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Abstract

This work unveils the fundamental limits of linear and nonreciprocal plasmonic metasurfaces in terms of isolation and loss. The

proposed bounds are related to surface waves and only depend on the nonreciprocal material employed within the metasurface,

thus being independent of geometrical considerations and the presence of other materials. We apply these fundamental limits

to explore two different platforms, namely drift-biased and magnetically-biased graphene metasurfaces. For each platform, we

first analytically derive the upper bounds in terms of graphene conductivity. Then, we explore devices proposed in the literature

and benchmark their response against their upper bounds. Results highlight that drift-biased hyperbolic metasurfaces exhibit

outstanding performance in the mid-infrared region, whereas magnetically-biased devices are better suited for the low terahertz

band. More broadly, our bounds allow to quickly assess the performance of nonreciprocal plasmonic metasurfaces with respect

to their fundamental limit, thus streamlining the device design process and preventing that significant efforts are dedicated to

marginal performance improvements. The proposed bounds pave the way toward the development of quasi-optimal nonreciprocal

metasurfaces, with important applications in sensing, imaging, communications, and nonlinear optics, among many others.
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Abstract—This work unveils the fundamental limits of linear 

and nonreciprocal plasmonic metasurfaces in terms of isolation 

and loss. The proposed bounds are related to surface waves and 

only depend on the nonreciprocal material employed within the 

metasurface, thus being independent of geometrical 

considerations and the presence of other materials. We apply these 

fundamental limits to explore two different platforms, namely 

drift-biased and magnetically-biased graphene metasurfaces. For 

each platform, we first analytically derive the upper bounds in 

terms of graphene conductivity. Then, we explore devices 

proposed in the literature and benchmark their response against 

their upper bounds. Results highlight that drift-biased hyperbolic 

metasurfaces exhibit outstanding performance in the mid-infrared 

region, whereas magnetically-biased devices are better suited for 

the low terahertz band. More broadly, our bounds allow to quickly 

assess the performance of nonreciprocal plasmonic metasurfaces 

with respect to their fundamental limit, thus streamlining the 

device design process and preventing that significant efforts are 

dedicated to marginal performance improvements. The proposed 

bounds pave the way toward the development of quasi-optimal 

nonreciprocal metasurfaces, with important applications in 

sensing, imaging, communications, and nonlinear optics, among 

many others.  

 
Index Terms—Fundamental limits, graphene, metasurfaces, 

nonreciprocity, plasmonics. 

I. INTRODUCTION 

REAKING reciprocity lies in the heart of modern 

electromagnetic devices such as circulators [1]-[4], 

isolators [5]-[7], filters [8], [9], and antennas [10]-[12]. 

Generally, breaking reciprocity can be realized by 

biasing the device with a physical quantity that is odd-

symmetric under time-reversal [13]. Conventionally, such 

response has been achieved by magnetically biasing 

ferromagnetic compounds and garnets [14], [15]. In the past 

decade, magnetless approaches based on nonlinear responses, 

spatiotemporal modulation, drifting electrons, and opto-

mechanical effects have been explored across the 

electromagnetic spectrum [16]-[27]. In a related context, the 

field of plasmonics has opened new possibilities to control and 

manipulate light beyond the diffraction limit [28] and has 

enabled countless applications in areas such as sensing, 

spectroscopy, and healthcare [29]-[31]. Surface plasmon 

polaritons (SPPs) are electromagnetic modes confined to two-

dimensional (2D) interfaces that possess evanescent fields in 

the direction perpendicular to the interface. For instance, SPPs 
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are supported by dielectric-metal interfaces at infrared (IR) and 

visible frequencies [32] and by graphene and other 2D materials 

[33]-[36] in the terahertz (THz) and IR bands. The emerge of 

ultrathin metasurfaces [37] and 2D materials [38] have 

provided new knobs to excite, process, and route SPPs, while 

also enabling unexpected possibilities to manipulate and 

enhance nonreciprocal responses [39]-[41] Nonreciprocal 

plasmonics lead to strong light-matter interactions[42], useful 

in areas as nonlinear wave generation, sensing, and 

communications, among others. Unfortunately, the design of 

quasi-optimal nonreciprocal metasurfaces is usually quite 

challenging and require significant computational resources. 

Given the abundant choice of materials and large degree of 

freedoms for geometrical shapes and dimensions, it would be 

highly desirable to determine the optimal response that can be 

achieved by a metasurface loaded with a specific nonreciprocal 

material. This would allow to (i) streamline the design process, 

by assessing the performance of a given device with respect to 

the fundamental bounds; and (ii) prevent that significant efforts 

are dedicated to marginally improve the device performance 

while leading to unnecessarily complex structures.  

The fundamental limits and trade-offs between isolation and 

loss of a waveguide junction filled with an arbitrary dielectric 

was derived in the 50s [43]. More specifically, when a two-port 

network containing a nonreciprocal magnetic material is 

magnetized by an external field, there are upper bounds only 

associated with the magnetic material. Such bounds determine 

a figure of merit (FoM) for the entire device performance, are 

independent of geometrical considerations and the presence of 

other materials, and lead to a clear trade-off between isolation 

and loss. This elegant result is readily applicable to modulators 

and can easily be extended to nonreciprocal devices working 

with propagative waves. Based on this work, the fundamental 

limits of a realistic optical switching device showed that its 

dynamic performance is only subjected to the tunable material 

employed within the device [44]. In 2014, this approach was 

applied to determine the fundamental limits of magnetically-

biased graphene-based devices interacting with waves 

propagating in free-space [45]. Several configurations, 

including isolators and Kerr rotators, were investigated for 

random planar device geometries within a large parametric 

space. It was shown that some specific devices, with tailored 

nanostructures made of graphene and metals, can reach 

performances very close to the upper fundamental limits 

offered by magnetically-biased graphene. To date, fundamental 

Color versions of one or more of the figures in this article are available 

online at http://ieeexplore.ieee.org 
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bounds of nonreciprocal devices are limited to propagative 

waves and cannot be applied within the field of plasmonics.  

In this paper, we study and unveil the fundamental bounds of 

linear, nonreciprocal plasmonic metasurfaces, as those 

illustrated in Fig. 1. These bounds only depend on the 

nonreciprocal material that fill the devices and can be obtained 

analytically for some configurations. Our approach is general 

in the sense that account for different mechanisms to obtain 

nonreciprocity, including magnetic bias and nonlocality (for 

instance, obtained using drifting electrons). To this purpose, we 

first review the isolation equation as initially proposed in Ref. 

[43] and define a metric to evaluate the performance of 

nonreciprocal plasmonic metasurfaces in terms of isolation and 

loss. Then, we apply an effective medium approach (EMA) [46] 

to relate ultrathin metasurfaces and bulk media, which in turn 

permit us to obtain the upper bound of the structures in the non-

retarded regime. Next, we study two different nonreciprocal 

plasmonic platforms: drift-biased and magnetically-biased 

graphene metasurfaces. For each scenario, we derive analytical 

upper bounds that only depend on graphene’s conductivity and 

then we explore realistic metasurfaces studied in the literature 

and benchmark their performance against the bounds. Our study 

reveals that drift-biased hyperbolic metasurfaces have a 

tremendous potential for nonreciprocal plasmonics in the mid-

IR, while magnetically-biased metasurfaces are better suited for 

the low terahertz (THz) band. More broadly, our approach can 

readily be applied to assess the performance of plasmonic 

metasurfaces composed of any nonreciprocal material, 

including magneto-optical [47] and 2D materials [42], and 

paves the way to quick development of optimal nonreciprocal 

devices.  

II.  ISOLATION INEQUALITY  

Let us consider a linear two-port network filled with arbitrary 

materials. Let us also consider that, upon applying any odd 

physical quantity (biasing), one of the materials inside of 

network becomes nonreciprocal. To evaluate the performance 

of the network, we employ the following FoM [43] 

 ��������, �
, ��, �
� ≜ ��
���� − �
������

����� − �������� ⋅ �
��� − �
��
��

, (1) 

where ��,
  is the scattering matrix of the network, ��,
  is a 

vector containing the excitation waves, � is the identity matrix, 

and the superscript T and H denote transpose and Hermitian 

transpose operators, respectively. Additionally, the subscripts � and � represent two distinct states of the device that are being 

considered to evaluate nonreciprocity. Intuitively, Eq. (1) 

provides an idea of the device nonreciprocal response 

(numerator) versus the power dissipated in these scenarios 

(denominator), i.e., a trade-off between the isolation and loss. 

Remarkably, the values of the FoM are delimited by an upper 

bound dictated only by the intrinsic properties of the 

nonreciprocal material filling the device. This leads to the 

following isolation inequality [45]: 

 �������� , �
 , ��, �
� ≤ ���� . (2) 

In the common case that the electric properties of the material 

(i.e., its permittivity tensor � ) enable the nonreciprocal 

response, the upper bound ����  is the largest eigenvalue of 

���� − ��∗ �����
∗ − �
∗ ������ − �
����
∗ − ����  [43]. When the 

network is used to maximize isolation, the incident waves 

associated to states A and B can be defined as �� = !1 0$� 

and �
 = !0 1$�, i.e., the device is only excited from the left 

or right port of the two-port network. This allows to simplify 

the FoM to 

 �����!|���|, |���|$ = !|���| − |���|$�
!1 − |���|�$!1 − |���|�$,  

(3) 

where ��� and ��� are the transmission coefficients from port 1 

to 2 and from port 2 to 1, respectively. To better illustrate the 

tradeoff between isolation and loss, the FoM can be expressed 

as  

 �����!�, & $ = &�!1 − �$�
!1 − &�$!�� − &�$ (4) 

where � = |���|/|���|  is the isolation between the network 

ports, and & = |���| is associated to the insertion loss assuming |���| > |���| and perfect matching. To gain physical insight 

into this concept, let us consider a set of 2 port networks, all of 

them loaded with an identical nonreciprocal material and 

subjected to the same momentum bias. The performance of all 

networks, no matter how complex they are and what other 

materials they employ, will be upper bounded by ���� . This 

bound only depends on the nonreciprocal material employed in 

the networks and determines the minimum loss that can be 

attainable in practice to achieve an isolation level �. Then, each 

specific network will benchmark a different performance �����  
that shows how close its behavior is with respect to the 

fundamental limit, with ����� ≤ ���� . 
In order to apply these bounds to the field of plasmonics, we 

consider a nonlocal and frequency-dispersive and ultrathin 

metasurface characterized by a fully populated conductivity 

tensor [48]-[50] 

 
Fig. 1. Nonreciprocal plasmonic metasurfaces based on 2D materials. The 

metasurfaces can be biased with an external momentum applied parallel 

(a) or perpendicular (b) to the structures. (c) Some potential degrees of 

freedom to construct plasmonic metasurfaces, including the use of 

multilayers of 2D materials, nanopatterning, and the inclusion of other 

materials such as metals or dielectrics.  
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 *!+, ,$ = -*��!+, ,$ *�.!+, ,$
*.�!+, ,$ *..!+, ,$/, (5) 

where + is the angular frequency and , is the wavevector of the 

supported wave. Nonlocality is associated to the different 

response that the nonreciprocal material can potentially exhibit 

as a function of the momentum of the supported waves [48],[51] 

and, as detailed in further detail below, it is key to describe 

nonreciprocal systems based on drifting electrons [52],[53]. 

Using an effective medium approach [54], the metasurface can 

also be characterized as a thin dielectric layer of thickness 0 

with a nonlocal effective permittivity tensor �,  

 

�11 = �2, 

���! ..$!+, ,$ = 1 − 3*��!..$!+, ,$/!+0$,  
��.!.�$!+, ,$ = −3*�.!.�$!+, ,$/!+0$. 

(6) 

In the non-retarded regime (i.e., |,| ≫ |,2|, where , and ,2 

are the wavevectors of the supported SPPs and free space, 

respectively), the SPPs fields are strongly confined to the 

metasurface and exhibit rapidly decaying evanescent fields. In 

that scenario, the upper bounds of plasmonic metasurfaces can 

effectively be determined by analyzing the fields inside the 

effective anisotropic slab and determining their upper bound ���� . In the following, we apply this approach to 

comprehensively explore two different nonreciprocal 

plasmonic platform, namely drift- and magnetically- biased 

graphene, and to analytically derive their fundamental limits as 

a function of graphene’s properties and the applied momentum. 

III.  APPLICATION TO DRIFT-BIASED GRAPHENE PLASMONICS 

An effective way to achieve broadband nonreciprocal SPPs 

propagation is by applying drift current to graphene-based 

metasurfaces [55]-[58]. Since SPPs are collective oscillations 

of charges interacting with light, their propagation features are 

strongly affected by DC current. Drifting electrons with a 

velocity 56 either drag or oppose the SPPs, inducing a Doppler-

shifted wavenumber [53],[59]. As a result, SPPs effectively see 

different media when propagating along and against the drift 

current, leading to broadband nonreciprocity [26]. Recently, 

drift-biased graphene plasmonics have been experimentally 

demonstrated [51],[60] and attracted significant attention for 

various applications, including nonlinear wave generation [42] 

and hyperlensing [58]. 

A drift-biased graphene platform is schematically shown in 

the inset of Fig. 2(a). Graphene is transferred onto a dielectric 

substrate (SiC [61],[62]) and two metallic electrodes (yellow 

bars) are printed to create electrical contact. By applying an 

external DC voltage across the metals, graphene is 

longitudinally biased by drifting electrons travelling from one 

electrode to the other with a velocity 5⃗6 = 5689. Such velocity 

depends on the distance between the electrodes as well as 

graphene properties in terms of chemical potential (:; ) and 

relaxation time !<$, and it is always below the Fermi velocity 

of electrons in graphene ( 5= > 10?  m/s). In this scenario, 

graphene becomes nonlocal because its response depends on 

the momentum of the supported waves. Such response can be 

modelled using a conductivity tensor * = �*@   0;  0  *6� [53], 

where *@ is graphene’s conductivity without the drift bias [63] 

and *6�56 , B.� =  C+/�+ − B.56�D*@�+ − B.56�, with B. 

being the wavevector component along the drift [55]. 

Nonreciprocity follows because reversing the wave travelling 

direction effectively means flipping the electron drifting 

direction, resuling in *6�56 , EB.� F *6�56 , −B.� . Probably 

the simpler approach to excite SPPs in this platform is to locate 

a z-oriented dipole in its near-field. We analyze this scenario 

using a home-made anisotropic Green’s function approach 

developed in Ref. [53]. The z-component of the SPP’s electric 

field excited by a dipole located at 100 nm over the metasurface 

is shown in Fig 2(a). Results show that the dipole excites waves 

propagating along all directions within the plane. For directions 

transverse to drifting electrons, i.e., GH  , SPPs show a 

symmetric field profile. Nonreciprocity appears along the  8  

axis, i.e., along the direction of the applied DC bias. Plasmons 

traveling along +8 are less confined that along other directions 

and travel longer with little loss. Remarkably, SPPs directed 

against the current (i.e., −8) are very confined and lossy, thus 

quickly decaying. Fig. 2(b) shows the isofrequency contour 

(IFC) of the waves supported by the platform for two different 

velocities of the drifting electrons. Results confirm that, as the 

drift velocity increases, the IFC asymmetry along B. increases, 

thus leading to larger nonreciprocal responses. Points A and B 

in the IFC plots are associated to the wavenumber of the SPPS 

traveling along and against the current, respectively. Fig. 2(c)-

(d) completes our analysis by providing a parametric study of 

the momentum of the supported SPPs versus drift velocity and 

frequency, confirming that nonreciprocity may appear over a 

large bandwidth.   

 
Fig. 2. Drift-biased graphene as a nonreciprocal plasmonic metasurface.  

(a) Schematic showing the z-component of electric field excited by a z-

oriented dipole (red arrow) located at 100 nm over a drift-biased !56 = 0.5 5=$ graphene at 21 THz. Inset shows the device schematic. (b) 

Isofrequency contour of the states supported by graphene at 21 THz for 

two different velocities of drifting electrons. (c) and (d) Momentum of the 

supported states versus drift velocity and frequency, respectively. Other 

parameters are < = 0.1 JK and :; = 0.4 MN. 
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To find the fundamental limits of drift-biased graphene-

based metasurfaces, we analytically derive the isolation 

inequality as  

&�!1 − �$�
!1 − &�$!�� − &�$ ≤ �*..�56 , B�.� − *..�56 , B
.���

*..O �56 , B�.�*..O �56 , B
.� = ����, (7) 

where the superscript ′ denotes the real parts of the conductivity 

component. In Eq. (7), the left-hand side is related to the 

performance of a given plasmonic device in terms of loss and 

isolation. The right-hand side provides the upper performance 

(����) that can be attained by any metasurface that host drift-

biased graphene with certain features (i.e., chemical potential, 

relaxation time, temperature, and velocity of drifting electrons). 

Remarkably, only the conductivity term associated to the drift 

(*.. ) appears in the bound. This is because the system is 

reciprocal along the x-direction, and thus *�� does not directly 

contribute to the system nonreciprocity. Maximum isolation 

will be obtained between states A and B, i.e., between waves 

travelling along and against the drifting electrons. We denote 

the wavenumber of such waves as B�.  and B�. , respectively. 

Even though nonreciprocity will also appear for waves 

propagating toward other directions, their nonreciprocal 

behavior will be weaker and thus such performance will fall 

within our bound. In a general scenario, the effective nonlocal *.. conductivity of the metasurface will strongly depend on the 

properties of the supported waves, which in turn can be 

manipulated using metal, patterning, and different geometries 

[39],[40]. An optical metasurface structure could be designed 

to exploit the platform at their limits, i.e., when B�. → B2 and 

when B
. → ∞. In practice, graphene does not support waves 

with a confinement beyond 300B2  due to intrinsic nonlocal 

effects [64]-[66], thus a conservative value of B
. > 100 B2 is 

considered here. As a result,  B�. = B2  and B
. = 100 B2 

impose the boundaries for the isolation inequality in Eq. (7) for 

an optimal structure.  

Fig. 3 illustrates the fundamental bounds and optimal device 

performance obtained by drift-biased graphene-based 

plasmonic metasurfaces at 21 THz. Panel (a) overviews the 

isolation-loss plot employed to benchmark the device 

performance: blue area denotes the forbidden region, associated 

to a performance that surpass our bound, and white area denotes 

a performance that can be obtained by realistic metasurfaces. 

The dark blue circle marks the best performance that can be 

obtained with a material. This study is extended in Fig. 3(b) for 

different velocities of the drifting electrons. Results suggest that 

significant isolation levels, over 25 dB, can be obtained with 

minimal loss (<1 dB) and moderate drift-bias. The fundamental 

limits (isolation/loss) of this type of metasurfaces are 

parametrically explored in Fig. 3(c)-(d) for two different drift 

velocities versus frequency. Results confirm that this type of 

devices have the potential to exhibit an excellent performance 

over a broad frequency range. It should be stressed this platform 

exhibit better performance as frequency increases, and thus it is 

better suited to operate in the mid-IR band than at low THz 

frequencies. Additionally, it can be observed that isolation/loss 

trade-offs significantly improve as the velocity of the drifting 

electrons increases. The challenge now is to design quasi-

optimal plasmonic metasurfaces able to benchmark close to 

these bounds. In the following, we explore and benchmark the 

performance of two different platforms: a graphene-sheet 

employed as a 1D transmission line, a configuration described 

elsewhere [35],[67] to construct plasmonic devices such as 

switches or filters, and isotropic and hyperbolic drift-biased 

metasurfaces [51],[60], [73]  excited by a dipole source. 

To gain a better understanding of the bounds of drift-biased 

graphene, we develop a transmission line (TL) [35],[67] 

composed of three sections of graphene in which only the center 

one is drift-biased (see Fig. 4). This allows to further isolate the 

response of drift-biased graphene with respect to the excitation. 

We model this structure in COMSOL Multiphysics [68]. To this 

purpose, we calculate the drift-biased conductivity of graphene 

with wavenumbers along and against the drift electrons, and we 

used them to construct two simulation models: one associated 

to forward SPP propagation (along the drift) and other for 

backward SPP propagation (against the drift). We treat the side 

regions of the structure as ports, and characterize them using 

lossless, unbiased, graphene. The z-components of the electric 

field for SPPs travelling in such TL system are depicted in Fig. 

4(a). For forward propagation (E8 direction, top panel), SPPs 

travels through the drift-biased section of graphene without 

significant changes. However, waves propagating against 

drifting electrons ( −8  direction, bottom panel) undergo a 

change in their wavelength together with very significant 

damping. We quantified this result by calculating the ��� and ��� coefficients of the system using TL theory [69], which are 

in good agreement with those found using COMSOL 

simulations. Fig. 4(b)-(d) report a performance study varying 

the length of the center graphene section of the structure ℓ from 

 
Fig. 3. Fundamental bounds of drift-biased graphene metasurfaces. (a) 

Concept of isolation inequality. Any plasmonic device using drift-biased !56 = 0.15U$ graphene at 21 THz will exhibit a response in terms of loss 

and isolation within the white area of the panel. Blue area represents 

device performance that cannot be reached. (b) Isolation inequality for 

various drift velocities of flowing electrons for a graphene-based 

metasurface at 21 THz. Panels (c) and (d) show the isolation inequality 

versus frequency for drift velocities 56 = 0.055U  and 56 = 0.55U , 

respectively. Other parameters are as in Fig. 2.  
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0.3 to 1 :V . As expected, larger sections provide larger 

isolation and loss. Increasing the drift-bias further increases the 

isolation while reducing the loss on the system, leading a trade-

off between length and bias to achieve desired responses. 

However, the performance exhibited by this platform is in all 

cases well below the upper limits offered by drift-biased 

graphene. Therefore, we conclude that this platform is far from 

ideal to achieve quasi optimal nonreciprocal responses.  

A realistic approach to excite drift-biased graphene-based 

plasmonic metasurfaces is to use a dipole located in the near 

field of the structure. This can be implemented in practice using 

scanning-type scanning near-field optical microscopy (s-

SNOM) by shining laser on a probe tip located above the 

metasurface [70]-[72]. The tip gets polarized and behaves as a 

dipole, scattering evanescent fields that couple to the 

metasurface in the form of SPPs. Here, we explore this 

excitation approach using a home-made Green’s function 

approach [53] and evaluate its performance and fundamental 

limits for two specific drift-biased platforms, namely a 

graphene sheet and a hyperbolic metasurfaces made of 

graphene ribbons [73].  

Fig. 5(a) shows the Poynting vector of SPPs excited by a z-

directed dipole located 35 nm over a drift-biased graphene sheet 

for two different drift-velocities ( 56 = 0.55=  and 56 =0.855= ). Here, drifting electrons are traveling in the E8 

direction. We focus on nonreciprocity between the dipole 

located at X⃗2O and an observer point located at X⃗2. In this context, 

isolation is defined as the ratio of the squared modulus of 

electric fields at source/observation pairs (i.e., |Y!X⃗2, X⃗2O$/
Y!X⃗2O, X⃗2$|� [53]) and loss as Im�k]�. Fig. 5(c)-(d) evaluate the 

performance of this platform along the y-axis (i.e., where 

maximum isolation occurs) when the distance between source 

and observation increases from 0.3  to 1 :V  with steps of 

0.1 :V. Results show a trend similar to the one the found in 

Fig. 4: increasing the drift bias leads to large isolation and lower 

loss within a somewhat limited range. It should be noted that 

losses are reduced in this scenario. We attribute such response 

to the lack of port sections compared to the TL case, and to the 

overall better matching between the fields radiated by the dipole 

and graphene. Still, despite these improvements, the 

performance of the platform is far from reaching the 

fundamental limits offered by drift-biased graphene.  

Finally, we considered a drift-biased graphene-based 

hyperbolic metasurface composed of a periodic array of 

graphene ribbons [73]. Fig. 5(b) shows the Poynting vector of 

SPPs excited by a z-directed dipole located 35 nm over this 

structure (considering ribbons with width 25 nm and periodicity 

of 50 nm) for the same drift-velocities studied above. Power 

profiles show the typical response of hyperbolic structures, with 

maximum power directed toward oblique angles within the 

plane. Remarkably, isolation is greatly enhanced in this 

platform [53]. For sufficiently large drift-velocities, SPPs 

traveling in the semi-plane against the drift are no longer 

distinguishable, and thus near-unidirectional propagation 

immune to backscattering is achieved. Fig. 5 (b)-(c) explore the 

performance of this platform for different separation distances 

between source and observation, both defined along the in-

 
Fig. 5. Electromagnetic response of drift-biased graphene-metasurfaces 

excited by a z-directed dipole located ^2 = 35  nm. Poynting vector 

(magnitude) of SPPs excited over a drift-biased graphene sheet (a) and a 

drift-biased hyperbolic metasurface based on an array of graphene ribbons 

(b). The width and periodicity of the ribbons is set to W=25 nm and L=50 

nm, respectively. Results are plotted for two different drift-velocities: 56 = 0.55U  (central row) and 56 = 0.855U  (bottom row). Red arrows 

show the direction of the flowing electrons. (c) Performance in terms of 

loss and isolation of the metasurfaces shown above for two different drift-

velocities, 56 = 0.55U  (left) and 56 = 0.855U (right). The length of the 

drifted metasurfaces increases from 0.3 :V to 1 :V in steps of 0.1 :V. 

Cyan regions show the performance bound provided by the isolation 

inequality. Other parameters are as in Fig. 2.  

 

 
Fig. 4. Drift-biased graphene as a 1D plasmonic isolator. (a) Numerical 

simulations in COMSOL Multiphysics. The structure is composed of two 

plasmonic lossless ports made of pristine graphene and one central 

graphene region of length ℓ = 0.3:V that has been drift-biased along the 

direction indicated by the red arrow (56 = 0.55U ). Results show SPPs 

propagation along forward (top) and backward (bottom) directions. (b)-(d) 

Device performance (loss/isolation) for various drift-velocities at 21 THz 

(blue dots). The length of the drifted section increases from 0.3 :V to 1 :V  in steps of 0.1 :V . Cyan regions show the performance bound 

provided by the isolation inequality. Other parameters are as in Fig. 2.  
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plane direction in which SPPs carry maximum power. For 

moderate drift velocities, 56 = 0.55U , isolation significantly 

outperforms the one found in drift-based graphene sheets but at 

the expense of relatively higher loss. Further increasing the 

drifting velocity leads to a remarkable performance that 

benchmarks quite close to the upper bounds of drift-biased 

graphene. Specifically, isolation levels beyond 50 dB are 

readily achievable with loss of just 1 dB. Such outstanding 

response places graphene-based hyperbolic structure as quasi-

optimal devices for nonreciprocal plasmonics.   

IV.  APPLICATION TO MAGNETICALLY-BIASED                 

GRAPHENE PLASMONICS 

Even though many works have explored the interaction of 

magnetically-biased graphene metasurfaces with plane waves, 

aiming to construct Faraday rotators [74]-[76] and isolators 

[77], such structures can also be applied for nonreciprocal 

plasmonics. For instance, edge-modes propagating on graphene 

ribbons are nonreciprocal when the structure is combined with 

metals [78]. However, it is still unclear how optimal such 

devices are. In general, the vast degrees of freedom to design 

magnetically-biased graphene metasurfaces make it very 

challenging to determine if the performance of specific devices 

is close to the fundamental bounds offered by the material. This 

usually leads to redundant and time-consuming efforts to 

marginally increase the device performance by increasing its 

complexity.  

Let us consider a thin arbitrary metasurface that is somehow 

loaded with magnetically-biased graphene characterized by a 

conductivity tensor * = !*6   *�;  −*�   *6$, where *6  and *� 

correspond to graphene’s direct and Hall conductivities 

component. They can be determined using the Kubo formalism 

[63]. The isolation inequality that determines the fundamental 

limits of this platform can be analytically derived as  

 
&�!1 − �$�

!1 − &�$!�� − &�$ ≤ *�OO�! �2$C*�O �!�2$ E *�OO�! �2$D
C*6O �! �2$ − *�OO�! �2$D� = ���� , (8) 

where the superscripts ′ and ′′  denote the real and imaginary 

parts of the conductivity components, respectively, and �2  is 

the magnetic field applied in the direction perpendicular to 

structure. Similarly to the case studied above, the left-hand side 

of Eq. (8) is related to the performance (isolation/loss) of a 

specific plasmonic device whereas the right-hand side provides 

the upper performance (����). Nonreciprocity is here governed 

by the Hall conductivity of graphene, and the bound reduces to 

zero in case that the metasurfaces are not magnetically biased, 

i.e.,  *� → 0 forces that ���� → 0.  

Fig. 6(a) shows the upper bounds (isolation/loss) of 

magnetically-biased graphene-based metasurfaces at 21 THz 

versus the applied magnetic field. Results show that large 

isolation may be achieved with bias as little as 1 T but at the 

expense of significant loss. Upper performances are 

significantly improved when larger magnetic bias values are 

applied. Note that the graphene parameters employed in this 

panel are identical to those employed in Fig. 3 (b), which allows 

us to directly compare the performance of drift- and 

magnetically- biased plasmonic metasurfaces. Fig. 6(b) 

benchmarks the response of nonreciprocal platforms explored 

in the literature against the fundamental limits obtained using 

Eq. (8). Specifically, red data is associated to a nonreciprocal 

plasmonic system composed of a graphene ribbon that is short-

circuited on one edge with a metal plane [78] (see inset). In the 

system, the ribbon has a width of 100 μm, �2 = 1 T, frequency 

is set to 2 THz, and graphene’s chemical potential and 

relaxation time are set to 0.37 eV and 0.1 ps, respectively. 

Nonreciprocal edge plasmons appears on the graphene edge 

that interfaces with air. The response of the platform is explored 

changing the length of the graphene ribbon from 0.3 μm  to 1 μm with a step of 0.1 μm (red diamonds). Even though the 

system provides large isolation, it exhibits quite significant loss 

and benchmarks quite far from the fundamental limits of the 

material. The other platform considered here is related to the 

magnetically-biased graphene circulator described in Ref. [79]. 

It is composed of a cross-shaped graphene pattern (see inset) 

printed on top of a SiO�/Si substrate and operates at 3.4 THz. 

The applied bias is set to �2 = 1.5 T and graphene’s chemical 

potential and relaxation time are set to 0.15 eV and 0.9 ps, 

respectively. The blue triangle marker displays the performance 

of the device, which provides significant isolation (~ 50 dB) 

and moderate loss (~ 5 dB). Even though such performance is 

remarkable, there is still plenty of room to improve it and 

bringer close to the upper bounds offered by the magnetically-

biased graphene employed in the system.  

Fig. 6(c)-(d) further explores the fundamental limits of 

magnetically-biased graphene as a function of frequency for 

two magnetic bias, �2 = 1 T and �2 = 7 T. Results show that 

high performance in terms of isolation/loss can be obtained in 

the THz band (roughly from ~1 to ~ 5 THz) using moderate bias 

fields. As frequency increases, the performance significantly 

 
Fig. 6. Upper bounds of magnetically-biased graphene metasurfaces. (a) 

Upper bounds for various magnetic field values applied on a given 

graphene sample at 21 THz. (b) Performance analysis of devices studied 

in the literature, including nonreciprocal edge modes (red diamonds [78]) 

and a circulator (blue triangle [79]), versus their upper bounds (solid 

lines). Insets illustrate the devices schematic. (c)-(d) show the isolation 

inequality versus frequency for applied magnetic fields B2 = 1 T  and B2 = 7 T, respectively. Other parameters are as in Fig. 3.  
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degrades, and high isolation is always associated with large loss. 

Further enhancing the magnetic field to �2 = 7 T  allows to 

construct metasurfaces with excellent trade off in terms of 

isolation and loss over a large frequency band.  

V. CONCLUSION  

In conclusion, we have explored the fundamental limits of 

nonreciprocal metasurfaces that guide surface waves. 

Remarkably, these limits are only related to the properties of 

the nonreciprocal material employed within the device and do 

not depend on the presence of other materials such as metals or 

dielectrics or on geometrical considerations. Without loss of 

generality, we focused on two types of nonreciprocal plasmonic 

platforms, i.e., drift- and magnetically- biased graphene 

metasurfaces, and we analytically derived their fundamental 

bounds. In the case of drift-biased devices, we explored 1D 

devices excited by surface plasmons using both transmission 

line theory and full-wave numerical simulations (COMSOL 

Multiphysics). Additionally, we investigated isotropic and 

hyperbolic drift-biased metasurfaces excited by electrical 

dipoles located in the near field of the device – a configuration 

that mimics s-SNOM microscopy. Our results show that most 

devices operate relatively far from their upper bounds, and thus 

their performance can be significantly improved. One important 

exception is the case of drift-biased hyperbolic metasurfaces, 

which exhibit an outstanding performance at frequencies close 

to the mid infrared band. Overall, drift-biased graphene 

plasmonics is an emerging and promising broadband 

technology compatible with integrated circuits. In the case of 

magnetically-biased graphene metasurfaces, we evaluated the 

performance of several devices studied in the literature – 

namely an isolator based on nonreciprocal edge modes and a 

circulator based on patterned graphene – and benchmarked their 

response against the upper bounds. Even though these devices 

exhibit very interesting responses, they all operate relatively far 

from the upper bound and thus their performance can be further 

improved. Additionally, our bounds revealed that magnetically-

biased graphene metasurfaces are well-suited (in terms of 

isolation/loss trade-offs) to operate in the low terahertz band. 

Recently, circular dichroism has been demonstrated to be an 

efficient tool to break reciprocity in 2D materials due to the 

optically-driven non-degenerate valleys [80]-[82]. As another 

nonreciprocal plasmonic platform and armed with a similar 

optical conductivity tensor to that of magnetically-biased 

graphene, optically-driven 2D materials can also be evaluated 

though our bounds. 

 Moving beyond, our bounds can be applied to explore the 

fundamental limits of many other nonreciprocal plasmonic 

metasurfaces, including those based on magneto-optic 

materials [83] and 2D materials such as transition metal 

dichalcogenide monolayers [84]. We envision that the bounds 

derived here will be useful in the development of quasi-optimal 

nonreciprocal metasurfaces employed in areas such as 

communication, sensing, imaging, and nonlinear optics, among 

many others.  
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