectively adapting the relative position to fit
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the data. In addition, the learned parameters −→r and −→a are accessible in the trained model,
giving the possibility for further analysis, as will be shown in Section 5.

With the GOCE mission providing data at 16s intervals and the GRACE-FO mis-
sion providing data at 1s intervals, the model training needs to be structured. There-
fore, for the GOCE mission, a global model spanning the whole mission duration (2009
to 2013), and for the GRACE-FO mission, yearly models as defined by the calendar are
trained. This ensures good coverage of different behaviors within the satellite as a sys-
tem while, on the other hand, not exceeding computational limits in terms of memory
and computation time. Afterward, the global or yearly models, respectively, are trained
on a per-month basis with a much lower learning rate of 1∗10−5. Monthly data ensure
enough data points for this finetuning step while enabling the models to adjust for small
perturbations in the calibration over time. In addition, L1-regularization has been added
with a regularization parameter of 1∗10−3 (Ng, 2004). This penalizes high weights dur-
ing the training of the neural network and makes it more sparse to focus on the impor-
tant input features.

5 Evaluation

The proposed approach is evaluated on two satellite missions, namely the GOCE
and GRACE-FO satellite missions, consisting of one and two satellites, respectively. The
following subchapters show different aspects of our evaluation for either one or both mis-
sions. As different housekeeping data are available, the utilized model for the two satel-
lite missions looks slightly different. For the GOCE satellite, as seen in Figure 2, 837 of
the total 984 features are input features into the FFNN part of the PINN, while 147 fea-
tures represent electric currents onboard the satellite and are fed into the PIC of the PINN.
For the GRACE-FO satellite, there are nine features representing currents that are fed
into the PIC of the PINN, while the other features are used in the FFNN part of the PINN.
These are about 71 features, depending on the filtering applied on a yearly basis. As de-
scribed in Styp-Rekowski et al. (2021) and re-evaluated in this study, the magnetome-
ter readings are shifted in time by 0.67 s for the GRACE-FO1 and GRACE-FO2 satel-
lites, while the magnetorquers are shifted by -0.33 s.

5.1 Residual Evaluation

In the following analysis, we restrict the data to low- and mid-latitudes and apply
the filtering provided by the B FLAG of the dataset to restrict the evaluation to non-
erroneous data as well as a Hp30 ≤ 2 and |d(Dst)/dt| < 4nT/hr filtering for magnetic
quiet times.

Satellite Mean absolute error Standard deviation

GOCE 6.56 9.66
GRACE-FO1 3.57 5.13
GRACE-FO2 3.82 5.23

Table 1. Mean absolute error and standard deviation of the calibrated data for the different

satellites, spanning the whole calibration time range.

The residual is calculated on a per-point basis between the calibrated data and the
reference model estimates. Looking at the residual for the GOCE mission, calculated on
a per-month basis and averaged over all months, a mean absolute error (MAE) of about
6.56 nT with a standard deviation (SD) of 9.66 nT was achieved, as can be seen in Ta-
ble 1. For the GRACE-FO1 satellite, an MAE of about 3.57 nT with an SD of 5.13 nT,
and for the GRACE-FO2, an MAE of 3.82 nT with an SD of 5.23 nT was achieved. This
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Figure 3. Map of the binned and averaged residuals between the PINN calibration and the

combined reference model in the NEC-frame on a scale of 10 nT with GOCE data for the year

2013, panel a) shows the North component, panel b) the East component, and panel c) the Cen-

ter component. A grey color indicates a residual of close to 0. Note the color scale maximum and

minimum values contain saturated values.
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Figure 4. Map of the binned and averaged residuals between the PINN calibration and the

combined reference model in the NEC-frame on a scale of 10 nT with GRACE-FO1 data for the

year 2019, panel a) shows the North component, panel b) the East component, and panel c) the

Center component. A grey color indicates a residual of close to 0. Note the color scale maximum

and minimum values contain saturated values.
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Figure 5. First row: Residual over whole calibration period for GRACE-FO1 with 86400s

(daily) smoothing applied. Second row: MLT changes for the ascending and descending orbit of

the mission. Dawn-dusk orbits marked with grey dotted lines for times of low residual. Third

row: Same as the first row, with a separation for ascending descending orbits.

lies well within the margin to enable a scientific application of the proposed calibration
data. In the previously calibrated dataset of the GOCE satellite (Styp-Rekowski et al.,
2022b), an MAE of 6.47 nT, of the GRACE-FO1 satellite (Styp-Rekowski et al., 2021),
an MAE of about 2.96 nT and of the GRACE-FO2 satellite an MAE of 3.51 nT was achieved.
When comparing the same period as for the previous calibration of the GRACE-FO mis-
sion and GOCE mission, the new calibration has a MAE that is 0.4 nT larger than pre-
viously, which is due to the fact that the proposed calibration method is constraining
the model more in the usage of the additional features. A comparison with data from
the Swarm satellites is conducted in Section 5.6.

Exemplary, for the GOCE and GRACE-FO1 satellite, the residual data for the years
2013 and 2019, respectively, have been plotted on a map of the Earth where the resid-
ual has been averaged in bins of 4◦ latitude by 4◦ longitude for the contour plot in the
NEC-frame. Figure 3 and Figure 4 show the result of this evaluation. With the scale given
on the right and the three components North, East, and Center, it can be seen that the
residual has no apparent local distribution and is overall close to 0. The high-latitude
areas show that the satellites measure actual data of the polar current sheets, which in
average slightly differs from the given AMPS model used within the reference model.

By now, over five years of mission data have been acquired for the GRACE-FO satel-
lite mission. This allows us to examine the behavior of the residual over a long period,
spanning multiple seasons, multiple passages of the same MLTs for the satellite mission,
and different levels of the solar cycle. The mean absolute residual over the whole cali-
brated data of the GRACE-FO1 satellite has been plotted in Figure 5, with daily smooth-
ing applied. The data have been selected for the low- and mid-latitude range with a fil-
ter for the B FLAG of the calibrated dataset applied and selected for magnetic quiet
times using the previously defined filter. This gives an overview of how well the calibra-
tion performs compared to our reference model over time. In general, there is a reap-
pearing seasonality with a periodicity of about 11 months in the first panel, visible in
a low residual of about 2.5 nT every 5.5 months. The second row of the plot shows how
the GRACE-FO1 satellite drifts through different MLTs throughout the mission. There
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is a relationship between the residual and the MLT of the mission, as the satellite repeats
its MLT drift every 11 months, more precisely 320 days. The drops in the residual cor-
relate with the dawn-dusk orbits visited by the satellite mission, where orbits with an
MLT of 18 and 6 are marked with grey dotted lines.

Dawn, dusk and the local night time in between are the time when the least influ-
ence of magnetic dayside phenomena is present. Therefore, we see the lowest residuals
for dawn, dusk and night side orbits. This result is also due to the fact that the CHAOS-
7 combined with AMPS reference model, does include only averaged ionospheric currents
and does not capture fast, small scale variations. The third panel shows the ascending
and descending residuals separately, e.g., the residual peaks are high around times when
the orbit goes through a noon MLT while maintaining low residuals on the nightside.
Thus, a 2-3 nT residual can be maintained if only nighttime orbits are selected. Still,
daytime data should be included in our calibration and evaluation since dayside phenom-
ena are of interest to the geoscientific community. This could, e.g., include dayside Sq
variations caused by electric currents in the ionosphere which are not modelled by the
CHAOS-7 model (Finlay et al., 2020), effects of the equatorial electron jet (EEJ), or a
more complex behavior of the satellite system not modeled by the calibration.

5.2 Predictive Calibration

Figure 6. Histogram plot of monthly average residuals for predictive calibration models

evaluated on subsequent monthly data for the whole mission data of the GRACE-FO1 satellite.

Additionally, the direct calibration is included and compared against the reference model as well

as the predictive calibration. Finally, the results are compared to the previous calibration by

Styp-Rekowski et al. (2022b).

Additionally, a feasibility evaluation was conducted utilizing the different monthly
models of the GRACE-FO1 satellite mission. For every month of the satellite mission,
the calibration model that was trained on the data of the previous month has been used
to calibrate the data of the current month. This is done to show how the calibrated mod-
els perform on data of unseen months, which also carry a slight shift in MLT and yearly
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X Y Z

MTQ1 18.43 -2.39 -1.31
MTQ2 1.57 15.33 0.68
MTQ3 0.63 -0.99 18.54

Table 2. Maximum magnetic dipole moment (in Am2) as calculated by the maximum applied

electric currents of the three magnetorquers (MTQ) and derived by the learned parameters from

the PINN model.

seasonality. Furthermore, this is a building block towards near real-time usage of the pro-
posed calibration methods as this enables the use of precomputed models to quickly as-
sess newly measured satellite data without the need for immediate training. The model
coefficients of the reference models change on a larger time-scale of several months to
years, while the availability of their input parameters lies in the range of hours to days,
enabling a near real-time usage in the future.

In Figure 6 a histogram of average monthly residuals is shown for different config-
urations. First, the calibrated dataset is compared with the reference model, where most
values lie within a range of 3 to 5 nT, given in blue. This is comparable to the previous
method by Styp-Rekowski et al. (2022b), given in red. In addition, the predictive cal-
ibration is compared directly with the calibrated data in orange, as well as with the ref-
erence model, given in green. Comparing the predictive calibration with the reference
model, the residual values lie within a range of about 4 nT to 10 nT, also reflected by
a median value of about 6.7 nT. There are some outliers that mainly originate from the
unseen behavior of the supporting features within the calibration model. Generally, the
residual values are larger compared to the direct monthly calibration but remain reason-
able within one order of magnitude. Comparing the predictive with the direct calibra-
tion, a generally lower residual can be seen as the calibration follow the same restrictions
of the models.

For the potential continuous processing of GRACE-FO satellite data, two strate-
gies could be deployed. A rolling yearly model could be pre-trained and applied to newly
arriving monthly data, or the current yearly model could be extended by new monthly
data and then fine-tuned for the latest monthly data.

5.3 Predicted Dipole Locations

As stated previously, the usage of the Biot-Savart formula within the PIC of the
neural network model enables the extraction of the learned disturbance locations −→r and
their dipole moment −→m if the electric current is combined with the area orthogonal vec-
tor. Therefore, the maximum control currents for the magnetorquers have been identi-
fied over the whole time series, which are about 0.109 Ampère for every magnetorquer.
With these values, the induced magnetic field for the magnetometer position can be cal-
culated. As the Biot-Savart formula, viewed as an equations system, is underdetermined,
a variety of possible −→r and −→a solutions are possible to achieve the same induced mag-
netic field at only one point within the satellite. Indeed, infinitely many solutions ex-
ist. Therefore, the induced magnetic field and the known magnetorquer positions are taken
together with the maximum current and inserted into Equation (5), which results in the
dipole moment generated by the maximum magnetorquer control currents. With three
given variables, the equation becomes a solvable linear equations system. Thus, the dipole
moment can be extracted.

The results of this analysis can be seen in Figure 7. Here, a 3D model of the GRACE-
FO satellite has been rendered to visualize the results. The front of the panel, defined
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Figure 7. Model of the GRACE-FO satellite in decimeters(dm) with the magnetometer po-

sition in front(left) of the satellite given as a black sphere. The induced magnetic field in nT is

shown at the magnetometer position in the form of vectors. At the back of the satellite, the mag-

netic dipole moment at maximum control currents for the magnetorquers is given in Am2 for the

same magnetorquer colors, while the magnetorquers are depicted as bars with the same colors as

their respective magnetometer axis. The dipole moment vectors approximately align with the X,

Y, and Z axes of the satellite and are nearly orthogonally aligned to each other ±1◦.
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by the direction of the laser instrument, can be seen to the left. Also, the magnetome-
ter is located in front of the satellite, depicted by a black sphere. The induced magnetic
field for the three magnetorquers is shown at the magnetometer position. Then, for the
approximate magnetorquer positions, as derived from construction drawings, the mag-
netic moment is calculated for the maximum magnetorquer control currents. These can
be seen in the back of the satellite. The values for the magnetorquers are also given in
Table 2. The table is diagonally dominated, which shows that the magnetorquer momenta
are mainly aligned with the X, Y, and Z-axes, while the X and Y axes show some mi-
nor mixing. In addition, the angles between the different momenta measure 89.3◦, 90.4◦,
and 89.2◦ respectively, meaning that the momenta are approximately orthogonal.

These results closely align with the expectations for the satellite: The three mag-
netorquers are built in an orthogonal fashion to enable the control of the attitude of the
satellite. The positions and their momenta also match with the alignment axes of the
built-in magnetorquer bars. This means that the PINN can reliably find and assign the
position and strength of the sources of artificial satellite disturbances caused by dipoles.
In particular, introducing PINNs can open the black box that NNs represent, allowing
insight into the patterns learned from the data.

5.4 FAC Analysis

To show the viability for analyzing geomagnetic phenomena, auroral FACs are in-
vestigated. Therefore, Figure 8 and Figure 9 show the summarized FAC in dependence
of the MLT and QDLat of the GOCE and GRACE-FO1 satellites, respectively. The FACs
have been derived from the calibrated magnetometer data and summarized by an ag-
gregation function into bins of 2◦.

For the GOCE satellite, the FAC values have been aggregated by the median, while
for the GRACE-FO satellite, the mean could be used as it contains many more measure-
ments in the dataset. For both satellites, the bow-shaped Region 1 and 2 currents be-
come visible. This confirms that the calibration process expectedly preserves natural sig-
nals, and the shortcomings of the previous approach by Styp-Rekowski et al. (2022b) could
be overcome by including the AMPS model and introducing physical laws into the NN.
Figure 8 contains a comparison of the newly calibrated GOCE data with the previously
published dataset. The FACs in the Northern Hemisphere were less pronounced, and for
the Southern Hemisphere, no bow-like shapes were visible, as can be seen in the upper
half of the figure. With the new calibration method, this has changed drastically, and
the expected shape is present in the bottom half of the figure which is especially visi-
ble within the Southern Hemisphere. For the GRACE-FO satellites, the result has been
similar to previous studies.

A comparison between the GRACE-FO-derived FACs and Swarm A- and B-derived
FACs has been conducted. Therefore, a slice of the MLT was taken during June 2019,
ranging from MLTs of 5.5 to 6.5, representing the dawn. This choice has been made as
strong currents are present during Northern Hemisphere summer for this MLT range,
as seen in Figure 9.

The data have been low-pass filtered with a 20s cutoff similar to Xiong et al. (2021),
representing large-scale FACs (>150km) for the GRACE-FO mission. For every degree
of QDLat, the values have been summarized by a boxplot and visualized in Figure 10.
In addition, the altitude, MLT, and magnetic indices are given as mean values in depen-
dence on QDLat. Both GRACE-FO satellites are in good agreement with each other and
capture similar structures as the Swarm satellites. Remaining differences can be attributed
to the MLT of the satellites and the noise level of the calibrated GRACE-FO platform
magnetometer data. Thus, the usage of calibrated GRACE-FO magnetic data to sup-
port measurements by the Swarm satellite is encouraged for investigations of magnetic
phenomena on a global scale.

–17–



manuscript submitted to JGR: Machine Learning and Computation

Figure 8. Field-aligned currents as derived from calibrated data of the GOCE satellite mis-

sion. Summarized median by MLT and QDLat for the Northern and Southern Hemispheres. At

the top is the plot as derived from the previous approach (Styp-Rekowski et al., 2022b) and at

the bottom is the newly derived plot with enhanced FACs for the Southern Hemisphere.
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Figure 9. Field-aligned currents as derived from calibrated data of the GRACE-FO1 satellite.

Summarized mean by MLT and seasons for the Northern and Southern Hemispheres.
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Figure 10. Boxplot summary for FAC data derived from GRACE-FO1, GRACE-FO2,

Swarm-A, and Swarm-B missions. Data are selected from June 2019 for an MLT between 5.5 LT

and 6.5 LT and quasi-dipole latitude between 50◦ and 90◦, representing dawn. In addition, the

altitude and MLT are given as mean values in dependence on quasi-dipole latitude. The magnetic

indices are given in dependence of the time in the last panel.
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5.5 Multi-mission orbit constellations

As an example of the application of calibrated GRACE-FO data, a recent geomag-
netic storms has been investigated. The analyzed storm occurred on the 4th of Novem-
ber 2021, shown in Figure 11 for four days around the high geomagnetic activity. The
distribution of FAC values in dependence of QDLat and MLT for the Northern and South-
ern Hemisphere is shown. The Swarm-A and Swarm-B measurements are shown in squares,
while the GRACE-FO1 measurements are given in circles. The coloring contains an al-
pha value. Thus, if a circle is prominently visible on a square, the GRACE-FO measure-
ments disagree with the Swarm measurements, while for an agreement, the circle visu-
ally merges with the square. The figure is separated into three rows, where for every row
a different Hp30 selection has been applied to visualize differences in the geomagnetic
activity, ranging from low activity with Hp30 <= 2.0, medium activity with 2.0 < Hp30 <=
4.0, to high activity with 4.0 < Hp30.

The MLTs of the satellite mission strongly vary and show the strength of additional
data from non-dedicated missions. The global coverage of MLTs is strongly increased
by using GRACE-FO data that has MLTs with a difference of about 3.7 and 3.8 hours
on average compared to the Swarm A and B satellites for this time period, respectively.
The extension of the auroral oval during storm time becomes visible as the covered area
within the plot is larger because of the increased spatiotemporal coverage, enabling a global
picture during magnetic storms. The idea of improving the global coverage of geomag-
netic field measurements through non-dedicated satellite missions becomes evident here.

5.6 Evaluation against Swarm data

As the GRACE-FO mission has been operating since 2018 and the Swarm mission
has been in orbit since 2013, a comparison between the calibrated GRACE-FO data and
the data provided by the Swarm mission is possible, which is not the case for GOCE,
since GOCE did not operate simultaneously with Swarm.

Therefore, the residuals between the Swarm and GRACE-FO1 data against their
respective CHAOS-7 model prediction for low- and mid-latitudes during geomagnetic quiet
times have been compared. Figure 12 shows a histogram of the North, East, and Cen-
ter components of the vector magnetic field measurements for both missions. The data
have been filtered with their respective flags and the resulting histogram is normalized.
The Swarm data used in this study were downloaded in October 2023 from the VirES
platform (Smith et al., 2023).

With Swarm as the high-precision mission achieving a steeper Gaussian distribu-
tion, it can be seen how a significant intersection of calibrated platform magnetometer
data achieves similarly low residuals. The best result was achieved for the North com-
ponent. This highlights the potential of platform magnetometer data to accompany high-
precision missions with additional data of only modestly higher noise. Still, it needs to
be emphasized that the calibration of platform magnetometer data would not be pos-
sible without a high-precision mission in space to act as a reference point because non-
dedicated satellites mostly do not carry absolute magnetometers.

In addition, all conjunctions between the GRACE-FO1 satellite and the Swarm A
satellite between June 2018 and July 2023 have been analyzed. Again, filtering for ge-
omagnetic quiet times and flags has been applied. For both missions, for every data point
where the distance between the two satellites was below 400 km, their respective resid-
ual with the CHAOS-7 model has been computed and the difference between the cal-
culated residuals has been used for the conjunctions. The resulting conjunctions are binned
by QDLat and MLT and aggregated by the mean, as shown in Figure 13. Overall, the
conjunctions carry a low residual for low- and mid-latitude while having areas of larger
residual around the poles. No apparent correlation is visible between QDLat or MLT for
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Figure 11. The mean FAC values for the Swarm-A, Swarm-B, and GRACE-FO satellite

missions around the magnetic storm of the 4th of November, 2021, shown for four days, in de-

pendence of magnetic local time and quasi-dipole latitude. The plot is divided into three rows,

depending on the Hp30 index. Additionally, the Hp30 and Dst indices for this time frame are

given.
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Figure 12. Residual distribution comparison of the Swarm (blue) and GRACE-FO1 (orange)

calibrated data compared to the CHAOS7 reference model for the whole period from June 2018

to July 2023 within a histogram plot with bin sizes of 1 nT for the magnetic North (top), East

(middle) and Center (bottom) component. Note the different vertical scales.

Figure 13. Conjunctions between the Swarm A and GRACE-FO1 satellites from June 2018

to July 2023. Data are selected by flags and geomagnetic quietness. The heatmap compares the

residual to their respective CHAOS-7 model and shows the aggregated mean by quasi-dipole lati-

tude and magnetic local time binning.
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the conjunctions. Overall, this shows that the calibrated platform magnetometer data
are in good agreement with the current high-precision mission in orbit.

6 Conclusion

This work introduced a major extension to the previous ML approach (Styp-Rekowski
et al., 2022b) to calibrating platform magnetometers carried by non-dedicated satellites.
By introducing the physical Biot-Savart law into the NN, the new PINN is able to cor-
rectly handle and identify magnetic dipoles acting within the satellite system. Addition-
ally, the AMPS model was added to our reference model to anticipate large-scale auro-
ral current system disturbance, increasing the calibration quality, particularly in the po-
lar regions. When applied to the two satellite missions, GOCE and GRACE-FO1 together
with GRACE-FO2, mean absolute residual values of 6.56 nT, 3.57 nT, and 3.82 nT could
be obtained, respectively. Compared to the previous approach, the residuals of the pro-
posed methodology lie in a similar range while overcoming the identified shortcomings.
These results enable the application of the calibrated data to analyze geomagnetic phe-
nomena, as was shown exemplarily for FACs and geomagnetic storms. By its nature, this
approach is mostly automated, so that it is straightforward to apply it to the calibra-
tion of magnetometer data from other non-dedicated satellites in the future. The dataset
of the two missions calibrated alongside this work is available (Styp-Rekowski et al., 2022a,
2023).

Acronyms

AMPS Average Magnetic field and Polar current System

CHAMP CHAllenging Minisatellite Payload

ETL Extract, transform, and load process

FAC Field-aligned currents

FFNN Feed-forward neural network

GOCE Gravity and steady-state Ocean Circulation Explorer

GRACE Gravity Recovery And Climate Experiment

GRACE-FO Gravity Recovery And Climate Experiment Follow-On

IMF Interplanetary Magnetic Field

MAE Mean absolute error

ML Machine Learning

MLT Magnetic local time

MTQ Magnetorquer

NEC North-East-Center frame

NN Neural network

PIC Physics-informed component

PINN Physics-informed neural network

QDLat Quasi-dipole latitude

SD Standard deviation

Open Research Section

Data used in this study are publicly available from the European Space Agency (ESA)
for the GOCE satellite (https://earth.esa.int/eogateway/missions/goce/data) and
from the German Research Center for Geosciences (GFZ) for the GRACE-FO satellites
(Michaelis et al., 2021). The Swarm data were accessed through the viresclient (Smith
et al., 2023). The different indices and supplementary data were available from the NASA
for the By and Bz of the IMF, the solar wind speed Vsw, the Dst-index, the F10.7-index
(Papitashvili & King, 2020); the Hp30-index is provided by the GFZ (Yamazaki et al.,
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2022). The reference models used in this publication can be accessed through their re-
spective publications for the AMPS model (Laundal et al., 2018) and the CHAOS-7 model
(Finlay et al., 2020).

The generated data from this publication for the calibrated geomagnetic field mea-
surements, as well as their respective CHAOS-7 estimates and the derived FACs, can be
found under version 301 Styp-Rekowski et al. (2022a) for the GOCE satellite and ver-
sion 302 Styp-Rekowski et al. (2023) for the GRACE-FO satellites.
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Abstract15

Space-based measurements of the Earth’s magnetic field with a good spatiotemporal cov-16

erage are needed to understand the complex system of our surrounding geomagnetic field.17

High-precision magnetic field satellite missions form the backbone for sophisticated re-18

search, but they are limited in their coverage. Many satellites carry so-called platform19

magnetometers that are part of their attitude and orbit control systems. These can be20

re-calibrated by considering different behaviors of the satellite system, hence reducing21

their relatively high initial noise originating from their rough calibration. These plat-22

form magnetometer data obtained from non-dedicated satellite missions complement the23

high-precision data by additional coverage in space, time, and magnetic local times. In24

this work, we present an extension to our previous Machine Learning approach for the25

automatic in-situ calibration of platform magnetometers. We introduce a new physics-26

informed layer incorporating the Biot-Savart formula for dipoles that can efficiently cor-27

rect artificial disturbances due to electric current-induced magnetic fields evoked by the28

satellite itself. We demonstrate how magnetic dipoles can be co-estimated in a neural29

network for the calibration of platform magnetometers and thus enhance the Machine30

Learning-based approach to follow known physical principles. Here we describe the deriva-31

tion and assessment of re-calibrated datasets for two satellite missions, GOCE and GRACE-32

FO, which are made publicly available. We achieved a mean residual of about 7 nT and33

4 nT for low- and mid-latitudes, respectively.34

Plain Language Summary35

This study revolves around enhancing our understanding of Earth’s magnetic field36

by leveraging satellite data. While certain satellites provide highly detailed magnetic field37

information, their coverage is limited in geographical and temporal scope. Many satel-38

lites carry basic magnetic sensors as part of their control systems, but these sensors are39

initially rather inaccurate. We developed a sophisticated computational method that com-40

bines machine learning and physics to refine these sensor readings. Our approach specif-41

ically addresses and corrects errors stemming from the satellite’s own magnetic interfer-42

ence. We applied and tested this method on data from two specific satellites, namely GOCE43

and GRACE-FO. The improved magnetic field data resulting from our method is made44

publicly accessible, offering a more accurate and reliable dataset for researchers study-45

ing Earth’s magnetic field.46

1 Introduction47

Platform magnetometers, commonly installed on various satellites in low Earth or-48

bit, offer a promising means to expand the spatial and temporal coverage of Earth’s mag-49

netic field measurements from space. However, these instruments, initially not dedicated50

for geoscience applications, require calibration to ensure the scientific accuracy and us-51

ability of the collected data. To achieve this, gathering information about the satellite52

is essential to correct artificial disturbances caused by other payload systems and other53

influencing properties associated with the satellite.54

To quantify the Earth’s magnetic field, several high-precision satellite missions have55

been operated. From 1999 to 2004, magnetic field data from the Ørsted mission (Neubert56

et al., 2001) are available. From 2000 to 2010, the CHAMP (Reigber et al., 2002) satel-57

lite mission was in orbit, followed by a gap from 2010 to 2013 where no high-precision58

mission measured the magnetic field. Since 2013, the Swarm constellation (Friis-Christensen59

et al., 2006; Olsen et al., 2013) provides again high-precision measurements. Recently,60

there have been ongoing efforts to complement the high-precision missions with addi-61

tional data from non-high-precision or platform magnetometers with an analytical ap-62

proach to the calibration. In this way, data from the GRACE, Cryosat-2, DMSP, GRACE-63

FO, Swarm-Echo, AMPERE, and GOCE missions have been calibrated and made pub-64
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licly available (Olsen, 2021; Olsen et al., 2020; Alken et al., 2020; Broadfoot et al., 2022;65

Anderson et al., 2000; Stolle, Michaelis, et al., 2021; Michaelis et al., 2022). Although66

having slightly higher noise these data complement dedicated magnetic field mission data67

well for understanding the Earth’s magnetic field variations. They enlarge the spatiotem-68

poral distribution, e.g., providing enhanced coverage of the altitudes or local times of mea-69

sured phenomena mainly of magnetospheric or ionospheric origin. Subsequent work has70

shown the analytical potential of these additional data (e.g., Stolle, Olsen, et al. (2021);71

Xiong et al. (2021); Park et al. (2020)).72

In earlier works, we demonstrated the effectiveness of Machine Learning-based meth-73

ods for the calibration of platform magnetometers (Styp-Rekowski et al., 2021, 2022b;74

Bader et al., 2022). Leveraging Machine Learning (ML) techniques, we can adapt the75

magnetometer signal to compensate for artificial disturbances originating from the pay-76

load of the satellite. Our proposed non-linear regression approach automates the iden-77

tification of relevant features and their interactions, broadening the range of inputs that78

can be utilized. This reduces the analytical work required for the calibration of platform79

magnetometers, resulting in faster, more precise, and easily accessible magnetic datasets80

derived from non-dedicated satellite missions. These calibrated datasets are made pub-81

licly available, promoting broader scientific access and utilization (Styp-Rekowski et al.,82

2022a, 2023).83

In this work, we propose an extension for the known approach by incorporating the84

physical Biot-Savart law into a neural network (NN), which results in a physics-informed85

neural network (PINN). This improves the modeling and correction of the impact of elec-86

tric current-induced artificial magnetic fields on the satellite’s magnetic measurements,87

as the PINN is more constrained to follow first-principle physical laws. In addition, the88

B-field estimates of the Average Magnetic field and Polar current System (AMPS) model89

(Laundal et al., 2018) are combined with the B-field estimates of the CHAOS-7 model90

(Finlay et al., 2020), improving the reference model of the calibration, especially for the91

polar regions. This extended approach is applied to the GOCE (Floberghagen et al., 2011;92

Drinkwater et al., 2003) and GRACE-FO (Kornfeld et al., 2019) satellite missions and93

their respective measurements. In the future, the proposed approach can be applied to94

a wider variety of satellites to improve the accuracy of their platform magnetometer mea-95

surements. We hope to enable other satellite operators to calibrate their magnetic in-96

struments, improve the quality of their data, and make additional data available to the97

scientific community.98

In classic, on-ground calibration, a Helmholtz cage is used to determine the response99

of the magnetic field instrument to different applied magnetic fields considering differ-100

ent satellite states and the response of the instrument under calibration (Friis-Christensen101

et al., 2006). Recently, Springmann et al. (2010) described the satellite noise signals by102

dipoles, in terms of location, orientation, and strength, by employing multiple magne-103

tometers in a research facility on-ground and a least-squares minimization. In this work,104

we present an approach to determine a similar estimation of dipoles in-flight for single105

magnetometers on board a satellite through data assimilation. By having a large set of106

available applied strengths and measured magnetic fields, the dipoles are estimated as107

part of a larger optimization problem. The satellites in this study carry their magnetome-108

ters at the same position, which makes the localization more inaccurate. However, this109

configuration offers the advantage of a large amount of data, encompassing various ac-110

tivation strengths. Consequently, numerous data points linking electric currents with their111

induced magnetic fields are available for analysis.112

Physics-informed neural networks (PINN) represent a powerful combination of tra-113

ditional physics-based modeling and ML-based techniques (Cuomo et al., 2022). These114

networks are designed to incorporate physical principles into their architecture, allow-115

ing them to leverage data-driven insights and fundamental laws of physics. This inno-116

vative method has been applied in numerous fields, from fluid dynamics and materials117
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science to geophysics and beyond, making it a promising tool for complex physical sys-118

tems (Yuan et al., 2020).119

We evaluate our approach on multiple levels: First, a residual analysis comparing120

the calibration quality to our reference model is conducted, followed by a feasibility study121

assessing the ability of the models to calibrate out-of-sample data of subsequent months.122

This shows how the calibration could be adapted for a near real-time application. We123

also show how disturbance sources can be extracted and analyzed utilizing the proposed124

physics-informed approach, followed by an analysis of magnetic phenomena, namely field-125

aligned currents (FAC) and magnetic storms, using the calibrated magnetometer data.126

The remainder of the paper is structured as follows. Section 3 introduces the pro-127

posed approach, presenting the improvements to the ML-based calibration. The results128

of the proposed approach are described in Section 4, while section 5 summarizes our find-129

ings.130

2 Data131

The newly derived calibration method we propose is applied to two satellite mis-132

sions, namely the GOCE mission (from 2009 to 2013) and the GRACE-FO mission (from133

2018 and ongoing).134

2.1 Satellite Data135

The data collection process is very similar to previous works by Styp-Rekowski et136

al. (2022b) for the GOCE satellite and by Styp-Rekowski et al. (2021) for the GRACE-137

FO satellite. To summarize, all available data for the satellites are used, which means138

any publicly available measurements taken onboard the satellites. Therefore, an inter-139

polation onto common timestamps is needed, which was set to be the timestamps of the140

position and attitude determination of the satellites. There has already been extensive141

preprocessing of features in the form of One-hot encoding for textual features, removal142

of non-informative features, addition of external features, scaling of the features to an143

interval of [−1, 1], automatic filling of missing values, removal of outliers, and magnetic144

quiet time filtering. For more details, please refer to the previous publications. The GOCE145

mission has been completed in 2013. Therefore, we have a completed dataset with no146

new measurements. It sums up to about 6.4 million data points with 984 features used147

within our calibration model. For the GRACE-FO mission, data have been collected since148

June 2018 at a rate of 1Hz for the magnetic measurements. Together with this publi-149

cation, the datasets until July 2023 will be published, which means about 162 million150

data points with about 71 features.151

The previous data collection process has been partly changed and extended. For152

both satellite missions, the magnetic quiet time filtering based on the Kp (Matzka et al.,153

2021) and Dst (Sugiura, 1964) indices has been replaced by a new filtering based on the154

Hp30 (Yamazaki et al., 2022) and Dst indices. The increased granularity of a 30-minute155

resolution, as compared to the previous 3-hour resolution, provides enhanced control over156

the selection of filtered data points. As the Hp30 has been set up to contain the same157

magnitudes as the Kp index, filtering for data points with Hp30 ≤ 2 has been applied.158

In addition, previous data have been flagged if the magnetorquer control currents159

were applied at their maximum value, which was interpreted as the satellite being out160

of attitude. This has been extended to mark whole batches of such occurrences in what161

is described as a center-of-mass calibration maneuver, steering the magnetorquers with162

the maximum and minimum control currents alternatingly (Cossavella et al., 2022).163

In preparation for the PINN, it is necessary to identify the features that represent164

electric currents onboard the satellite. For the GOCE satellite, these features have been165
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determined using a publicly available feature description list, which specifies the phys-166

ical units of the measurements, such as ’A’ and ’mA’. In the case of the GRACE-FO satel-167

lite mission, features were identified based on their names, specifically by including the168

keyword ”current” in their names. These features are subsequently standardized to a com-169

mon unit of Ampère and undergo no additional scaling during the feature preprocess-170

ing stage.171

2.2 Reference Model172

As a reference model for the calibration, the highly sophisticated CHAOS-7.15 model173

has been used, which is based on ground observatories as well as space-based measure-174

ments of the magnetic field, e.g., from nearly ten years worth of Swarm data (Finlay et175

al., 2020). The model has been evaluated at each satellite position to be calibrated and176

then rotated into the satellite frame. This reference model will be combined with the AMPS177

model by combining their respective B-field estimates into the finally used combined ref-178

erence model.179

Laundal et al. (2018) introduced the AMPS model that describes the large-scale180

structure of the current system in the polar regions, also known as FACs. The model is181

based on several space weather parameters that are needed as input and can be used to182

calculate the present magnetic field at a certain position and time, whereby the mag-183

netic field is based only on these external phenomena that are not part of the CHAOS-184

7 model. Thus, this model is well-suited to be used in conjunction with the CHAOS-7185

model to enhance the quality of the used reference model. Recently, Kloss et al. (2023)186

have presented a similar idea to co-estimate the core field with the ionospheric field while187

creating models of the geomagnetic field, effectively combining the AMPS with the CHAOS-188

7 model during the creation of a new model. Here, we combine the AMPS and CHAOS-189

7 model by combining the magnetic field estimates.190

For the introduction of the AMPS model, additional space weather properties are191

needed for its parametrization. Therefore, By, Bz of the interplanetary magnetic field192

(IMF), solar wind Vsw, the magnetic activity disturbance storm-time (Dst) index Dst,193

the solar flux index F10.7, and the dipole tilt angle of the Earth tilt have been added194

to the set of features that are only used for calculating the reference model values. Here,195

1-min data available for the space weather parameters, provided by the National Aero-196

nautics and Space Administration (NASA)1, have been used where missing data are in-197

terpolated as the gaps are small and changes are expected continuously. As recommended198

by Laundal et al. (2018), the space weather parameters are smoothed with a rolling 20-199

minute window mean before input into the AMPS model. In addition, as the model is200

parameterized for the polar regions, only values polewards of 40◦ quasi-dipole latitude201

(QDLat) have been used, otherwise set to 0. Within the published datasets, the mag-202

netic fields of the AMPS model are provided separately from the CHAOS-7 data so the203

calibrated data can be investigated with either of the reference models. For the combi-204

nation of the CHAOS-7 and the AMPS model, the evaluated B field estimates are added205

and subsequently used as the reference model.206

A larger error of the calibration results is expected at high latitudes than at mid207

and low latitudes due to increased ionospheric disturbances. The discrepancy can be mit-208

igated, however, only partly mitigated since the AMPS model contains the mean large-209

scale structures, whereas the satellite likewise measures large-scale and small-scale fea-210

tures of the FACs. Thus, the inclusion of the AMPS model improves the calibration pro-211

cess as the values provided by the combined model cover the mean variation at high lat-212

itudes.213

1 https://omniweb.gsfc.nasa.gov/
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3 Physics-informed Calibration214

Traditionally, platform magnetometer data have received a careful calibration where215

features were preselected and new features created based on the experience of the do-216

main expert (Olsen et al., 2020; Michaelis et al., 2022). These calibrations are well com-217

prehensible and are excellent in extrapolation or generalization tasks. Similar approaches218

have been applied to a variety of satellites, either calibrating the instrument directly or219

co-estimating the instrument calibration with a model calculation. Recently, a calibra-220

tion utilizing ML tools has been proposed with several advantages, like the possibility221

to use all available measurements on the satellite as the ML approach can select the rel-222

evant features for the calibration itself (Styp-Rekowski et al., 2021). In addition, non-223

linear interactions between measurements and the reference model are automatically found,224

thus yielding the possibility for an advanced calibration achieving lower remaining noise225

in the produced dataset.226

3.1 Methods and Concepts227

As presented in Styp-Rekowski et al. (2022b), there have been shortcomings in the228

ML approach. First, the calibration underestimates the FACs in the calibrated datasets,229

rendering the datasets less valuable for studying geomagnetic phenomena in high-latitude230

regions. Second, the previous ML model is only analyzable by techniques like SHAP (Lundberg231

& Lee, 2017), allowing a view into the inner workings of a black box. In addition, the232

generalizability of the previous models, e.g., when studying month-to-month models, could233

be improved. Within this work, we propose an extended approach to tackle these short-234

comings.235

The modeling of FAC in high-latitude regions has been found to be associated with236

the distinct characteristics of the specific satellite mission’s orbit, i.e., GOCE. The com-237

bination of the sun-synchronous polar orbit and magnetic local times (MLT) of about238

6 and 18 LT for the descending and ascending orbit, respectively, the tilt angle of the239

Earth towards the sun, and the Earth’s rotation in combination lead to the phenomenon240

of the satellite flying through a larger area of shade around the south pole for the pe-241

riod around June solstice. The spatially limited shading of the satellite leads to a cer-242

tain uniqueness of the housekeeping parameters in this area. On the other hand, the FACs243

also appear in this area and are not part of the CHAOS-7 reference model. This fact leads244

to the previously purely statistically driven NN to correlate the unique property of the245

housekeeping data with the unique signal property of the FACs in this region, thus op-246

timizing for this correlation, which means that the housekeeping data are ’misused’ to247

correct for the FAC signals present in the measured data.248

Therefore, two extensive further developments of the previous approach have been249

developed to tackle this problem. First, as described in Section 2.2, the AMPS model250

by Laundal et al. (2018) is incorporated into our reference model, allowing us to include251

the average large-scale features of the FAC regions in our calibration for a better cali-252

bration result. Secondly, we will incorporate known laws from physics into the NN op-253

timization, ensuring that the calibration will be physically more correct instead of purely254

statistics-driven.255

3.2 Physics-informed Component256

One main contributor to the artificial disturbances relevant to the calibration of257

platform magnetometers is known to be electric currents flowing within the electronics258

system of a satellite. The disturbance mainly originates in the induced magnetic fields259

caused by a flowing electric current, which influences the measurements of the magne-260

tometers.261
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For this well-known phenomenon, the Biot-Savart Law gives a 3-dimensional rep-262

resentation of Ampère’s Law. As the magnetometer measurements originate from a 3d263

fluxgate magnetometer, the Biot-Savart law is the best fit to describe these processes in264

the satellite that couple the electric currents with induced disturbances in the form of265

magnetic fields. In a closed and compact system like a satellite, every circuit should be266

considered and modeled as closed. Therefore, the search focuses on approximations for267

dipoles of planar magnetic field-inducing coils. The Biot-Savart law for magnetic dipoles268

is given in its vector form in Equation (1),269

−→
B (−→r ,−→m) =

µ0

4π

(
3r̂(r̂ ∗ −→m)−−→m

|−→r |3

)
(1)270

with µ0 as the permeability of free space,271

µ0 = 4π10−7 V s

Am
(2)272

−→r as the position at which the magnetic field is calculated, r̂ as the unit vector in the273

direction of −→r as defined by274

r̂ =
−→r
|−→r |

(3)275

and the magnetic momentum −→m, used in a similar way like by Springmann et al. (2010)276

and defined by Jackson (1999). The magnetic momentum −→m, as defined in Equation (4),277

−→m = IN−→a (4)278

is the product of the electric current I, the area orthogonal vector −→a which is perpen-279

dicular to the inner area of the coil and has the magnitude of the area itself, and the num-280

ber of coil windings N . When substituting Equation (3) into Equation (1) and some re-281

formatting, we arrive at our finally used formula in Equation (5).282

−→
B (−→r ,−→m) =

µ0

4π

(
3−→r (−→m ∗ −→r )

|−→r |5
−

−→m
|−→r |3

)
(5)283

With this formula, the physically exact induced magnetic field of the electric cur-284

rents in the satellite can be determined. There are some assumptions when using this285

formula to approximate the dipoles of inducing electric currents within the satellite sys-286

tem. For this simple form of the equation, the center of the coil is set to be at the ori-287

gin while the position of the induced magnetic field is calculated at the position −→r , which288

in our case corresponds to the position of the magnetometer relative to the center of the289

coil. As in the calibration scenario of the satellites, the only given parameter in this equa-290

tion is the electric current I, which is part of the housekeeping datasets delivered together291

with the magnetometer data by the satellite operators, the 3-dimensional position −→r and292

the area vector −→a as well as the coil windings parameter N need to be estimated by the293

optimization function. We omit the winding parameter N in our estimation and set it294

to 1, with the goal of fewer parameters to estimate. If a coil has more than one wind-295

ing, the optimization would directly factor this property into the area vector since it acts296

as a factor for the momentum term. In addition, another assumption is to use the per-297

meability of free space, which is a good estimator within a satellite system.298

For the satellite calibration within a PINN, this means that the input to the Biot-299

Savart layer is the electric current of a particular subsystem of the satellite, as can be300

seen in Figure 1 which shows the Biot-Savart layer schematically. This means that for301

every electric current present in the data, a separate Biot-Savart layer is instantiated with302

random vectors −→r and −→a . After calculating the result of Equation (5), which corresponds303

to the induced magnetic field, the field is inverted to correct for the artificial disturbance304
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Figure 1. BiSa (Biot-Savart) layer with the electric current I as the input, learnable parame-

ters −→r and −→a and the correction for the induced magnetic field.

introduced by the electric current being present. During the gradient-based optimiza-305

tion of the PINN, the learnable parameters −→r and −→a will be changed to match the mea-306

sured behavior of the satellite as a system. If an electric current present in our dataset307

is not relevant for the measurements of the magnetometer at hand, the −→a will become308

very small, and the position of the coil −→r will become very large relative to the mag-309

netometer, thus neglecting the influence of this electric current.310

This means that the calibration becomes physically more constrained as the pro-311

ducing source for the induced magnetic fields is restricted to follow the Biot-Savart law.312

In a vanilla neural network, an arbitrary non-linear function would estimate the induced313

magnetic field. E.g., now a non-present electric current with a value of 0 cannot induce314

any magnetic field when following the equation.315

1

2

837

836

… …

Input

…

Interp. HL(384) HL(128) Output

BiSa

BiSa147

1 -1

-1

Electric 
Currents

PIC Interm.
Output

……

Figure 2. Architecture of the PINN calibration model for the GOCE satellite: In yellow is the

time shift interpolation, in green is the FFNN, in blue is the PIC, and in red is the 3-dimensional

output. The final architecture was found through a hyperparameter optimization.

Figure 2 shows an illustration of the architecture of the calibration model for the316

GOCE satellite. The architecture for the GRACE-FO is similar, with different dimen-317

sions for the input. The number and size of the hidden layers were determined with a318

hyperparameter optimization. The electric currents identified within the feature set are319

excluded from the feed-forward neural network (FFNN), illustrated in green, and instead320
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form the new physics-informed component (PIC), shown in blue. Within the PIC, the321

electric currents are translated into induced magnetic fields by the BiSa neurons and then322

inverted to be corrected within the last concatenation step. Finally, the 3-dimensional323

output layer, representing the X-, Y-, and Z-axes, illustrated in red, combines the inter-324

mediate outputs from the FFNN and the PIC and thus generates the final PINN cal-325

ibration model.326

During the network training, the gradient of the model predictions is compared to327

our reference model, from which the weights and biases of the network are adjusted ac-328

cording to the gradient. For the PINN, this means that the location, encoded in −→r , and329

the magnetic moment, encoded in −→a , are adjusted by translating the magnetic field-related330

gradient into a position-related gradient, effectively adapting the relative position to fit331

the data. In addition, the learned parameters −→r and −→a are accessible in the trained model,332

giving the possibility for further analysis, as will be shown in Section 4.333

With the GOCE mission providing data at 16s intervals and the GRACE-FO mis-334

sion providing data at 1s intervals, the model training needs to be structured. There-335

fore, for the GOCE mission, a global model spanning the whole mission duration (2009336

to 2013), and for the GRACE-FO mission, yearly models as defined by the calendar are337

trained. This ensures good coverage of different behaviors within the satellite as a sys-338

tem while, on the other hand, not exceeding computational limits in terms of memory339

and computation time. Afterward, the global or yearly models, respectively, are trained340

on a per-month basis with a much lower learning rate of 1∗10−5. Monthly data ensure341

enough data points for this finetuning step while enabling the models to adjust for small342

perturbations in the calibration over time. In addition, L1-regularization has been added343

with a regularization parameter of 1 ∗ 10−3 (Ng, 2004).344

4 Evaluation345

The proposed approach is evaluated on two satellite missions, namely the GOCE346

and GRACE-FO satellite missions, consisting of one and two satellites, respectively. The347

following subchapters show different aspects of our evaluation for either one or both mis-348

sions. As different housekeeping data are available, the utilized model for the two satel-349

lite missions looks slightly different. For the GOCE satellite, as visible in Figure 2, 837350

of the total 984 features are input features into the FFNN part of the PINN, while 147 fea-351

tures represent electric currents onboard the satellite and are fed into the PIC of the PINN.352

For the GRACE-FO satellite, there are nine features representing currents that are fed353

into the PIC of the PINN, while the other features are used in the FFNN part of the PINN.354

These are about 71 features, depending on the filtering applied on a yearly basis. As de-355

scribed in Styp-Rekowski et al. (2021) and re-evaluated in this study, the magnetome-356

ter readings are shifted in time by 0.67 s for the GRACE-FO1 and GRACE-FO2 satel-357

lites, while the magnetorquers are shifted by -0.33 s.358

4.1 Residual Evaluation359

In the following analysis, we restrict the data to low- and mid-latitudes and apply360

the filtering provided by the B FLAG of the dataset to restrict the evaluation to non-361

erroneous data as well as a Hp30 ≤ 2 and |Dst| ≤ 30 filtering for magnetic quiet times.362

Looking at the residual for the GOCE mission, calculated on a per-month basis and363

averaged over all months, a mean absolute error (MAE) of about 6.88 nT with a stan-364

dard deviation (SD) of 10.41 nT was achieved, as can be seen in Table 1. For the GRACE-365

FO1 satellite, an MAE of about 3.62 nT with an SD of 5.22 nT, and for the GRACE-366

FO2, an MAE of 3.86 nT with an SD of 5.31 nT was achieved. This lies well within the367

margin to enable a scientific application of the proposed calibration data. In the previ-368

ously calibrated dataset of the GOCE satellite (Styp-Rekowski et al., 2022b), an MAE369
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Figure 3. Residual map between the PINN calibration and the combined reference model in

the NEC-frame on a scale of 10 nT with GOCE data for 2013. A grey color indicates a residual

of close to 0. Note the color scale maximum and minimum values contain saturated values.

Figure 4. Residual map between the PINN calibration and the combined reference model

in the NEC-frame on a scale of 10 nT with GRACE-FO1 data for 2019. A grey color indicates

a residual of close to 0. Note the color scale maximum and minimum values contain saturated

values.

Satellite Mean absolute error Standard deviation

GOCE 6.88 10.41
GRACE-FO1 3.62 5.22
GRACE-FO2 3.86 5.31

Table 1. Mean absolute error and standard deviation of the calibrated data for the different

satellites, spanning the whole calibration time range.
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Figure 5. First row: Residual over whole calibration period for GRACE-FO1 with 86400s

(daily) smoothing applied. Second row: MLT changes for the ascending and descending orbit of

the mission. Dawn-dusk orbits marked with grey dotted lines for times of low residual. Third

row: Same as the first row, with a separation for ascending descending orbits.

of 6.47 nT, of the GRACE-FO1 satellite (Styp-Rekowski et al., 2021), an MAE of about370

2.96 nT and of the GRACE-FO2 satellite an MAE of 3.51 nT was achieved. When com-371

paring the same period as for the previous calibration of the GRACE-FO mission and372

GOCE mission, the new calibration has a MAE that is 0.4 nT larger than previously,373

which is due to the fact that the proposed calibration method is constraining the model374

more in the usage of the additional features. A comparison with data from the Swarm375

satellites is conducted in Section 4.6.376

Exemplary, for the GOCE and GRACE-FO1 satellite, the residual data for the years377

2013 and 2019, respectively, have been plotted on a map of the Earth where the resid-378

ual has been averaged in bins of 4◦ latitude by 4◦ longitude for the contour plot in the379

NEC-frame. Figure 3 and Figure 4 show the result of this evaluation. With the scale given380

on the bottom right and the three components North, East, and Center, it can be seen381

that the residual has no apparent local distribution and is overall close to 0. The high-382

latitude areas show that the satellites measure actual data of the polar current sheets,383

which in average slightly differs from the given AMPS model used within the reference384

model.385

By now, over five years of mission data have been acquired for the GRACE-FO satel-386

lite mission. This allows us to examine the behavior of the residual over a long period,387

spanning multiple seasons, multiple passages of the same MLTs for the satellite mission,388

and different levels of the solar cycle. The mean absolute residual over the whole cali-389

brated data of the GRACE-FO1 satellite has been plotted in Figure 5, with daily smooth-390

ing applied. The data have been selected for the low- and mid-latitude range with a fil-391

ter for the B FLAG of the calibrated dataset applied and selected for magnetic quiet392

times using the previously defined filter. This gives an overview of how well the calibra-393

tion performs compared to our reference model over time. In general, there is a reap-394

pearing seasonality with a periodicity of about 11 months in the first panel, visible in395

a low residual of about 2.5 nT every 5.5 months. The second row of the plot shows how396

the GRACE-FO1 satellite drifts through different MLTs throughout the mission. There397

is a relationship between the residual and the MLT of the mission, as the satellite repeats398
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its MLT drift every 11 months, more precisely 320 days. The drops in the residual cor-399

relate with the dawn-dusk orbits visited by the satellite mission, where orbits with an400

MLT of 18 and 6 are marked with grey dotted lines.401

Dawn, dusk and the local night time in between are the time when the least influ-402

ence of magnetic dayside phenomena is present. Therefore, we see the lowest residuals403

for dawn, dusk and night side orbits. This result is also due to the fact that the CHAOS-404

7 combined with AMPS reference model, does include only averaged ionospheric currents405

and does not capture fast, small scale variations. The third panel shows the ascending406

and descending residuals separately, e.g., the residual peaks are high around times when407

the orbit goes through a noon MLT while maintaining low residuals on the nightside.408

Thus, a 2-3 nT residual can be maintained if only nighttime orbits are selected. Still,409

daytime data should be included in our calibration and evaluation since dayside phenom-410

ena are of interest to the geoscientific community.411

4.2 Predictive Calibration412

Figure 6. Histogram plot of monthly average residuals for predictive calibration models evalu-

ated on subsequent monthly data for the whole mission data of the GRACE-FO1 satellite.

Additionally, a feasibility evaluation was conducted utilizing the different monthly413

models of the GRACE-FO1 satellite mission. For every month of the satellite mission,414

the calibration model that was trained on the data of the previous month has been used415

to calibrate the data of the current month. This is done to show how the calibrated mod-416

els perform on data of unseen months, which also carry a slight shift in MLT and yearly417

seasonality. Furthermore, this is a building block towards near real-time usage of the pro-418

posed calibration methods as this enables the use of precomputed models to quickly as-419

sess newly measured satellite data without the need for immediate training.420

Figure 6 shows the MAE for every month calculated for low- and mid-latitudes and421

put into a histogram with bins of 1 nT size. Most of the residual values lie within a range422

of about 4 nT to 10 nT, also reflected by a median value of about 6.7 nT. There are some423

outliers that mainly originate from the unseen behavior of the supporting features within424
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the calibration model. Generally, the residual values are larger compared to the direct425

monthly calibration but remain reasonable within one order of magnitude.426

For the potential continuous processing of GRACE-FO satellite data, two strate-427

gies could be deployed. A rolling yearly model could be pre-trained and applied to newly428

arriving monthly data, or the current yearly model could be extended by new monthly429

data and then fine-tuned for the latest monthly data.430

4.3 Predicted Dipole Locations431

Figure 7. Model of the GRACE-FO satellite in decimeters(dm) with the magnetometer po-

sition in front(left) of the satellite given as a black sphere. The induced magnetic field in nT

is shown at the magnetometer position in the form of vectors. At the back of the satellite, the

momentum at maximum control currents for the magnetorquers is given in Am2 for the same

magnetorquer colors, while the magnetorquers are depicted as bars with the same colors as their

respective magnetometer axis. The momentum vectors approximately align with the X, Y, and Z

axes of the satellite and are nearly orthogonally aligned to each other ±1◦.

As stated previously, the usage of the Biot-Savart formula within the PIC of the432

neural network model enables the extraction of the learned disturbance locations −→r and433

their momentum −→a if the electric current is factored in. Therefore, the maximum con-434

trol currents for the magnetorquers have been identified, which are about 0.109 Ampère435

for every magnetorquer. With these values, the induced magnetic field for the magne-436

tometer position can be calculated. As the Biot-Savart formula, viewed as an equations437

system, is underdetermined, a variety of possible −→r and −→a solutions are possible to achieve438

the same induced magnetic field at only one point within the satellite. Indeed, infinitely439

many solutions exist. Therefore, the induced magnetic field and the known magnetome-440

ter positions are taken together with the maximum current and inserted into Equation (5),441

and the momentum of the magnetorquers is calculated. With three given variables, the442
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X Y Z

MTQ1 18.92 -1.67 0.29
MTQ2 1.53 15.31 0.56
MTQ3 -0.09 -0.8 18.47

Table 2. Momentum vectors for the three magnetorquers (MTQ) as derived by the learned

parameters from the PINN model.

equation becomes a solvable linear equations system. Thus, the momentum can be ex-443

tracted.444

The results of this analysis can be seen in Figure 7. Here, a 3D model of the GRACE-445

FO satellite has been rendered to visualize the results. The front of the panel, defined446

by the direction of the laser instrument, can be seen to the left. Also, the magnetome-447

ter is located in front of the satellite, depicted by a black sphere. The induced magnetic448

field for the three magnetorquers is shown at the magnetometer position. Then, for the449

approximate magnetorquer positions, as derived from construction drawings, the mag-450

netic moment is calculated for the maximum magnetorquer control currents. These can451

be seen in the back of the satellite. The values for the magnetorquers are also given in452

Table 2. The table is diagonally dominated, which shows that the magnetorquer momenta453

are mainly aligned with the X, Y, and Z-axes, while the X and Y axes show some mi-454

nor mixing. In addition, the angles between the different momenta measure 89.3◦, 90.4◦,455

and 89.2◦ respectively, meaning that the momenta are approximately orthogonal.456

These results closely align with the expectations for the satellite: The three mag-457

netorquers are built in an orthogonal fashion to enable the control of the attitude of the458

satellite. The positions and their momenta also match with the alignment axes of the459

built-in magnetorquer bars. This means that the PINN can reliably find and assign the460

position and strength of the sources of artificial satellite disturbances caused by dipoles.461

In particular, introducing PINNs can open the black box that NNs represent, allowing462

insight into the patterns learned from the data.463

4.4 FAC Analysis464

To show the viability for analyzing geomagnetic phenomena, auroral FACs are in-465

vestigated. Therefore, Figure 8 and Figure 9 show the summarized FAC in dependence466

of the MLT and QDLat of the GOCE and GRACE-FO1 satellites, respectively. The FACs467

have been derived from the calibrated magnetometer data and summarized by an ag-468

gregation function into bins of 2◦.469

For the GOCE satellite, the FAC values have been aggregated by the median, while470

for the GRACE-FO satellite, the mean could be used as it contains many more measure-471

ments in the dataset. For both satellites, the bow-shaped Region 1 and 2 currents be-472

come visible. This confirms that the calibration process expectedly preserves natural sig-473

nals, and the shortcomings of the previous approach by Styp-Rekowski et al. (2022b) could474

be overcome by introducing physical laws into the NN. Figure 8 contains a comparison475

of the newly calibrated GOCE data with the previously published dataset. The FACs476

in the Northern Hemisphere were less pronounced, and for the Southern Hemisphere, no477

bow-like shapes were visible, as can be seen in the upper half of the figure. With the new478

calibration method, this has changed drastically, and the expected shape is present in479

the bottom half of the figure which is especially visible within the Southern Hemisphere.480

For the GRACE-FO satellites, the result has been similar to previous studies.481
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Figure 8. Field-aligned currents as derived from calibrated data of the GOCE satellite mis-

sion. Summarized median by MLT and QDLat for the Northern and Southern Hemispheres. At

the top is the plot as derived from the previous approach (Styp-Rekowski et al., 2022b) and at

the bottom is the newly derived plot with enhanced FACs for the Southern Hemisphere.
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Figure 9. Field-aligned currents as derived from calibrated data of the GRACE-FO1 satellite.

Summarized mean by MLT and seasons for the Northern and Southern Hemispheres.
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Figure 10. Boxplot summary for FAC data derived from GRACE-FO1, GRACE-FO2,

Swarm-A, and Swarm-B missions. Data are selected from June 2019 for an MLT between 5.5 LT

and 6.5 LT and quasi-dipole latitude between 50◦ and 90◦, representing dawn. In addition, the

altitude, MLT, and magnetic indices are given as mean values in dependence on quasi-dipole

latitude.

–17–



manuscript submitted to JGR: Machine Learning and Computation

A comparison between the GRACE-FO-derived FACs and Swarm A- and B-derived482

FACs has been conducted. Therefore, a slice of the MLT was taken during June 2019,483

ranging from MLTs of 5.5 to 6.5, representing the dawn. This choice has been made as484

strong currents are present during Northern Hemisphere summer for this MLT range,485

as seen in Figure 9.486

The data have been low-pass filtered with a 20s cutoff similar to Xiong et al. (2021),487

representing large-scale FACs (>150km) for the GRACE-FO mission. For every degree488

of QDLat, the values have been summarized by a boxplot and visualized in Figure 10.489

In addition, the altitude, MLT, and magnetic indices are given as mean values in depen-490

dence on QDLat. Both GRACE-FO satellites are in good agreement with each other and491

capture similar structures as the Swarm satellites. Remaining differences can be attributed492

to the MLT of the satellites and the noise level of the calibrated GRACE-FO platform493

magnetometer data. Thus, the usage of calibrated GRACE-FO magnetic data to sup-494

port measurements by the Swarm satellite is encouraged for investigations of magnetic495

phenomena on a global scale.496

4.5 Multi-mission orbit constellations497

As an example of the application of calibrated GRACE-FO data, a recent geomag-498

netic storms has been investigated. The analyzed storm occurred on the 4th of Novem-499

ber 2021, shown in Figure 11 for four days around the high geomagnetic activity. The500

distribution of FAC values in dependence of QDLat and MLT for the Northern and South-501

ern Hemisphere is shown. The Swarm-A and Swarm-B measurements are shown in squares,502

while the GRACE-FO1 measurements are given in circles. The coloring contains an al-503

pha value. Thus, if a circle is prominently visible on a square, the GRACE-FO measure-504

ments disagree with the Swarm measurements, while for an agreement, the circle visu-505

ally merges with the square. The figure is separated into three rows, where for every row506

a different Hp30 selection has been applied to visualize differences in the geomagnetic507

activity, ranging from low activity with Hp30 <= 2.0, medium activity with 2.0 < Hp30 <=508

4.0, to high activity with 4.0 < Hp30.509

The MLTs of the satellite mission strongly vary and show the strength of additional510

data from non-dedicated missions. The global coverage of MLTs is strongly increased511

by using GRACE-FO data that has nearly perpendicular MLTs as the Swarm mission512

for this time period. The extension of the auroral oval during storm time becomes vis-513

ible as the covered area within the plot is larger because of the increased spatiotempo-514

ral coverage, enabling a global picture during magnetic storms. The idea of improving515

the global coverage of geomagnetic field measurements through non-dedicated satellite516

missions becomes evident here.517

4.6 Evaluation against Swarm data518

As the GRACE-FO mission has been operating since 2018 and the Swarm mission519

has been in orbit since 2013. Thus, the comparison between the calibrated GRACE-FO520

data and the data provided by the Swarm mission is possible, which is not the case for521

GOCE, since GOCE did not operate simultaneously with Swarm.522

Therefore, the residuals between the Swarm and GRACE-FO1 data against their523

respective CHAOS-7 model prediction for low- and mid-latitudes during geomagnetic quiet524

times have been compared. Figure 12 shows a histogram of the North, East, and Cen-525

ter components of the vector magnetic field measurements for both missions. The data526

have been filtered with their respective flags and adjusted for the same amount of data527

points. The Swarm data used in this study were downloaded in October 2023 from the528

VirES platform (Smith et al., 2023).529
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Figure 11. The mean FAC values for the Swarm-A, Swarm-B, and GRACE-FO satellite

missions around the magnetic storm of the 4th of November, 2021, shown for four days, in de-

pendence of magnetic local time and quasi-dipole latitude. The plot is divided into three rows,

depending on the Hp30 index. Additionally, the Hp30 and Dst indices for this time frame are

given.
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Figure 12. Residual distribution comparison of the Swarm (blue) and GRACE-FO1 (orange)

calibrated data compared to the CHAOS7 reference model for the whole period from June 2018

to July 2023 within a histogram plot with bin sizes of 1 nT for the magnetic North (top), East

(middle) and Center (bottom) component. Note the different vertical scales.

With Swarm as the high-precision mission achieving a steeper Gaussian distribu-530

tion, it can be seen how a significant intersection of calibrated platform magnetometer531

data achieves similarly low residuals. The best result was achieved for the North com-532

ponent. This highlights the potential of platform magnetometer data to accompany high-533

precision missions with additional data of only modestly higher noise. Still, it needs to534

be emphasized that the calibration of platform magnetometer data would not be pos-535

sible without a high-precision mission in space to act as a reference point because non-536

dedicated satellites mostly do not carry absolute magnetometers.537

In addition, all conjunctions between the GRACE-FO1 satellite and the Swarm A538

satellite between June 2018 and July 2023 have been analyzed. Again, filtering for ge-539

omagnetic quiet times and flags has been applied. For both missions, their respective resid-540

ual with the CHAOS-7 model has been compared. The resulting conjunctions are binned541

by QDLat and MLT and aggregated by the mean, as shown in Figure 13. Overall, the542

conjunctions carry a low residual for low- and mid-latitude while having areas of larger543

residual around the poles. No apparent correlation is visible between QDLat or MLT for544

the conjunctions. Overall, this shows that the calibrated platform magnetometer data545

are in good agreement with the current high-precision mission in orbit.546

5 Conclusion547

This work introduced a major extension to the previous ML approach to calibrat-548

ing platform magnetometers carried by non-dedicated satellites. By introducing the phys-549

ical Biot-Savart law into the NN, the new PINN is able to correctly handle and identify550

magnetic dipoles acting within the satellite system. Additionally, the AMPS model was551
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Figure 13. Conjunctions between the Swarm A and GRACE-FO1 satellites from June 2018

to July 2023. Data are selected by flags and geomagnetic quietness. The heatmap compares the

residual to their respective CHAOS-7 model and shows the aggregated mean by quasi-dipole lati-

tude and magnetic local time binning.

added to our reference model to anticipate large-scale auroral current system disturbance,552

increasing the calibration quality, particularly in the polar regions. When applied to the553

two satellite missions, GOCE and GRACE-FO1 together with GRACE-FO2, mean ab-554

solute residual values of 6.88 nT, 3.63 nT, and 3.86 nT could be obtained, respectively.555

These results enable the application of the calibrated data to analyze geomagnetic phe-556

nomena, as was shown exemplarily for FACs and geomagnetic storms. By its nature, this557

approach is mostly automated, so that it is straightforward to apply it to the calibra-558

tion of magnetometer data from other non-dedicated satellites in the future. The dataset559

of the two missions calibrated alongside this work is available (Styp-Rekowski et al., 2022a,560

2023).561

Acronyms562

AMPS Average Magnetic field and Polar current System563

CHAMP CHAllenging Minisatellite Payload564

ETL Extract, transform, and load process565

FAC Field-aligned currents566

FFNN Feed-forward neural network567

GOCE Gravity and steady-state Ocean Circulation Explorer568

GRACE Gravity Recovery And Climate Experiment569

GRACE-FO Gravity Recovery And Climate Experiment Follow-On570

IMF Interplanetary Magnetic Field571

MAE Mean absolute error572

ML Machine Learning573

MLT Magnetic local time574

MTQ Magnetorquer575

NEC North-East-Center frame576

NN Neural network577
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PIC Physics-informed component578

PINN Physics-informed neural network579

QDLat Quasi-dipole latitude580

SD Standard deviation581

Open Research Section582

Data used in this study are publicly available from the European Space Agency (ESA)583

for the GOCE satellite 2 and from the German Research Center for Geosciences (GFZ)584

for the GRACE-FO satellites (Michaelis et al., 2021). The Swarm data were accessed585

through the viresclient (Smith et al., 2023). The different indices and supplementary data586

were available from the NASA for the By and Bz of the IMF, the solar wind speed Vsw,587

the Dst-index, the F10.7-index 3; the Hp30-index is provided by the GFZ 4. The refer-588

ence models used in this publication can be accessed through their respective publica-589

tions for the AMPS model (Laundal et al., 2018) and the CHAOS-7 model (Finlay et590

al., 2020).591

The generated data from this publication for the calibrated geomagnetic field mea-592

surements, as well as their respective CHAOS-7 estimates and the derived FACs, can be593

found under Styp-Rekowski et al. (2022a) for the GOCE satellite and Styp-Rekowski et594

al. (2023) for the GRACE-FO satellites.595
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