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Abstract

Lakes are the most prevalent and predominant water repositories on land surface. A primary objective of the Surface Water

and Ocean Topography (SWOT) satellite mission is to monitor the surface water elevation, area, and storage change in Earth’s

lakes. To meet this objective, prior information of global lakes, such as locations and benchmark extents, is required to organize

SWOT’s KaRIn observations over time for computing lake storage variation. Here, we present the SWOT mission Prior Lake

Database (PLD) to fulfill this requirement. This paper emphasizes the development of the “operational PLD”, which consists of

(1) a high-resolution mask of ˜6 million lakes and reservoirs with a minimum area of 1 ha, and (2) multiple operational auxiliaries

to assist the lake mask in generating SWOT’s standard vector lake products. We built the prior lake mask by harmonizing the

UCLA Circa-2015 Global Lake Dataset and several state-of-the-art reservoir databases. Operational auxiliaries were produced

from multi-theme geospatial data to provide information necessary to embody the PLD function, including lake catchments

and influence areas, ice phenology, relationship with SWOT-visible rivers, and spatiotemporal coverage by SWOT overpasses.

Globally, over three quarters of the prior lakes are smaller than 10 ha. Nearly 96% of the lakes, constituting over half of the

global lake area, are fully observed at least once per orbit cycle. The PLD will be recursively improved during the mission period

and serves as a critical framework for organizing, processing, and interpreting SWOT observations over lacustrine environments
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with fundamental significance to lake system science.

Hosted file

981781_0_art_file_11674843_s514gl.docx available at https://authorea.com/users/335717/

articles/693171-the-surface-water-and-ocean-topography-mission-swot-prior-lake-database-

pld-lake-mask-and-operational-auxiliaries
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Key Points: 45 

 SWOT Prior Lake Database (PLD) provides the foundation for generating SWOT vector 46 

lake products including area, height, and storage change. 47 

 PLD inventories 6 million lakes with a 1-ha minimum area, 76% of which are smaller 48 

than 10 ha and 96% are fully observed per orbit cycle. 49 

 PLD contains multiple operational auxiliaries to ease lake assignment, storage change 50 

computation, and vector lake product distribution. 51 

 52 

Abstract  53 

Lakes are the most prevalent and predominant water repositories on land surface. A primary 54 

objective of the Surface Water and Ocean Topography (SWOT) satellite mission is to monitor 55 

the surface water elevation, area, and storage change in Earth’s lakes. To meet this objective, 56 

prior information of global lakes, such as locations and benchmark extents, is required to 57 

organize SWOT’s KaRIn observations over time for computing lake storage variation. Here, we 58 

present the SWOT mission Prior Lake Database (PLD) to fulfill this requirement. This paper 59 

emphasizes the development of the “operational PLD”, which consists of (1) a high-resolution 60 

mask of ~6 million lakes and reservoirs with a minimum area of 1 ha, and (2) multiple 61 

operational auxiliaries to assist the lake mask in generating SWOT’s standard vector lake 62 

products. We built the prior lake mask by harmonizing the UCLA Circa-2015 Global Lake 63 

Dataset and several state-of-the-art reservoir databases. Operational auxiliaries were produced 64 

from multi-theme geospatial data to provide information necessary to embody the PLD function, 65 

including lake catchments and influence areas, ice phenology, relationship with SWOT-visible 66 

rivers, and spatiotemporal coverage by SWOT overpasses. Globally, over three quarters of the 67 

prior lakes are smaller than 10 ha. Nearly 96% of the lakes, constituting over half of the global 68 

lake area, are fully observed at least once per orbit cycle. The PLD will be recursively improved 69 

during the mission period and serves as a critical framework for organizing, processing, and 70 

interpreting SWOT observations over lacustrine environments with fundamental significance to 71 

lake system science.  72 
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1 Introduction 73 

Natural lakes and manmade reservoirs, hereafter “lakes”, are among the most 74 

predominant components of land hydrology (Messager et al., 2016; Verpoorter et al., 2014). 75 

They collectively store nearly 90% of the liquid freshwater on the Earth’s surface, providing the 76 

most readily accessible water resource for societal use (Abbott et al., 2019; Oki & Kanae, 2006). 77 

Lakes also represent diverse and complex aquatic ecosystems, offering unique aesthetic appeals 78 

in the landscape and indispensable sources of biodiversity, food, and recreation outlets 79 

(Herdendorf, 1984). Although considered as lentic systems, lakes are often dynamic, with water 80 

storage and quality reflective of basin-scale hydrology and/or anthropogenic activities (Fergus et 81 

al., 2017; Wurtsbaugh et al., 2017; Yang, O'Reilly, et al., 2022). Lakes also sequester a large 82 

amount of carbon from the watersheds and modulate terrestrial carbon cycling through water 83 

storage variation and lacustrine-fluvial interactions (Mendonca et al., 2017; Tranvik et al., 2009). 84 

For these reasons, lakes serve as both “sentinels” and “regulators” of climate change (Adrian et 85 

al., 2009; Schindler, 2009) and are recognized as an “Essential Climate Variable” by the Global 86 

Climate Observing System (GCOS) of the World Meteorological Organization (WMO, 2022). 87 

Monitoring the dynamics in global lakes, including water extent and level that are essential to 88 

deriving storage variability, has important ramifications to hydrology, ecology, the carbon cycle, 89 

and water sustainability (Yao et al., 2023).  90 

Our capability to monitor global lake dynamics has been rapidly advancing with the 91 

expanding Earth-observing system (Cretaux et al., 2016). But, until recently, individual satellite 92 

missions for surface hydrology measured either water extent, such as through spectral 93 

radiometers and Synthetic Aperture Radar (SAR) imagers, or water surface elevation (WSE), 94 

such as through nadir-looking radar and lidar altimeters. This dilemma challenged the 95 

monitoring of water storage variation, which requires a synchronous acquisition or coordination 96 

of both variables. In addition, conventional radar altimeters usually have coarse footprint sizes 97 

(~10 km
2
 or greater) and large inter-track distances (~50–100 km or wider), limiting adequate 98 

measurements to a few thousand largest lakes (Busker et al., 2019; Cretaux et al., 2016; Cretaux 99 

et al., 2011; Schwatke et al., 2015; Yao et al., 2023). With improvements of the waveform 100 

processing methods, SAR-mode altimeters such as those onboard Sentinel-3A and Sentinel-3B 101 

showed potential for measuring WSEs of lakes as small as a few hectares (Boy et al., 2022). 102 

Smaller footprints (~11–70 m) were also enabled by laser altimeters such as the Ice, Cloud, and 103 

land Elevation Satellite (ICESat) and its successor ICESat-2. However, their multi-month repeat 104 

cycles, along with discrete nadir footprints, limit the temporal density of WSE measurements for 105 

medium-sized and small lakes (Cooley et al., 2021; Luo et al., 2022). Fortunately, these technical 106 

challenges have been largely overcome by the Surface Water and Ocean Topography (SWOT) 107 

satellite mission (Biancamaria et al., 2016), recently launched on December 16, 2022. 108 

The main payload of SWOT is a Ka-band (8.6 mm wavelength) radar interferometer 109 

(KaRIn). As the first of its kind, KaRIn provides synchronous, wide-swath, and orbital surveys 110 

of both surface water extent and elevation, allowing for the derivations of river discharge and 111 

lake storage change (Biancamaria et al., 2016; Durand et al., 2010). SWOT’s lake observation 112 

requirement includes all enclosed water bodies larger than 250×250 m
2
 (i.e., 6.25 ha) between 113 

77°N and 77°S covering 90% of the continental surface, and the observation goal is lakes as 114 

small as 100×100 m
2
 (i.e., 1 ha) (Biancamaria et al., 2016). Owing to the wide-swath (2×50 km) 115 

configuration, more than 90% of the global lakes larger than 1 ha are expected to be observed by 116 

SWOT at least once within each 21-day cycle of the three-year science or nominal orbit period 117 
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(JPL internal document, 2018). While these spatiotemporal coverages will reveal unprecedented 118 

details of global lake storage variability, a prerequisite for facilitating SWOT lake data 119 

production is the preparation of a Prior Lake Database (PLD).  120 

The fundamental purpose of the SWOT PLD is to provide prior data on known lake 121 

locations, hereafter “prior lakes”, making it possible to link KaRIn observations over time and to 122 

compute lake storage variation. KaRIn observes terrestrial water features (e.g., lakes and rivers) 123 

at a high-rate (HR) mode with fine spatial resolution (~5 m ×10–70 m) (Biancamaria et al., 124 

2016). To accommodate user needs, the HR raw data are processed by the Science Algorithm 125 

Software (SAS) to different levels of products, which range from Level 1 single-look complex 126 

SAR images (L1B_HR_SLC) (JPL internal document, 2022c) intended only for highly 127 

specialized applications, to the standard Level 2 vector products delivering readily usable 128 

variables specific to rivers and lakes. The initial HR product suitable for general hydrological 129 

purposes is “pixel cloud” (L2_HR_PIXC) (JPL internal document, 2022d), which consists of 130 

geolocated pixel points with measured water heights but is not organized to distinct water 131 

features. With the help of the SWOT River Database (SWORD) (Altenau et al., 2021), pixels 132 

associated with prior rivers are first extracted to process the standard vector river products (JPL 133 

internal document, 2022a, 2022b, 2023). Such river pixels, except those also on SWORD-134 

connected lakes, are eliminated from further lake processing. The remaining pixels are then 135 

segmented to individual water regions based on statistical clusters of the pixel heights. PIXC 136 

geolocations, however, contain noise from the interferogram (Desroches et al., 2016). By 137 

smoothing pixel heights across individual water regions, PIXC geolocations are corrected to a 138 

less noisy pixel cloud (L2_HR_PIXCVec) (CNES internal document, 2022c) for vectorization. 139 

With assistance of the PLD, the corresponding water features are processed to the standard 140 

vector lake products, which deliver the dynamics and uncertainties of WSE, area, and storage 141 

change (when applicable) for each prior lake per orbit pass (L2_HR_LakeSP) or cycle 142 

(L2_HR_LakeAvg) (CNES internal document, 2022a, 2022b). 143 

Two primary components are required to fulfill the purpose of the PLD (Fig. 1). As lakes 144 

are often dynamic over time, their water surface may split and coalesce, and new lakes may 145 

emerge whereas others disappear. Without defining lakes a priori, it would be difficult to sort out 146 

how water features observed in different periods are spatially related to each other, which would 147 

then pose a challenge for effectively comparing lake changes. So, the first component of the PLD 148 

is a comprehensive prior mask that inventories global lakes larger than SWOT’s observation goal 149 

(1 ha). Albeit temporally static, this lake mask offers a standardized spatial reference, based on 150 

which observed water features can be assigned, aggregated, or partitioned to the corresponding 151 

prior lakes. This ensures water dynamics, especially storage change, to be characterized and 152 

delivered consistently at the scale of each known lake. On the other hand, the lake mask also 153 

identifies observed water features that cannot be assigned to any prior lake. The unassigned 154 

features will be used to recursively improve the prior lake mask as SWOT data accumulate and 155 

to investigate the changes in wetlands, newly emerged lakes, and other relevant phenomenology. 156 

To make the prior lake mask functional, we need the second component of the PLD, namely 157 

“operational auxiliaries”, which supplement the prior lakes with other necessary attributes, 158 

geometries, and logical information. The additional prior information works synergistically to 159 

ease the linkage of SWOT observations to the prior lakes, the calculation of lake storage change, 160 

and the population of the vector lake products.  161 
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An accurate and up-to-date prior lake mask is essential to the function of the PLD. We 162 

consider a lake mask qualified for the PLD to be “exhaustive” (including all lakes ≥ 1 ha), 163 

“exclusive” (excluding non-lake features), and “representative” (with lake polygons representing 164 

intermediate rather than extreme inundation conditions). At the current stage of the SWOT 165 

mission, we prefer intermediate water extent because it presents how a lake normally appears 166 

when being observed by SWOT, which eases the spatial linkage of SWOT observations to the 167 

prior lake. Despite the recent proliferation of global lake datasets, none of them alone can meet 168 

all three criteria. Two fine-resolution and publicly accessible global lake masks are 169 

HydroLAKES (v1.0) (Messager et al., 2016), which inventories 1.4 million lakes larger than 10 170 

ha, and GLAKES, which comprises 3.4 million polygons depicting the maximum lake water 171 

extents large than 3 ha (Pi et al., 2022). The primary data source of HydroLAKES for the 172 

landmass below 60° N is the Shuttle Radar Topography Mission Water Body Dataset (SWBD) 173 

(Farr et al., 2007), where lake extents were based on water occurrence during February 2000. 174 

This timing concurred with the dry winter season across a large proportion of the northern 175 

hemisphere, meaning the sizes of many lakes in HydroLAKES are likely skewed towards their 176 

seasonal minimums. In addition, SWBD was acquired over twenty years ago, predating the 177 

recent prominent lake changes such as the shrinkage of many saline lakes (Wang et al., 2018; 178 

Wurtsbaugh et al., 2017), the expansion of glacial lakes (Nie et al., 2017; Shugar et al., 2020; 179 

Song et al., 2017), and the boom of new reservoir construction (Wang et al., 2022; Wu et al., 180 

2023; Yao et al., 2023). Therefore, HydroLAKES may no longer accurately reflect the latest 181 

boundaries of many lakes in the world. In comparison, GLAKES used Landsat-derived Global 182 

Surface Water Occurrence (GSWO) dataset (Pekel et al., 2016) to extract all-time water area 183 

maximum during 1984 to 2019, where non-lake features (e.g., rivers, estuaries, and floodwaters) 184 

were removed by a deep-learning algorithm (Pi et al., 2022). While GLAKES is more up to date, 185 

the lake polygons correspond to the maximum extreme. Based on our visual inspection, these 186 

maximum extents occasionally include inundated riparian zones, floodplains, and paddy fields. 187 

Critically, neither dataset reaches a minimum lake size of 1 ha, meaning that lakes potentially 188 

visible to SWOT are not exhaustively inventoried. 189 

 190 

Figure 1. Conceptual structure of the SWOT Prior Lake Database (PLD).  191 
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Tailored to the SWOT mission needs, we describe the development of the SWOT PLD in 192 

a pair of companion papers (Fig. 1). The first paper (this article) emphasizes the prior lake mask 193 

and the operational metadata, which constitute the “operational PLD”, addressing the above-194 

described fundamental purpose for assisting SWOT lake data production. The second paper (in 195 

preparation) will focus on the development of a “scientific PLD”, which consists of multi-theme 196 

scientific metadata to facilitate a wide range of limnological applications of the SWOT lake data 197 

products. Following the introduction, we describe the input data sources (section 2) and the 198 

methods (section 3) to construct the operational PLD. This is followed by the results (section 4) 199 

that present the prior lake mask comparatively with other lake datasets, the theoretical coverage 200 

for global lakes during a nominal orbit cycle, and the functionality of the operational metadata. 201 

With a primary focus on data development instead of algorithms (SASs), this paper does not 202 

elaborate how lake storage change is computed. However, we do describe the purpose of each 203 

prior attribute including those for computing lake storage change (section 3) and illustrate how 204 

the PLD works to ease SWOT lake data production (section 4). We then conclude the paper by 205 

discussing the plans of future PLD improvements and versioning (section 5).  206 

2 Input data sources  207 

We leveraged multiple data sources to compose the operational PLD. These input 208 

datasets and their contributions are summarized in Table 1. The primary data source is the UCLA 209 

Circa-2015 Global Lake Dataset (Sheng et al., 2016), which provides most of the polygons in the 210 

high-resolution prior lake mask. A collection of other datasets, covering the themes of lake 211 

name, reservoir identity, prior river locations, hydrography, and SWOT orbits, were used to 212 

populate the prior attribute information. Details of each input dataset are described below.  213 

Table 1. Data sources used to develop the operational PLD 214 

Data source Contribution 

UCLA Circa-2015 Global Lake Dataset 

(Sheng et al., 2016) 
Provides the main source of prior lake mask 

Georeferenced global Dams And Reservoirs 

(GeoDAR) dataset v1.1 (Wang et al., 2022) 
Supplements the UCLA Circa-2015 Global Lake 

Dataset with additional recently constructed 

reservoirs 
Post2k reservoir dataset (Fan et al., 2023) 

Other regional reservoirs (see Section 3.2) 

Global Reservoir and Dam database 

(GRanD) v1.3 (Lehner et al., 2011) 
Provides the identities of large reservoirs 

HydroBASINS (Lehner & Grill, 2013) Populates basin IDs  

SWORD (Altenau et al., 2021) 
Identifies lakes on prior rivers, which are 

included for both lake and river data products 

SWOT orbits 

(https://www.aviso.altimetry.fr) 

Populates attributes related to the lake coverage 

by SWOT in the “lake” table 

Global Lakes and Wetlands Database 

(GLWD) (Lehner & Doll, 2004) 

Populates lake names 
HydroLAKES v1.0 (Messager et al., 2016)  

Natural Earth Data (scale 1:30,000,000) 

(https://www.naturalearthdata.com)  

OpenStreetMap (OSM; 

https://www.aviso.altimetry.fr/
https://www.naturalearthdata.com/
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https://www.openstreetmap.org)  

The IGN Carthage database (BD 

CARTHAGE®) 

(https://services.sandre.eaufrance.fr/telecharg

ement/geo/ETH/BDCarthage/FXX/2017) 

Vector Map Level 0 (VMap0) 

(https://mdl.library.utoronto.ca/collections/ge

ospatial-data/vector-map-level-0-vmap0) 

2.1 UCLA Circa-2015 Global Dataset 215 

 The foundation of the PLD, i.e., the prior lake mask, mainly comes from the UCLA 216 

Circa-2015 Global Lake Dataset (Sheng et al., 2016), or hereafter “Circa-2015” lake dataset. The 217 

Circa-2015 lake dataset inventories representative inundation extents of 9.0 million open-water 218 

lakes and reservoirs larger than 0.4 ha (i.e., four 30-m-resolution Landsat pixels) in the world. 219 

These lakes were mapped from a selection of high-quality Landsat-8 images acquired during the 220 

initial 2.5 years of the mission operation (May 2013 to August 2015). The complete mapping 221 

procedure, including image selection, water extraction algorithm, quality assurance and quality 222 

control (QA/QC), and multi-scene composition, was articulated for the case of Oceania by 223 

(Sheng et al., 2016), and the rest of the world was subsequently mapped using the same methods.  224 

Compared to other global lake data, a unique merit of the Circa-2015 dataset is the 225 

emphasis on representative lake extents, echoing one of the three criteria expected for the SWOT 226 

prior lake mask (section 1). Specifically, the images selected for mapping were acquired during 227 

the “lake stable season” to minimize the misrepresentation of lake size due to intra-annual 228 

inundation extremes. The lake stable season was defined as the period after the rainy season, 229 

when inflows equal outflows and the lake thus reaches a stable condition within the annual cycle. 230 

To implement this idea, an image selection tool “LakeTime” (Lyons & Sheng, 2018) was 231 

developed using long-term climate data to determine the lake stable season independently for 232 

each Landsat tile. Cloud-free images were then collected tile by tile during the ideal period for 233 

lake mapping. This image selection process rendered a total of ~60,000 Landsat-8 scenes across 234 

the continents, with an average of about 6 scenes per tile.  235 

For each selected scene, open water was segmented from land using a hierarchical and 236 

self-adaptive algorithm to ensure lakes across different landscapes can be mapped as accurately 237 

and thoroughly as possible (see (Sheng et al., 2016) for details). Together with a minimum 238 

mapping unit of 0.4 ha, the result satisfies the second criterion “exhaustive” for the prior lake 239 

mask. Since lakes are diverse aquatic systems, multiple factors such as water turbidity, mineral 240 

and chlorophyll contents, ice and snow, and mountain shadows can all complicate their spectral 241 

characteristics. To tackle this challenge, the adaptive mapping algorithm was automated to 242 

simulate how a human operator segments lakes from the background landscapes (Li & Sheng, 243 

2012). In brief, each Landsat scene was first transformed to a normalized difference water index 244 

(NDWI) image (McFeeters, 1996) to enhance water appearance and suppress others. Then, the 245 

algorithm performs a two-step “global-to-local” segmentation. In the global segmentation, a 246 

loose preliminary NDWI threshold was used to flag potential lake extents across the entire scene. 247 

In the local segmentation, each flagged lake was re-exampled as an object, and the boundary was 248 

fine-tuned by an updated NDWI threshold, determined only using the spectral histogram based 249 

on the vicinity of the lake. The local segmentation was implemented iteratively until the result 250 

https://www.openstreetmap.org/
https://services.sandre.eaufrance.fr/telechargement/geo/ETH/BDCarthage/FXX/2017/
https://services.sandre.eaufrance.fr/telechargement/geo/ETH/BDCarthage/FXX/2017/
https://mdl.library.utoronto.ca/collections/geospatial-data/vector-map-level-0-vmap0
https://mdl.library.utoronto.ca/collections/geospatial-data/vector-map-level-0-vmap0
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converged to a stable water extent. Through this design, the final threshold and lake extent were 251 

tailored optimally to the unique spectral condition for each lake.  252 

Following the automated mapping, a rigorous QA/QC process aided by a semi-automated 253 

editing tool (Wang et al., 2014) was performed to remove free-flowing river segments and to 254 

correct the remaining omission and commission errors. The resultant mapping contained only 255 

water bodies deemed as lakes and thus satisfies the third criterion “exclusive” for the SWOT 256 

prior lake mask. The quality-controlled lake extents from multi-temporal scenes were then 257 

composited across the Landsat tiles. With assistance of a previously produced circa-2000 258 

reference lake map (Sheng et al., 2016), the median water extent during the lake stable season 259 

was selected as the final representative extent for each lake. To comply with SWOT’s 260 

observation goal, the subset of the Circa-2015 lake dataset with lake size equal to or larger than 1 261 

ha was used as the PLD prior lake mask. 262 

2.2 Additional reservoir polygons 263 

 To ensure that the prior lake mask presents major reservoirs as thoroughly as possible, we 264 

supplemented the Circa-2015 lake dataset by another two global reservoir inventories. They are 265 

the Georeferenced global Dams And Reservoirs dataset (GeoDAR) v1.1 (Wang et al., 2022) and 266 

the Post2k reservoir dataset (Fan et al., 2023). GeoDAR v1.1 consists of 24,783 dam points and 267 

their associated reservoir polygons when detectable. The dam points harmonized the Global 268 

Reservoir and Dam database (GRanD) v1.3 (Lehner et al., 2011) (see section 2.4) and a 269 

georeferenced subset of the World Register of Dams from the International Commission on 270 

Large Dams (ICOLD; https://www.icold-cigb.org). Reservoir polygons were retrieved for each 271 

of the dam points by jointly using the water masks of HydroLAKES v1.0, GRanD v1.3, and the 272 

Circa-2015 lake dataset. This led to 21,515 reservoir polygons with a total area of 496,313.8 273 

km
2
, representing a cumulative storage capacity of 7216.1 km

3
.  274 

Post2k reservoir dataset contains 6,760 global reservoirs constructed after the year 2000. 275 

These post-2000 reservoirs were detected by comparing composite water occurrence 276 

probabilities before and after 2000, using the multi-decadal remote sensing products Global 277 

Surface Water (GSW) database (Pekel et al., 2016) and the Global Land Analysis and Discovery 278 

(GLAD) database (Pickens et al., 2020). Polygons of the verified post-2000 reservoirs were then 279 

retrieved using the maximum water occurrence maps of GSW and GLAD, such that each 280 

polygon represents the maximum inundation area of the reservoir from the construction to about 281 

2020 and has a minimum size threshold of 0.5 km
2
. These post-2000 reservoir polygons have a 282 

total area of 53,183.9 km
2
, corresponding to a cumulative storage capacity of 1,287.7 km

3
.  283 

2.3 SWORD 284 

SWORD is the official a priori river database for SWOT (Altenau et al., 2021). It defines 285 

the global networks of mainstems and tributaries potentially visible to SWOT (i.e., wider than 50 286 

m according to SWOT’s observation goal) (Biancamaria et al., 2016) and serves as the 287 

framework for the SWOT vector river products. Because its primary data source is the Global 288 

River Widths from Landsat (GRWL) database (Allen & Pavelsky, 2018), SWORD also contains 289 

river reaches with mean annual flow widths as narrow as 30 m. In total, SWORD consists of 290 

213,485 river reaches (centerlines) with a median length of 10.5 km, comprising 10.7 million 291 

nodes with ~200 m spacing. The SWOT river vector products, which contain WSE, width, slope, 292 

and discharge, will be disseminated at the scales of both river reach and node. In addition, 293 

https://www.icold-cigb.org/
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SWORD also used multiple auxiliary datasets to provide a wide range of hydrological and 294 

morphological attributes such as reach sinuosity, average width, slope, natural and human-295 

created obstructions, and the topology structure among the reaches and nodes. These attributes 296 

facilitate the processing of SWOT river products as well as their scientific applications. Here we 297 

used SWORD version 15 to identify the PLD lakes that are directly connected to the river 298 

networks visible to SWOT, and the intersecting water bodies will be considered in both lake and 299 

river products.   300 

2.4 GRanD 301 

GRanD is one of the most comprehensive spatial repositories of large dams and 302 

reservoirs in the world (Lehner et al., 2011). GRanD was constructed by harmonizing a 303 

collection of open-access dam and reservoir data, including the United Nations Food and 304 

Agricultural Organization (FAO) AQUASTAT 305 

(https://www.fao.org/aquastat/en/databases/dams) and multiple regional inventories and 306 

registers, to form a single, congruent global database. The latest version v1.3 contains 7320 307 

georeferenced dams and their associated reservoir polygons when possible. Each reservoir 308 

feature is also provided with over 50 attributes such as reservoir name, storage capacity, and 309 

purpose. While the primary goal is to inventory all reservoirs with a storage capacity greater than 310 

0.1 km
3
, GRanD v1.3 includes 3992 smaller reservoirs, leading to a total storage capacity of 311 

6881 km
3
 in the entire database. The reservoirs also include 119 regulated natural lakes such as 312 

Lake Victoria and Lake Ontario. While a more exhaustive inclusion of smaller and/or newer 313 

reservoirs is important, we used GRanD v1.3 to flag some of the largest manmade reservoirs and 314 

regulated lakes as an a priori attribute for the operational PLD. Polygons in GRanD were not 315 

used to construct the geometry of the PLD lake mask.  316 

2.5 HydroBASINS 317 

HydroBASINS (Lehner & Grill, 2013) offers a global tessellation of hierarchically nested 318 

basins and subbasins at various scales, derived primarily from the HydroSHEDS hydrography 319 

dataset at a grid resolution of 15 arc seconds (~500 m at the equator) (Lehner et al., 2008). 320 

Following the Pfafstetter coding system (Verdin & Verdin, 1999), the basin hierarchy in 321 

HydroBASINS is broken down to 12 nesting levels. They range from level 1 containing 9 322 

continental or subcontinental boundaries, to level 12 encompassing about 1.0 million subbasins 323 

at a scale of only tens of square kilometers. In other words, the basins of a lower level 324 

consecutively comprise the subbasins of a higher level. For clarity, the subbasins corresponding 325 

to each level are organized as a different data layer. We used the data layers at Pfafstetter levels 326 

3 in HydroBASINS v1.c, which contains 291 basin polygons together with their associated 327 

Pfafstetter codes at level 2 (corresponding to 62 larger basins) and level 1 (corresponding to 9 328 

continental and subcontinental divisions). These level-3 basin boundaries and their Pfafstetter 329 

codes were used to help structure the prior lake identifier (lake_id attribute) and partition the 330 

PLD into level-2 basin granules (section 3.1). 331 

2.6 SWOT orbit files 332 

The SWOT mission is split in two phases related to two different orbits (JPL internal 333 

document, 2022e). The initial Calibration/Validation (Cal/Val) phase, up to July 11st, 2023, was 334 

related to a 1-day orbit at an 857 km of altitude: by frequent revisits of specific sites, this phase 335 

enabled the calibration of radar system parameters in the shortest time; it also allowed the study 336 

https://www.fao.org/aquastat/en/databases/dams
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of rapidly changing phenomena. The science orbit, on which SWOT has been placed since July 337 

21st, 2023, is a non-sun-synchronous 21-day orbit, at an 890.6 km of altitude. Combined with the 338 

swath of the satellite, this orbit allows a quasi-global coverage until 77° of latitude north and 339 

south and, with its 10-day sub-cycle, is a good compromise for the temporal sampling as a region 340 

may be observed between once a cycle (at the Equator) to more than ten times a cycle (at the 341 

highest latitudes). 342 

Different from nadir-pointing altimetry missions, which provide measurements just 343 

below the satellite, SWOT KaRIn makes observations with a 120 km wide swath, from 344 

approximately 10 to 60 km of its nadir, on both “right” and “left” sides. The terms “left” and 345 

“right” are defined as if one stands on the Earth surface at the spacecraft nadir point facing in the 346 

direction of the spacecraft velocity vector. The 10 to 60 km width swath orbit file (for the CalVal 347 

orbit: https://www.aviso.altimetry.fr/fileadmin/documents/missions/Swot/sph_calval_swath.zip; 348 

for the Science orbit: 349 

https://www.aviso.altimetry.fr/fileadmin/documents/missions/Swot/swot_science_orbit_sept201350 

5-v2_10s_swath.zip) was considered to compute the observability of each lake by SWOT. It 351 

provides the full swath per pass. A “pass” is a half revolution of the Earth by the satellite from 352 

pole to pole (south to north latitudes for ascending passes, and north to south latitudes for 353 

descending passes). There are 28 passes for the 1-day orbit, and 584 passes for the 21-day orbit. 354 

2.7 Databases for lake names 355 

Multiple databases or open-source online repositories were jointly used to populate lake 356 

names for the PLD polygons as thoroughly as possible. These sources include the IGN Carthage 357 

database (BD CARTHAGE®) to cover lakes in France ( 358 

https://services.sandre.eaufrance.fr/telechargement/geo/ETH/BDCarthage/FXX/2017), the 359 

OpenStreetMap (OSM; https://www.openstreetmap.org), the Global Lakes and Wetlands 360 

Database (GLWD) (Lehner & Doll, 2004), the Natural Earth Data (scale 1:30,000,000) 361 

(https://www.naturalearthdata.com), the Vector Map Level 0 (VMap0) 362 

(https://mdl.library.utoronto.ca/collections/geospatial-data/vector-map-level-0-vmap0), and 363 

HydroLAKES (v1.0) (Messager et al., 2016).  364 

3 Database development 365 

3.1 Overview of the operational PLD 366 

 Conceptually, the operational PLD is comprised of two primary components (Fig. 1): (1) 367 

the prior lake mask, which inventories the polygon geometries of global lakes potentially visible 368 

to SWOT (i.e., ≥1 ha); and (2) the operational auxiliaries, which facilitate the linkage of SWOT 369 

observations to the prior lakes and assemble prior information necessary to compute lake storage 370 

change and populate the lake products. Analogously, the prior lake mask sets up the data 371 

infrastructure, while the operational auxiliaries assist the SAS in embodying the functionality of 372 

the data infrastructure.   373 

https://www.aviso.altimetry.fr/fileadmin/documents/missions/Swot/sph_calval_swath.zip
https://www.aviso.altimetry.fr/fileadmin/documents/missions/Swot/swot_science_orbit_sept2015-v2_10s_swath.zip
https://www.aviso.altimetry.fr/fileadmin/documents/missions/Swot/swot_science_orbit_sept2015-v2_10s_swath.zip
https://services.sandre.eaufrance.fr/telechargement/geo/ETH/BDCarthage/FXX/2017
https://services.sandre.eaufrance.fr/telechargement/geo/ETH/BDCarthage/FXX/2017
https://www.openstreetmap.org/
https://www.naturalearthdata.com/
https://mdl.library.utoronto.ca/collections/geospatial-data/vector-map-level-0-vmap0
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 374 

Figure 2. Structural model of the operational PLD. 375 

 Structurally, the operational PLD is a relational database (Fig. 2) which ties the central 376 

“lake” table to four auxiliary tables: “lake_catchment”, “lake_influence”, “basin”, and 377 

“hypso_curve”. Following the terminology of data science, here “table” refers to an arrangement 378 

of records that may contain fields of both geometry (e.g., raw polygons) and non-geometry (e.g., 379 

other numeric and text prior attributes). The central “lake” table consists of the polygons of the 380 

prior lake mask and a set of attributes for each prior lake. The prior lake mask is used to link 381 

SWOT-observed water features to the prior lakes by intersecting their geometries. The other 382 

attributes store prior information to calculate lake water storage change and to help populate the 383 

vector products at two granule levels, including the standard lake single pass vector product 384 

(L2_HR_LakeSP) in continental-pass granules (CNES internal document, 2022b) and the 385 

standard lake average cycle product (L2_HR_LakeAvg) in Pfafstetter level-2 basin granules 386 

(CNES internal document, 2022a). The “lake” table also contains an attribute to link the prior 387 

lakes and prior rivers (SWORD), such that pixels of lakes connected to the prior river networks, 388 

the so-called “connected lakes”, are also included in lake data processing. For clarity, we refer to 389 

the non-geometric attributes of the “lake” table and the entirety of the other ancillary tables 390 

(“lake_catchment”, “lake_influence”, “basins”, and “hypso_curve”) as operational auxiliaries, 391 

which collectively supplement the prior lake mask to enable the expected functions of the 392 

operational PLD. 393 

 The “lake_catchment” and “lake_influence” tables contain ancillary geometries to 394 

accelerate the assignment of SWOT observations to the prior lakes. The issue is that the spatial 395 

linkage between SWOT-observed water features and the prior lakes does not always follow a 396 

one-to-one relationship. Particularly, complexities arise when an observed water feature is 397 



manuscript submitted to Water Resources Research 

13 

 

intersected by multiple prior lakes, leading to ambiguity regarding how the pixels in the observed 398 

water feature should be assigned to each of the prior lakes. To tackle the issue, these two 399 

assignment tables delineate a spatial partition for each prior lake stored in the “lake” table. Each 400 

lake assignment polygon defines the spatial domain within which the associated prior lake is 401 

allowed to “expand” before it infringes the domain of another prior lake. In other words, the lake 402 

assignment polygons disambiguate the vicinity of each prior lake so that lake assignment in 403 

complex spatial relationships can be eased (see examples in section 4.4). The “lake_catchment” 404 

geometries provide a spatial partition that takes into account hydrological constraints and 405 

topography while “lake_influence” geometries take into account only distances between lakes. 406 

 The “hypso_curve” table stores the information of lake hypsometry for computing water 407 

storage changes. This ancillary table will be added to the PLD approximately one year into the 408 

SWOT mission. More specifically, this table will contain discrete WSE and water area points on 409 

the hypsometric curve (i.e., WSE-area relationship) for each prior lake. The curve will be fitted 410 

using the pairs of SWOT WSE and water area measurements to be collected from the first valid 411 

observation of this lake throughout a certain mission period. Since the hypsometric points 412 

account for the variation in lake bathymetry, they will allow for lake storage changes to be 413 

estimated in an “incremental” approach (Cretaux et al., 2016) (CNES internal document, 2023a), 414 

which is theoretically more accurate than the “direct” approach assuming an invariant 415 

bathymetric shape.   416 

 The operational PLD is organized by HydroBASINS level-2 basins (section 2.5), which 417 

results in 61 valid basin-granule PLD files. The “lake” table in each basin-granule PLD includes 418 

only the prior lakes intersected by the associated level-2 basin. The “lake_catchment” and 419 

“lake_influence” tables include the catchment and influence polygons intersecting this level-2 420 

basin, respectively. The “basin” table delineates the full boundaries of HydroBASINS level-3 421 

basins nested within this level-2 basin (section 2.5), together with the associated basin Pfafstetter 422 

codes. This table is used to label the observed water features in different continents and basins. 423 

More details on the development of each table, except “hypso_curve”, are given in the following 424 

subsections.  425 

3.2 Prior lake mask  426 

The Circa-2015 lake dataset (Sheng et al., 2016) (section 2.1) was used as the primary 427 

source of the prior lake mask. To improve the representation of reservoirs, particularly those 428 

constructed after 2015, a few state-of-the-art global and regional reservoir databases (section 2.2) 429 

were integrated to the Circa-2015 dataset to form the final prior lake mask. 430 

The reservoirs in GeoDAR v1.1 (Wang et al., 2022) and Post2k (Fan et al., 2023) 431 

databases that are not intersected by any Circa-2015 polygon were first added successively to the 432 

prior lake mask. The remaining Post2k reservoirs were next investigated based on their spatial 433 

relationship with the updated prior lakes. High-resolution Esri and Google Earth imagery were 434 

also employed to assist in visual inspection. When a prior lake spatially conflicts with more than 435 

one Post2k reservoir, we examined whether this prior lake overshoots the dam location and 436 

mistakenly spans multiple reservoirs. If verified, this prior polygon was manually split to 437 

multiple reservoirs. When a prior lake intersects with only one Post2k reservoir, we examined 438 

whether the Post2k reservoir was substantially overrun by its intersecting prior lake. This 439 

possibility was identified when the Post2k reservoir is well included (>75%) by the prior 440 

polygon but the latter is less well covered (<75%) by the former. We then visually inspected if 441 



manuscript submitted to Water Resources Research 

14 

 

this prior polygon mistakenly annexed the reservoir depicted by Post2k; if verified, this prior 442 

polygon was truncated, allowing the Post2k polygon to be added as a new reservoir without 443 

topological conflicts. For the rest of the cases (one Post2k reservoir intersected by one or 444 

multiple prior lakes), we classified them based on the spatial agreement between the two data 445 

sources. If their overlapping area covers at least 50% of the lake area in both sources, we 446 

considered the Post2k reservoir and its intersecting prior lake(s) in good agreement and thus 447 

excluded them from further investigation. Otherwise, the case was visually inspected, and when 448 

necessary, the prior polygon was split or replaced by the intersecting Post2k reservoir.  449 

The improved prior lakes were next compared with the remaining GeoDAR reservoirs. 450 

The procedure was overall similar to the one for Post2k reservoirs, except that we employed a 451 

more qualitative approach in comparing GeoDAR and prior polygons, and that the comparison 452 

was focused on large reservoirs only. This was because many small and medium-sized reservoir 453 

polygons in GeoDAR are already sourced from the Circa-2015 lake dataset, and the other 454 

polygons sourced from HydroLAKES and GRanD usually exhibit coarser shorelines (Wang et 455 

al., 2022). Nevertheless, when a GeoDAR polygon shows a major superiority in representing the 456 

reservoir integrity (e.g., with improved shoreline connectivity and reduced surface water 457 

patchiness), the GeoDAR polygon was used to replace the intersecting prior lake(s). In 458 

occasional cases where a single source is not a sufficient solution, we performed manual 459 

digitization to modify and merge multiple sources. The data sources and harmonizing methods 460 

were reflected in the attribute source of the prior lake mask (Table 2). 461 

Additional regional improvements were further made on the prior lake mask after the 462 

integration of global reservoir databases. In particular, we included nearly 7,000 reservoirs in the 463 

Crateús and Banabuiú basins of Brazil to refine the completeness and accuracy of reservoir 464 

mapping in this hotspot region. These Brazilian reservoirs were mapped from Landsat surface 465 

reflectance images using water index spectral thresholds as in (Fisher et al., 2016) to represent 466 

the interannual water area maximum during 2008 to 2019. We also improved the mapping of 467 

several critical reservoirs in semi-arid western Africa, which are typically covered by aquatic 468 

vegetation and difficult to delineate using global algorithms. These reservoirs were extracted 469 

following a supervised classification of Sentinel-2 images using the Active Learning for Cloud 470 

Detection (ALCD) algorithm (Papa et al., 2023) and/or spectral thresholding of the modified 471 

NDWI (MNDWI) with an ad hoc threshold for each lake (de Fleury et al., 2023). Finally, the 472 

updated prior lakes were post-processed such that polygons sharing a common vertex were 473 

concatenated by a narrow channel and polygons sharing a common border were separated by a 474 

small gap. This post-processing reduced the number of original prior polygons by a minor extent 475 

but improved the connectivity of lake surface and eliminated topological ambiguity. 476 

Table 2. Key attributes in the operational PLD tables. 477 

Attribute name Description 

“lake” table 

lake_id Unique identifier (ID) of the prior lake. 

lat / lon Latitude and longitude (in decimal degree) of the centroid of the prior lake 

names Known name(s) of the prior lake. If one lake has several names, the names are 

separated by semicolons. 

res_id Reservoir ID from the Global Reservoir and Dam database (GRanD v1.3), if the 

prior lake intersects a GRanD reservoir 
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reach_id_list List of the IDs of the SWORD reaches that intersect the prior lake. If there are more 

than one reach, the IDs are concatenated by semicolon. 

ref_area / ref_area_u Maximum area and the associated uncertainty (in m2) of the prior lake. Values 

correspond to the same state as ref_wse. 

ref_wse / ref_wse_u Maximum water surface elevation (WSE) and the associated uncertainty (in m) of 

the prior lake, with respect to the reference geoid (EGM 2008).   

date_t0 Reference date from which the storage change is computed. The reference date will 

be populated as the date of the first SWOT observation of the lake. 

ds_t0 Storage change (in m3) between the lake at the maximum WSE (ref_wse) and the 

lake state at the reference date (date_t0). 

storage Maximum water storage variation (in m3) observed by SWOT, i.e., the storage 

difference between the maximum and minimum WSEs observed by SWOT 

ice_clim_flag / 

ice_clim_flag2 

Flag characterizing the presence of ice covering the lake during each day of a 

calendar year based climatological data: 
0: never frozen 
1: can be frozen 
2: always frozen 

ice_clim_flag is a text string containing the ice flags from January 1st to June 30th, 

and ice_clim_flag2 contains information from July 1st to December 31st. 
pass_[full/part]_[cal/nom] List of the IDs of the SWOT passes fully or partially covering the prior lake during 

a calibration or nominal orbit cycle. The IDs are separated by semicolons. 

cycle_flag_[cal/nom] Flag characterizing the scenario of lake observation by SWOT during a calibration 

or nominal orbit cycle. 

0: never observed 

1: only partially observed 

2: fully observed after aggregating partial observations in multiple passes 

3: fully observed by a single pass at least once  

min_dist_[lake/river][_id] Geodesic distance (in m) to the closest lake or river and the corresponding lake_id 

or reach_id 
sources Data source of the prior lake polygon 

“lake_catchment” table 

lake_id ID of the prior lake that the lake_catchment polygon encompasses  

“lake_influence” table 

lake_id ID of the prior lake that the lake_influence polygon encompasses  

“hypso_curve” table (expected to be generated approximately one year into the SWOT mission) 

id ID of the WSE-area pair 

lake_id ID of the prior lake with which the WSE-area pair is associated 

wse /area WSE (in m) and water area (in m2) values of a discrete point on the hypsometric 

curve of the prior lake. The hypsometric curve is fitted using available SWOT 

measurements of the lake WSE and water area since the first observation of this 

prior lake. 

“basin” table 

basin_id ID of the HydroBASINS Pfafstetter level-3 basin 

lat_[min/max] Minimum and maximum latitudes (in decimal degree) of the basin boundary 

lon_[min/max] Minimum and maximum longitudes (in decimal degree) of the basin boundary 

3.3 Attributes in “lake” table  478 

The attributes in the “lake” table (Table 2) provide multi-theme information for each 479 

prior lake polygon, which covers basic lake identities, relationship with drainage basins and prior 480 
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rivers, reference WSE and water area for deriving lake storage change, and SWOT overpass 481 

statistics to enable data processing and product distribution. Accompanying the attribute 482 

definitions in Table 2, we provide additional details that are necessary for understanding the 483 

attribute format, purpose, and populating method. 484 

3.3.1 Lake identities 485 

The primary key, lake_id, is a ten-character string in the format CBBNNNNNNT, where 486 

C is a one-digit continent code (Table 3), BB a two-digit basin code, NNNNNN a zero-padded, 487 

six-digit sequence representing the ordinal index of the lake within its associated basin, and T a 488 

one-digit code indicating the water body type (Table 4). Only integers 0 to 9 are allowed for each 489 

digit. The first three digits (CBB) are based on the Pfafstetter coding system used in 490 

HydroBASINS. The continental code (C) corresponds to level-1 divisions (Table 3), and BB 491 

concatenates the codes of level-2 and level-3 basins representing increasing drainage details. 492 

This hierarchy organized the global prior lakes to 291 subbasins at the scale of Pfafstetter level 3 493 

(see section 3.5), and the coding assignment was based on geometric intersection with 494 

HydroBASINS boundaries. Following the Pfafstetter coding system, prior lakes within each 495 

level-3 basin are then indexed from 000001 to a maximum of 999999 based on a random order.   496 

Table 3. PLD lake abundance in each Pfafstetter level-1 continental divisions. 497 

Continent 

code (ID) 

Continent name Lake count Lake area (ha) Mean / median 

area (ha) 

Lake density 

(%) 

1 (AF) Africa 73,781 24,377,083.2 330.4 / 3.2 0.8 

2 (EU) Europe and 

Middle East 

504,426 28,023,908.5 55.6 / 3.7 1.6 

3 (SI) Siberia 1,113,275 28,945,547.3 26.0 / 4.0 2.2 

4 (AS) Central and 

Southeast Asia 

446,736 23,450,116.9 52.5 / 2.5 1.1 

5 (AU) Australia and 

Oceania 

57,338 7,332,072.6 127.9 / 3.8 0.7 

6 (SA) South America 250,212 16,435,120.5 65.7 / 3.6 0.9 

7 (NA) North America 

and Caribbean 

1,512,139 82,537,606.4 54.6 / 3.9 5.2 

8 (AR) North American 

Arctic 

1,899,665 47,750,812.6 25.1 / 3.5 7.6 

9 (GR) Greenland 40,759 894,185.3 21.9 / 3.3 0.4 

Global  5,898,331 259,746,453.3 44.0 / 3.6 1.9 

The last digit in lake_id classifies global prior lakes to two water body types based on 498 

their geometric connectivity with prior rivers (Table 4). The same water body type codes are also 499 

used for the primary key in SWORD (Altenau et al., 2021). As listed in Table 4, each prior lake 500 

was categorized to either a connected lake (T = 3) or a disconnected lake (T = 2). A connected 501 

lake is defined as any prior lake polygon intersected by one or more prior reaches and is included 502 

in both river and lake data processing. It is worth noting that this connectivity was determined 503 

specifically in relation to SWORD. This means a “disconnected” prior lake may also be 504 
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hydrologically connected to a river, but the river is too narrow to be observed by SWOT and is 505 

therefore not inventoried in SWORD.  506 

Table 4. Water body type codes in the prior lake and river IDs 507 

Type code (T) Water body type 

1 River (only applicable to SWORD) 

2 Disconnected lake 

3 Connected lake 

4 Dam (only applicable to SWORD) 

5 No topology (only applicable to SWORD) 

Figure 3 illustrates an example to help interpret the hierarchy of lake_id. This example 508 

covers the Pfafstetter coding system in the North American continent (C = 7), which 509 

encompasses eight level-2 basins. One of them (first B = 4) contains the Mississippi River Basin 510 

(second B = 2) at level 3. There are 109,861 prior lakes in the Mississippi River Basin, which all 511 

share “742” as the first three digits in lake_id. Among them is an example lake “7420469602”, 512 

indicating that this lake is indexed to be the 46960
th

 in the basin (NNNNNN = 046960) and is 513 

disconnected from any prior rivers in SWORD (T = 2).  514 

 515 

Figure 3. Hierarchical structure of the 10-character lake_id for prior lakes. The example is given 516 

to a disconnected prior lake (T = 2) in a Pfafstetter level-3 basin (BB = 42, the Mississippi River 517 

Basin) of the North American continent (C = 7).  518 

  The names attribute inventories the known names of global prior lakes as thoroughly as 519 

possible for the convenience of PLD and SWOT science data users. The lake names were 520 

populated through “spatial join” from multiple open-source atlases and databases, including the 521 

IGN Carthage database for France, OSM, GLWD, the Natural Earth Data, VMap0, and 522 

HydroLAKES (v1.0) (section 2.7; Table 1). All names are in capital letters to avoid accents and 523 
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other spelling discrepancies. The same name can be shared by several prior polygons if they are 524 

disconnected portions of the same lake due to either mapping issues or seasonal variation. From 525 

this aspect, the names attribute is potentially useful for dissolving patchy water bodies with 526 

known lakes to improve the integrity of their prior extents and the completeness of storage 527 

change estimates. A total of 152,260 lake names were assigned to 329,376 prior lake polygons, 528 

which account for 5.6% of the global lakes by count and 61.8% by area.  529 

 The prior lake polygons include both natural lakes and artificial reservoirs. While 530 

classifying lake typology is not the priority of the operational PLD, the “lake” table does provide 531 

a res_id attribute, which flags about 7300 large reservoirs using the IDs of GRanD v1.3. These 532 

IDs were populated by intersecting the prior lakes with GRanD reservoir polygons. If a prior lake 533 

intersects more than one reservoir, only the ID of the GRanD reservoir containing the prior lake 534 

centroid was used. Although GRanD focuses on the world’s largest reservoirs (e.g., with storage 535 

capacity exceeding 0.1 km
3
), this flag allows for a preliminary attribution of SWOT-measured water 536 

storage changes to either climate or human regulation. More comprehensive information about 537 

reservoirs and other lake types is available in the “scientific PLD”. 538 

3.3.2 Relations with SWOT-visible rivers 539 

 The reach_id_list attribute identifies each river-connected prior lake by the IDs of the 540 

intersecting SWORD reaches. For each identified prior reach, SWOT-detected water pixels that 541 

correspond to the lake portion are kept for both lake and river data processing whereas the other 542 

pixels on the reach are eliminated from further lake processing. The specific reach IDs will also 543 

facilitate a potential synergy of SWOT lake and river data products. One example is the 544 

LakeFlow algorithm (Riggs et al., 2023), which uses both products and the concept of lake-river 545 

mass conservation to improve the estimates of lake inflow and outflow. The reach_id_list 546 

attribute identified 16,499 prior lakes connected to 43,247 prior river reaches, and these 547 

connected lakes account for 38.4% of the global lake area. More advanced information on lake 548 

drainage topology and lake-river connectivity will be available in the “scientific PLD”. 549 

3.3.3 Prior information for computing lake storage change 550 

 An essential role of the operational PLD is to assist the SAS in turning lake area and WSE 551 

repeatedly measured by SWOT to lake water storage variation. For this purpose, the “lake” table 552 

reserves several attributes associated with the reference water state for each prior lake, based on 553 

which water storage change (i.e., the output variable delta_s in the lake products) can be 554 

computed. These attributes start with date_t0, which defines the date of the first valid SWOT 555 

observation of each prior lake. The WSE and water area on this initial date set up the reference 556 

state for computing delta_s. In other words, even though lake storage algorithms in the SAS vary 557 

in bathymetrical model (linear or quadratic) and integration approach (direct or incremental), the 558 

output delta_s conceptually always represents the storage change from the observed state (i.e., 559 

WSE and water area at a given time ti) to the reference state defined by date_t0 (see Fig. 4).  560 

 For practical reasons in bathymetric and hypsometric modeling, the calculation is first 561 

performed for the lake storage change (ΔV(ti)) between ti and a high water level state defined by 562 

the ref_wse and ref_area attributes. Specifically, ref_wse quantifies the maximum WSE of the 563 

prior lake during a certain SWOT observation period, and ref_area stores the inundation area 564 

corresponding to ref_wse. Their associated uncertainties are given in ref_area_u and ref_wse_u, 565 

which are needed for propagating storage change errors. The storage difference between the two 566 
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states (i.e., the high level state and the reference state on date_t0) is provided in the ds_t0 567 

attribute. This way, delta_s can be derived by subtracting ds_t0 from ΔV(ti) (Fig. 4). Technical 568 

details on lake storage change algorithm and error propagation are beyond the scope of this paper 569 

but are available in the Algorithm Theoretical Basis Document (CNES internal document, 570 

2023a).  571 

 It is important to note that the reference state on date_t0 does not necessarily correspond 572 

to the minimum level of the prior lake. However, the “lake” table provides another attribute 573 

storage, which quantifies the storage change between the maximum and minimum WSEs for 574 

each lake during the same period for calculating ref_wse and ref_area. This attribute estimates 575 

the magnitude of possible storage variation per prior lake, which is needed for assessing the 576 

scales of intermediate storage variation relative to the maximum storage change magnitude. 577 

Lacking sufficient SWOT observations so far, ref_area is temporarily populated as the area of 578 

the prior lake polygon whereas the other attributes are filled with “no data” and will be populated 579 

at the first major update of the operational PLD (see section 5).  580 

 581 

Figure 4. Illustration of different water states used in lake storage change calculations. 582 

3.3.4 SWOT overpasses and lake coverage 583 

 Lastly, the “lake” table contains a few more attributes that describe SWOT’s coverage of 584 

the prior lakes in relation to orbit passes. These attributes inform how well each prior lake can be 585 

observed under a single pass or after aggregating multiple passes during a calibration or nominal 586 

orbit cycle. The pass_full and pass_part attributes list the IDs of the passes covering each prior 587 

lake fully and partially, respectively. Their values were configured by intersecting the prior lakes 588 

and the orbit passes with swaths covering 10-60 km from nadir (section 2.6). The intersection 589 

applied a 5-km buffer to take into account SWOT orbit jitter. These two attributes can be used to 590 

quantify how many times each lake can be observed partially, completely, or both during an orbit 591 

cycle (see section 4.3). Using this information, the cycle_flag attribute summarizes SWOT’s lake 592 

coverage into four scenarios. Scenario “0” flags the prior lakes that will never be observed by 593 

SWOT. This was determined by the lakes where both pass_full and pass_part values are empty. 594 

Scenario “1” indicates that the lake will only be partially observed even after aggregating all 595 

passes over a cycle, and scenario “2” indicates that the lake can be fully observed by SWOT, but 596 

only after pass aggregation over a cycle. In both scenarios, pass_part has valid pass IDs while 597 

pass_full is empty. Finally, scenario “3” flags all prior lakes that will be observed fully by at 598 
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least one single pass. This was determined by the prior lakes where pass_full has valid pass IDs 599 

regardless of pass_part.  600 

3.3.5 Lake ice flag 601 

 The goal of ice_clim_flag (climatological ice flag) is to help the data user make decisions 602 

on removing potentially ice-affected SWOT lake products, and to allow the SAS to calculate the 603 

ice_clim_f attribute (i.e., a climatological flag indicating whether the lake is ice-covered on the 604 

day of the observation based on ice_clim_flag) in the vector lake product (CNES internal 605 

document, 2022b). Climatological ice flags are estimated ice conditions for a typical year, 606 

averaging ice conditions between January 1st 2010 and January 1st 2020. Here we briefly 607 

describe the two steps taken to develop the lake ice flag. 608 

 Development of a lake ice fraction empirical model. To develop a priori ice conditions 609 

for all prior lakes, we applied an empirical lake ice fraction model by matching same-day ice 610 

fractional data derived from Landsat 5, 7, and 8 images, whenever cloud-free conditions were 611 

observed, with daily surface air temperature from ERA5 climate reanalysis data (Copernicus 612 

Climate Change Service, 2017). The lake ice fraction was calculated based on the lake ice 613 

detection algorithm (SLIDE) (Yang, Pavelsky, et al., 2022) for each prior lake polygon. By 614 

modeling the lake ice fraction with daily-mean air temperature, we identified the following 615 

logistic regression: 616 

        log(𝑜𝑑𝑑𝑠(𝑃𝑖𝑐𝑒)) =  −0.46 ∙ 𝑆𝐴𝑇30 − 0.02 ∙ 𝑆𝐴𝑇30 ∙ 𝑃𝑒𝑟𝑖𝑜𝑑 + 0.85            (1) 617 

where 𝑃𝑖𝑐𝑒 denotes the lake ice area fraction; 𝑆𝐴𝑇30 denotes the prior 30-day mean surface air 618 

temperature; and 𝑃𝑒𝑟𝑖𝑜𝑑, a categorical variable, denotes whether the calculation was carried out 619 

during the breakup months (𝑃𝑒𝑟𝑖𝑜𝑑 = 1 when Julian day is between [70, 227]; 𝑃𝑒𝑟𝑖𝑜𝑑 = 0 620 

otherwise). Adding the variable 𝑃𝑒𝑟𝑖𝑜𝑑 allowed the model to accommodate the difference in ice 621 

dynamics during the breakup and freeze-up, a difference that has been previously identified in 622 

other types of freshwater bodies (Lacroix et al., 2005). 623 

 Estimating lake ice flag. For each point geometry representing the prior lake centroid, 624 

and for each day during the period between January 1st 2010 and January 1st 2020, we estimated 625 

the ten-year mean lake ice fraction by inputting daily mean surface air temperature from ERA5 626 

reanalysis database (variable: mean_2m_air_temperature) to the empirical lake ice model above. 627 

Then, a climatological mean lake ice fraction was estimated by averaging lake ice fraction across 628 

the ten years for each Julian day. At last, the continuous ice fraction was converted to three 629 

discrete integer values to represent ice conditions for SWOT ice flag: mean ice fraction < 0.2: 0; 630 

0.2 ≤ mean ice probability < 0.8: 1; and mean ice probability ≥ 0.8: 2. 631 

 This flag can suggest likely ice cover conditions at the given time of year for a given 632 

prior lake based on modeled historical ice conditions. However, factors such as interannual 633 

variability for ice phenology, multiple freeze-thaw events during cold seasons, and non-634 

stationarity in climate mean that users are encouraged to seek ice conditions that are more recent 635 

and locally relevant whenever those sources are available. When no other sources are available, 636 

the climatological flag provides a reasonable representation of the average ice condition.  637 

3.4 “Lake_catchment” and “lake_influence” tables 638 

The “lake_catchment” and “lake_influence” tables store the assignment polygons for 639 
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each of the prior lakes referenced in the “lake” table. By definition, a lake assignment polygon 640 

should encompass the associated prior lake as well as its water fluctuation zone; meanwhile, it 641 

should not overlap those of any other prior lakes but collectively, the assignment polygons 642 

partition the entire continental surface. This way, when it is unclear how a SWOT-detected water 643 

region should be assigned to the prior lakes using the prior lake geometry alone, the assignment 644 

polygons can help determine the rule for executing lake assignment (see sections 3.1 and 4.4). In 645 

addition to the geometries, each assignment polygon is also indexed by the ID of the 646 

encompassed prior lake, lake_id (section 3.3.1), which links the “lake_catchment” and 647 

“lake_influence” tables to the “lake” table. 648 

We considered two rationales for constructing lake assignment polygons. The first rationale 649 

follows the concept of lake hydrological catchment, which defines the sub-basin between the 650 

outlets of a prior lake and its immediate upstream prior lake(s). If a prior lake is in the headwater 651 

(meaning no lakes further upstream), the catchment is then the entire watershed upstream to the 652 

outlet of this lake. As water dynamics in a lake are confined by its own catchment boundary, this 653 

rationale complies with the ideal definition of lake assignment polygons described above. To 654 

implement this rationale, we applied the algorithm recently developed for the global Lake 655 

Topology and Catchment (Lake-TopoCat) database (Sikder et al., 2023) on the prior lake mask and 656 

the 90-m-resolution MERIT-Hydro hydrography data (Yamazaki et al., 2019). Results of the 657 

algorithm are fine-detailed catchments for each of the prior lakes, which compose the geometries 658 

of the “lake_catchment” table. A regional example is given for part of western Africa in Fig. 5a.   659 

The second rationale relies on geometric vicinity. Specifically, we employed the Voronoi 660 

tessellation (Aurenhammer, 1991) to partition the continental surface into proximal regions based 661 

on the geodesic distance to the prior lakes, and the resultant regions, also known as Voronoi cells 662 

or Thiessen polygons, are the geometries of the “lake_influence” table (see the example of Fig. 663 

5b). Mathematically, the Voronoi tessellation decomposes a plane with a finite number of objects, 664 

or the so-called “seeds”, into the same number of Thiessen polygons. Each Thiessen polygon 665 

corresponds to one seed object, e.g., a prior lake in our case, and every virtual point within this 666 

polygon is closer to its seed prior lake than to any other prior lake. Because of this proximal 667 

characteristic, Thiessen polygons are often regarded as the “areas of influence” in computational 668 

geometry and have been widely applied in hydrology, meteorology, and geo-statistics (Evans & 669 

Jones, 1987). Although these influence features do not follow the exact lake catchment boundaries 670 

(Fig. 5), it is important to note that assignment polygons are not needed for every case of lake 671 

assignment. When they are indeed needed, the Thiessen polygons provide a computationally 672 

efficient alternative to ease the linkage of SWOT observations to the prior lakes. An example of 673 

when lake assignment polygons are required and how they function to ease lake linkage is given in 674 

section 4.4. 675 
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 676 

Figure 5. An example of SWOT prior lakes in part of western Africa (deep green) and their 677 

associated assignment domains (light green). (a) Lake hydrological catchments as in the 678 

“lake_catchment” table. (b) Lake influence features as in the “lake_influence” table.  679 

3.5 “Basin” table 680 

The “basin” table contains the geometries of Pfafstetter level-3 basins corresponding to a 681 

level-2 basin granule (see section 3.1 for PLD organization). The basin boundaries were 682 

retrieved from the HydroBASINS dataset, with a total number of 291 level-3 basins on the global 683 

continents except Antarctica. Each basin feature in this table is provided with five attributes as 684 

listed in Table 2. The basin_id attribute is the basin identifier, containing the level-3 Pfafstetter 685 

code from HydroBASINS. The value of this attribute is identical to the first three digits in 686 

lake_id (i.e., CBB) of the “lake” table, which links each prior lake to its associated basin. The 687 

basin geometries and basin_id values are used to separate the water features observed by SWOT, 688 

including those not intersected by any prior lakes, to different continents and basins, which is 689 

needed for populating the vector lake products at different granule scales.  690 

4 Results and discussion 691 

4.1 Prior lake abundance and distribution 692 

As the primary component of the SWOT PLD, the prior lake mask contains 5,898,331 693 

polygons larger than 1 ha (Fig. 6), mostly representing the intermediate water extents of global 694 

lakes during their stable seasons. These prior lakes have a total area of 2,597,464.5 km
2
, covering 695 

about 2% of the global land surface excluding Antarctica. The Caspian Sea, including the 696 

Garabogazköl lagoon, is excluded from the PLD due to its large size and dual characteristics of 697 

both lake and ocean (Zimnitskaya & Geldern, 2011).  698 

Table 3 summarizes the lake abundance in each of the nine Pfafstetter-1 continental 699 

divisions. The lake count ranges from less than 80,000 per division in Africa (AF), Australia and 700 

Oceania (AU), and Greenland (GR) to more than 1 million in Siberia (SI), North America and 701 

Caribbean (NA), and North American Arctic (AR). In general, the divisions with larger lake 702 

counts also tend to exhibit a greater total lake area and lake density. Despite a global average of 703 

1.9%, lake density varies substantially from only 0.4–0.8% in GR, AU, and AF, to 5.2% in NA 704 

and as high as 7.6% in AR. On a continental scale, lake abundance appears to be negatively 705 
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correlated to aridity and positively correlated to the degree of glaciation or periglacial processes 706 

(except GR). The divisions with less lake abundance, however, tend to have a greater mean lake 707 

size (e.g., 127.9 ha in AU and 330.4 ha in AF), implying fewer but larger lakes are more likely to 708 

develop in arid regions. On the other hand, the lake-dense circum-Arctic regions (AR and SI) are 709 

dominated by smaller lakes with an average size of 25.1 ha, substantially below the global 710 

average 44.0 ha. In comparison, the median lake sizes are more consistent among the continents 711 

and range subtly between 2.5 ha to 4.0 ha.  712 

With a minimal lake size of 1 ha, the prior mask reveals an unprecedented detail of global 713 

lake distribution. About 65% of the total lake count or 40% of the total lake area is clustered in 714 

the sparsely populated high-latitude regions above 55°N (Fig. 6b), where glacial activities 715 

prevailed in the last ice age. Lakes are particularly ubiquitous across the Canadian Shield and 716 

Scandinavia as a result of glacial erosions during the Pleistocene (Shilts et al., 1987) and the 717 

boreal permafrost lowlands (e.g., in Siberia and Alaska) associated with thermokarst (Kokelj & 718 

Jorgenson, 2013; Manasypov et al., 2014; Smith et al., 2005; Wik et al., 2016). While lake count 719 

gradually declines southward, lake area continues to plateau till 40°N, owing to the presence of 720 

some of the most gargantuan lakes in the world such as the Laurentian Great Lakes, Lake 721 

Balkhash, and Lake Baikal. As a result, more than 70% of the global lake area is concentrated 722 

above 40°N, a latitudinal belt accounting for only one-third of the global landmass (excluding 723 

Antarctica). In comparison, the temperate and tropical zones between 40°N and 40°S are home 724 

to about 85% of the global population (estimated based on the Gridded Population of the World 725 

(GPW v4) (CIESIN, 2018)) but only 16% of the global lake count or a quarter of the lake area, 726 

highlighting the unequal spatial distribution of lake water resources. Longitudinally, 64% of the 727 

global lakes (or 59% by area) are distributed in the land-lacking western hemisphere (Fig. 6c) 728 

due to disproportionate lake densities in Alaska, the Canadian Shield, the Amazon floodplain, 729 

and alpine Patagonia. A spike of lake area is also seen around 30°E, which is associated with 730 

Lake Victoria and a few elongated large lakes in the East African Rift System such as Lakes 731 

Tanganyika and Malawi. Another cluster of lake abundance occurs in the longitudinal belt of 732 

60°E to 90°E, which is contributed by thousands of thermokarst lakes across the North Siberian 733 

Lowlands and the alpine and glacial lakes on the Tibetan Plateau.  734 
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 735 

Figure 6. Global map and distribution of the SWOT prior lakes. (a) Global map of prior lakes, 736 

with numbers labeling the count of lake polygons per Pfafstetter level-1 division and colors 737 

displaying the number of SWOT overpasses per lake during each 21-day orbit cycle. (b) Count 738 

and total area of the PLD lakes per latitudinal degree. (c) Count and total area of the PLD lakes 739 

per longitudinal degree. The location of a lake polygon was determined by the latitude and 740 

longitude coordinates of the centroid of the lake polygon. Values in both latitudinal and 741 

longitudinal histograms (b and c) were smoothed by a 3-degree average window to enhance 742 

aesthetic appearance and take into account that lakes can span multiple 1-degree intervals.  743 

4.2 Comparison with other global lake masks 744 

We compare the PLD prior lake mask with HydroLAKES, GLAKES, and the entirety of 745 

the Circa-2015 lake dataset, to further understand the capability of the PLD in helping SWOT 746 

achieve its science objectives for global lake monitoring. The comparison emphasizes the 747 

characteristics of lake size distribution, shoreline fractality, and lake mask accuracy across 748 

different landscapes, in addition to summary statistics on global lake abundance. While the prior 749 

lake mask is, to a large extent, a subset of the Circa-2015 lake dataset (section 2.1), we include 750 

the latter for comparison in order to understand the abundance of small lakes that are inventoried 751 

but beyond SWOT’s science goal (<1 ha).  752 

As shown in Fig. 7a, all datasets concur that the distribution of the Earth’s lake area is 753 

asymmetric and lake abundance increases as lake size decreases. When lakes are larger than a 754 

scale of ~100 ha (1 km
2
), the size-abundance relationship conforms to a power-law or Pareto 755 

distribution, where the cumulative lake count increases linearly with the decrease of lake size in 756 

logarithmic space. Lakes smaller than this scale, however, gradually deviate from a power-law 757 

distribution. Since 100 ha well exceeds the minimum lake size in any of the four datasets, the 758 

power-law deviation is not attributable to incomplete mapping of small lakes, but instead 759 

suggests that lakes behave as self-similar fractals until a lower size limit is reached (Mandelbrot, 760 

1982). Cael and Seekell (Cael & Seekell, 2016) explained that such a lower size limit exists 761 
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because topographic characteristics at sub-kilometer scales are less self-similar, and that the 762 

development of small lakes is more subject to external dynamics that are scale dependent. Pi et 763 

al. (Pi et al., 2022) also noted that lakes <100 ha, despite accounting for only ~15% of the global 764 

lake area, dominated the lake area variability over the past four decades, further highlighting the 765 

unique roles of small lakes in representing regional geomorphic processes and regulating surface 766 

water dynamics.  767 

For the above reasons, the capability of characterizing small lake abundance is critical to 768 

the SWOT PLD. Through experimentation based on the PLD, we suggest the lower size limit of 769 

the power-law distribution to be 30 (±5) ha, where the fitting slope as a function of lake size 770 

threshold reaches the inflection point and remains stable. Using the subset of lakes ≥ 30 ha, we 771 

fitted a power-law function for each of the lake datasets (fitting for the PLD shown in Fig. 7a), 772 

which rendered a similar tail exponent of ~1.00, close to 1.05 predicted by percolation theory 773 

(Cael & Seekell, 2016). While this consistency suggests that the four datasets are comparable in 774 

representing the abundance of large lakes, the major difference is their capabilities of 775 

characterizing smaller lakes that deviate from a power-law distribution. As shown in Fig. 7a, the 776 

pattern of how this deviation develops becomes increasingly clear as the minimum lake size 777 

decreases from 10 ha in HydroLAKES, 3 ha in GLAKES, 1 ha in PLD, to 0.4 ha in the Circa-778 

2015 lake dataset. Put in the context of SWOT, the deviation is to the extent that there are 55% 779 

fewer lakes meeting SWOT’s science requirement (≥ 6.25 ha) than would be expected if the 780 

lakes conformed to power law across the entire size range, and the deviation was amplified to a 781 

factor of two (221% fewer lakes) for the lakes meeting SWOT’s science goal (≥ 1 ha).  782 

Besides size distribution, the perimeter-area scaling relations are plotted in Fig. 7b to 783 

compare lake shoreline convolutedness (complexity) among the datasets. As fractals are self-784 

similar and scale-invariant, their perimeters and areas are related to each other by power law 785 

(Cheng, 1995). The exponent, equivalent to the slope of perimeter-area scaling in logarithmic 786 

space, defines the fractal dimension (d) measuring how irregular the fractal boundaries are 787 

relative to perfect circles (d = 1). As expected, the perimeters and areas of lakes ≥ 30 ha in all 788 

datasets conform to power-law relationships. The fitted d ranges from 1.25 for HydroLAKES, 789 

1.30 for PLD (fitting shown in Fig. 7b) and Circa-2015, to 1.33 for GLAKES, which are overall 790 

consistent with 1.33 predicted by percolation theory (Cael & Seekell, 2016). The smaller d for 791 

HydroLAKES was likely because the scales of some of the source data (e.g., the MODerate 792 

resolution Imaging Spectro-radiometer (MODIS) MOD44W water mask (Carroll et al., 2009)) 793 

underrepresented real shoreline complexity, in combination with additional shoreline smoothing 794 

during data post-processing (Messager et al., 2016) (Fig. 8). As the area and fractality decrease 795 

among lakes < 30 ha, the lake masks with finer resolutions, particularly the PLD and the Circa-796 

2015 dataset, reveal a subtle transition of d towards 1 (Fig. 7b), echoing the finding of (Cael & 797 

Seekell, 2016) based on high-resolution Swedish lakes that the shapes of small lakes are less 798 

convoluted. This comparison highlights the advantage of PLD in representing reliable shoreline 799 

morphology for both sizable and small lakes.  800 
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 801 

Figure 7. Comparison of lake abundance and distribution among different lake masks (SWOT 802 

PLD, HydroLAKES, GLAKES, and Circa-2015). (a) Cumulative abundance or count (N) of 803 

lakes as lake size (A) decreases. Lakes ≥ 30 ha are power-law distributed with tail exponents (τ) 804 

for all lake masks highly consistent with 1.05 predicted by percolation theory. For clarity, only 805 

the fitting line for PLD (blue line) is shown. (b) Lake perimeter (L) in relation to lake size. 806 

Perimeters are plotted as the logarithmic medians within the size bins. Similar to the abundance-807 

size distribution, lakes ≥ 30 ha are power-law distributed with fractal dimensions (d) close to the 808 

theoretical prediction 1.33. Only the fitting for PLD (blue line) is shown. The solid black curve 809 

represents a hypothetical condition where lakes are perfect circles (d = 1). (c) Total lake area per 810 

lake size bin. In all plots, size bins represent 105 equal intervals between the minimum and 811 

maximum lake areas (~0.4 ha to 11,733,200 ha) in logarithmic space. Solid and dashed vertical 812 

lines mark the lake sizes for the SWOT observation requirement (6.25 ha) and goal (1 ha), 813 

respectively. The Caspian Sea, including the Garabogazköl lagoon, was excluded from statistics.  814 
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We further compare the lake masks using their summary statistics (Table 5) and discuss 815 

the implications of discrepancies among them. The total lake count in the PLD (~6.0 million ≥ 1 816 

ha) is nearly double that in GLAKES (3.4 million ≥ 3 ha) and more than quadruple that in 817 

HydroLAKES (1.4 million ≥ 10 ha). These multi-fold differences reflect an unparalleled ability 818 

of the PLD to characterize the sheer number of small but SWOT-visible lakes. This improvement 819 

is exemplified by two high-latitude lake-rich regions: one in the Kanin Peninsula of Russia 820 

dotted with circularly shaped thermokarst lakes and bogs (Fig. 8a), and the other in the interior of 821 

the Canadian Shield, which is dominated by more convoluted, elongated lakes largely controlled 822 

by structural geology (Fig. 8b). In both examples, the PLD shows superiority in representing 823 

local lake density, geolocations, and shoreline morphology. The Circa-2015 lake dataset includes 824 

another 3.1 million lakes in the world beyond SWOT’s observation goal (< 1 ha), although these 825 

tiny lakes and ponds add only 3% to the total lake area. Despite a significantly greater lake 826 

population in the PLD, its total lake area (2,597,464.5 ha) is 7% lower than that of GLAKES 827 

(2,787,115.5 ha) and exceeds that of HydroLAKES (2,537,863.1 ha) by only 2%. 828 

For more detailed comparisons, we broke down the statistics into size classes determined 829 

by the minimum lake areas of each of the datasets as well as SWOT’s observation requirement 830 

(Table 5). For lakes smaller than 6.25 ha and larger than 3 ha (the minimum size in GLAKES), 831 

the abundance in the PLD exceeds that in GLAKES by ~2% for both count and area. Based on 832 

our visual comparisons, we attribute this difference to an overall greater omission error for small 833 

lakes in GLAKES (e.g., Fig. 8a and Fig. 8b), probably related to a conservative nature of its non-834 

parametric “expert system” for water detection (Pekel et al., 2016). For lakes ≥ 6.25 ha, however, 835 

the total abundance in the PLD becomes 6–9% less than that in GLAKES and 1–4% less than 836 

that in HydroLAKES. To investigate if such lower abundance is skewed to any individual lakes 837 

or size groups, we calculated how the total lake area and population (count) are distributed across 838 

detailed size bins (Fig. 7c). The patterns are highly consistent among the datasets: as lakes grow 839 

in size, their population decreases monotonically, but the total lake area exhibits a three-phase 840 

change. In phase one, the total lake area increases as the size grows towards ~100 ha, suggesting 841 

for smaller lakes, the area gain due to size growth outpaces the area loss due to population 842 

decline. In phase two, the total lake area decreases subtly and then stabilizes as the size grows to 843 

~10,000 ha, suggesting for medium-sized lakes, the area gain due to size growth generally 844 

compensates for the area loss due to population decline. In phase three, the total area rapidly 845 

increases again when lake size exceeds 10,000 ha, indicating a dominant impact of large lakes on 846 

area statistics albeit a limited population. Regardless of this multi-phase pattern, the relative 847 

difference in lake abundance between the PLD and the other datasets remains overall uniform 848 

across the size bins: excluding lakes ≤ 6.25 ha, both area and count in the PLD are centered 849 

around ~10% less than those in GLAKES and 5% less than those in HydroLAKES.  850 

Table 5. Statistical comparison among SWOT PLD, HydroLAKES, GLAKES, and Circa-2015 851 

lake dataset. The Caspian Sea, including the Garabogazköl lagoon, was excluded from the 852 

statistics. 853 

Statistics HydroLAKES GLAKES SWOT PLD Circa-2015 

Minimum lake size (ha) 10 3 1 0.4 

Count 
All 1,427,686 3,426,387 5,898,331 9,092,158 

1–3 ha --- --- 2,590,538 2,659,773 
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3–6.25 ha --- 1,302,135 1,327,205 1,345,113 

6.25–10 ha --- 616,915 574,923 573,042 

≥10 ha 1,427,686 1,507,337 1,405,665 1,414,396 

Area 

(km
2
) 

All 2,537,863.1 2,787,115.5 2,597,464.5 2,596,665.3 

1–3 ha --- --- 46,076.6 47,276.0 

3–6.25 ha --- 56,509.8 57,583.0 58,326.4 

6.25–10 ha --- 48,665.5 45,276.0 45,020.6 

≥10 ha 2,537,863.1 2,681,940.1 2,448,529.0 2,425,359.2 

The discrepancy in the lake abundance for lakes ≥ 6.25 ha reflects the differences in 854 

mapping standard, quality, timespan, and reference sources among the datasets. A higher lake 855 

abundance in GLAKES is expected because its polygons represent all-time water area maximum 856 

during 1984 to 2019 whereas most lakes in the PLD depict intermediate water extents during 857 

circa 2015. Although both datasets were derived from Landsat imagery, the differences in 858 

mapping period and standard, in theory, led to not only a larger lake area in GLAKES, but also a 859 

greater lake quantity given that not all intermittent lakes were inundated during circa 2015. 860 

While the Circa-2015 lake dataset was supplemented by recently constructed reservoirs (sections 861 

2.2 and 3.2), natural lakes that disappeared before or emerged after circa 2015 are not included in 862 

the PLD. On the other hand, HydroLAKES was a compilation of eight independent lake sources 863 

with publication dates spanning a decade (Messager et al., 2016). Variation among these data 864 

sources may contribute intricately to a higher abundance (for lakes ≥ 10 ha) in HydroLAKES 865 

than the PLD.  866 

For instance, the acquisition time of SWBD (February 2000), a major source of 867 

HydroLAKES for 56°S to 60°N, may explain the smaller areas in the reservoirs of northwestern 868 

India (Fig. 8g), where water levels were low during the drier monsoon season. In another 869 

relevant case, a number of important reservoirs in western Africa were built after February 2000. 870 

These include the Ziga Reservoir (completed in July 2000) in Burkina Faso (12.5°N, 1.1° W) 871 

that is absent from HydroLAKES 1.0. On the other hand, this acquisition time of SWBD 872 

coincided with the warmer season in the southern hemisphere. Meanwhile, SWBD as a radar-873 

derived product (Slater et al., 2006) is less sensitive to surface spectral disturbance such as 874 

remnant lake ice and snow. Both factors might lead to a more complete inventory of glacier lakes 875 

in HydroLAKES across the southern Andes (Fig. 8h).  876 

Another example in Fig. 8e highlights a portion of the Yukon River Valley in Alaska, 877 

where thermokarst lakes and their drained lake basins develop dynamically atop the permafrost 878 

(Grosse et al., 2013). While the PLD polygons appear highly consistent with the recent 879 

thermokarst lake extents, HydroLAKES depicts the much larger drained thaw lake basins. These 880 

outdated lake boundaries are sourced from the US National Hydrography Dataset (U.S.-881 

Geological-Survey, 2013) and contribute partially to an overestimated area abundance in 882 

HydroLAKES.  883 

In addition, part of the higher abundance in HydroLAKES and GLAKES may be ascribed 884 

to commission errors such as mountain shadows and forest patches, as shown in the examples of 885 

Fig. 8c and Fig. 8d. Such commission errors were largely eliminated from the PLD owing to a 886 

rigorous QA/QC procedure (Sheng et al., 2016) (section 2.1). Other factors such as lake 887 

definition and mapping objective could also lead to discrepancies in lake abundance. In Fig. 8f, 888 
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GLAKES and HydroLAKES include a large quantity of aquaculture ponds in coastal China, 889 

which were not considered as lakes in the PLD. 890 

 891 

Figure 8. Regional comparisons among the PLD, HydroLAKES, GLAKES, and the Circa-2015 892 

lake dataset. (a) Thermokarst lakes in the southern Kanin Peninsula, the Nenets Autonomous 893 

Okrug, Russia. (b) Structurally controlled lakes in the Canadian Shield, Northwest Territories, 894 

Canada. (c) Commission errors (mountain shadows misclassified as lakes in HydroLAKES and 895 

GLAKES) in Kamchatka Krai, Siberia, Russia. (d) Commission errors (forest patches 896 

misclassified as lakes in HydroLAKES) in southern Komi Republic, Russia. (e) Thermokarst 897 

lakes and drained thaw lake basins in the Yukon River Valley, eastern Alaska. (f) Aquaculture 898 

ponds near the Bohai coastline, Tianjin, China. (g) Reservoirs in eastern Gujarat, India. (h) 899 

Alpine and glacier lakes in the southern Andes.   900 

4.3 Lake spatiotemporal coverage  901 

SWOT coverage for the land surface is determined jointly by orbit characteristics, the 902 

KaRIn swath width (2 × 50 km), the nadir gap width (20 km) between the two swaths, and the 903 

orbit crossover density which is a function of latitude (Biancamaria et al., 2016). In addition, the 904 

spatiotemporal coverage for lakes also depends on the size and shape of each lake. With all these 905 
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factors considered, Fig. 6a shows the frequency of SWOT observations over each prior lake 906 

during every 21-day orbit cycle, which was calculated by summing the counts of unique 907 

overpasses in both pass_full_nom and pass_part_nom attributes (section 3.3.4). As summarized 908 

in Fig. 9, 96.5% of the global lakes, covering 98.2% of the total lake area, are observed by 909 

SWOT at least once per orbit cycle. More than 65% of the global lakes, covering nearly 80% of 910 

the lake area, are observed at least weekly on average (i.e., three times per cycle). About 3.5% of 911 

the global lakes, or 1.8% of the lake area, may never be observed due to a combination of nadir 912 

gaps and orbit intertrack gaps. This lake coverage complies with the SWOT science 913 

requirements, which states that “SWOT shall collect data over a minimum of 90% of all ocean 914 

and land area covered by the orbit inclination for 90% of the operation time” (JPL internal 915 

document, 2018).  916 

Despite complexity in the global pattern (Fig. 6a), lake observation frequency tends to 917 

increase with higher latitudes and larger lake sizes. As latitude increases, the orbit crossover 918 

densifies and the overlap among adjacent swaths increases. This gradually leads to the closure of 919 

orbit intertrack gaps at 25°S/N and then the closure of nadir gaps at about 60.5°S/N. As lake size 920 

increases, the chance of one lake overlapped by multiple passes also increases. As a result, 921 

unobserved lakes between 10°S and 10°N account for about 10% of the local lakes (in terms of 922 

both count and area), but the proportion decreases to less than 1% (0.9% in lake count and 0.5% 923 

in lake area) over the latitudes above 60°S/N. Since lake abundance is skewed towards higher 924 

latitudes in both count and size (section 4.1), these factors also explain why SWOT’s coverage 925 

gap for global lake area (1.8%; Fig. 9b) is significantly smaller than that for the entire land 926 

surface (3.6%) (Biancamaria et al., 2016).  927 

 928 

Figure 9. Distributions of lake overpass frequency within a SWOT nominal orbit cycle (21 929 

days). (a) Density (left y-axis, blue) and cumulative distribution (right y-axis, orange) of 930 

overpass frequency in terms of lake count. Note the left y-axis is in logarithmic scale while the 931 

right y-axis is in linear scale. (b) The same as panel a but in terms of lake area.  932 

Globally speaking, the median observation frequency is maintained at about twice per 933 

orbit cycle for lakes between 50°S and 50°N and smaller than 100 km
2
. The median frequency 934 

increases to three times per cycle for larger lakes over this latitudinal band and for lakes between 935 

50–60°N/S regardless of the lake size. The median frequency increases further to four times per 936 
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cycle above 60°N. On the other hand, some of the highest observation frequencies are found in 937 

the world’s largest lakes regardless of latitudinal distribution. For example, nearly all lakes larger 938 

than 10,000 km
2
, except Lake Malawi with an elongated shape parallel with SWOT passes (Fig. 939 

6a), are observed from six times per cycle to more than twenty times per cycle (i.e., every day).    940 

A higher overpass frequency does not always warrant a better spatial coverage. Nearly 941 

6% of the prior lakes, constituting 67.3% of the global lake area, fall on the edge of at least one 942 

overpass. These lakes will appear incomplete in some of the granules of the single-pass product 943 

(L2_HR_LakeSP). However, with a higher overpass frequency, there is an increasing chance that 944 

the lake can be observed fully by at least one pass per cycle, or the aggregation of multiple 945 

passes can lead to a full extent to represent the average inundation condition during the cycle. 946 

The latter reflects the value of the cycle-average product (L2_HR_LakeAvg). To evaluate how 947 

lakes are spatially covered per cycle, we calculated the percentage of lakes for each of the 948 

cycle_flag_nom scenarios (section 3.3.4) and how the percentages vary in lake size. As shown in 949 

Fig. 10, smaller lakes, albeit overall less frequently observed, are easier to be seen with a full 950 

extent. About 90% of the lakes smaller than 10 km
2
 are fully observed at least once per cycle 951 

(scenario 3). As lake size increases, the proportion of scenario 3 monotonically declines; 952 

meanwhile, lakes that are observed fully only after pass aggregation (scenario 2) and lakes that 953 

remain observed partially after pass aggregation (scenario 1) increase at similar paces. The three 954 

scenarios cross at ~300 km
2
, beyond which lakes of scenario 3 are no longer the majority. The 955 

proportion of scenario-2 lakes peaks at nearly 40% around 500 km
2
. Lakes larger than this size 956 

are gradually dominated by scenario 1 until 10,000 km
2
, beyond which lakes can only be 957 

observed partially despite very high overpass frequencies. The proportion of lakes that can never 958 

be observed (scenario 0) remains less than 5% regardless of size, and more than 97% of them are 959 

smaller than 1 km
2
.  960 

 961 

Figure 10. Lake spatial coverage (cycle_flag_nom) as a function of lake size during each SWOT 962 

nominal orbit cycle. 963 

Synthesizing all lake sizes, Fig. 11 shows that 95.5% of the global prior lakes, constituting 964 

50.4% of the total lake area, are fully observed during a nominal cycle, and 3.9% (or 1.9% by 965 



manuscript submitted to Water Resources Research 

32 

 

area) are never seen. Less than 1,000 prior lakes, accounting for 8.7% of the global lake area, can 966 

be fully covered after aggregating multiple passes per cycle, whereas the remaining 0.6% 967 

(34,849) lakes, accounting for 38.9% of the global lake area, cannot be fully covered in a cycle. 968 

For these partially observed lakes, complete water areas could be estimated with assistance of 969 

other sensors and/or an auxiliary water probability or contour map (such as GSWO (Pekel et al., 970 

2016)). In each of the Pfafstetter-1 (sub)continents, the proportion of lakes that are partially 971 

observed is lower than 1% except GR. In SI and AR, more than 96% of the prior lakes are fully 972 

covered by a single pass, while in AU, this proportion is only 74.1%, and a quarter of the lakes, 973 

most of which are small, are not observed by SWOT at all. It is also worth noting that lakes in AU 974 

will be observed by the low-rate (LR) products but not by the HR products. Despite this regional 975 

limit, the LR products can still be useful, especially for understanding the dynamics in larger lakes. 976 
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 977 

Figure 11. Distributions of lake coverage scenarios during a SWOT nominal orbit 978 

cycle for each continent or subcontinent.  979 
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4.4 Example of linking SWOT observations   980 

Here we provide a conceptual example to demonstrate how the operational PLD assists 981 

the SAS in linking KaRIn observations to the prior lakes and generating the L2_HR_LakeSP 982 

vector product. More technical details are given in the Algorithm Theoretical Basis Document 983 

(CNES internal document, 2023a). As introduced in section 1, the lake processing pipeline starts 984 

from the subset of the pixel cloud (L2_HR_PIXC) after the removal of pixels associated with 985 

prior rivers. The remaining non-river pixels are segmented to distinct water regions based on 986 

height clusters, and the pixel geolocations are further regularized by the average height per 987 

region. The resulting pixels with height-constrained geolocations are used to vectorize water 988 

regions, and the attributes such as water area and average WSE are computed for each vectorized 989 

water feature. These processes are directly based on SWOT observations and are independent 990 

from the PLD.  991 

 992 

Figure 12. Illustration of how the PLD is used to organize SWOT-observed water features into 993 

the three vector files of the L2_HR_LakeSP product. (a) Observed water features (solid) and 994 

prior lakes (dashed) in a hypothetical region. Different colors represent different water features 995 

or prior lakes. (b) Result of the observation-oriented file (L2_HR_LakeSP_Obs). (c) Result of 996 

the PLD-oriented file (L2_HR_LakeSP_Prior). The unobserved prior lake is an empty geometry 997 

with only prior attributes, shown as a filled polygon. An observed feature intersecting two prior 998 

lakes is partitioned to two feature entities (red and dark red), whereas two observed features 999 

intersecting the same prior lake (yellow) are dissolved to a multipart entity. (d) Result of the 1000 

observation-oriented unassigned file (L2_HR_LakeSP_Unassigned). 1001 
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The observed water features are next compared with the prior lake polygons to establish 1002 

spatial linkage between them. Depending on the relationship, the observed water features are 1003 

organized into three product files (Fig. 12): L2_HR_LakeSP_Obs, L2_HR_LakeSP_Prior, and 1004 

L2_HR_LakeSP_Unassigned. As illustrated in Fig. 12a, observed water features (solid) and prior 1005 

lake polygons (dash) do not always exhibit a one-to-one relationship. A linkage is considered 1006 

valid if an observed feature intersects at least one prior lake with sufficient overlap, typically 1007 

defined as 2% or larger (CNES internal document, 2023b). In this case, the water feature is 1008 

considered a lake and stored in L2_HR_LakeSP_Obs (Fig. 12b). Otherwise, the feature is 1009 

gathered in L2_HR_LakeSP_Unassigned (Fig. 12d). Both product files are observation-oriented, 1010 

meaning that the water features maintain the geometries as observed by SWOT, and the output 1011 

attributes, such as area and WSE, are the same as those of the input observed features.  1012 

To enable storage change calculation, each observed water feature must be linked to a 1013 

reference water state. However, reference states are only provided for prior lakes (section 3.3.3), 1014 

which often exhibit complex topological relations with observed features. Such spatial 1015 

inconsistency requires water features in L2_HR_LakeSP_Obs to be reorganized (grouped or 1016 

split) according to the prior lakes, so that the resulting features and the prior lakes have a one-to-1017 

one relationship. The resulting features are gathered in L2_HR_LakeSP_Prior (Fig. 12c). This 1018 

process is straightforward when the original feature intersects only one prior lake. In this case, 1019 

the geometry of the water feature remains unchanged, and the intersected prior lake with its 1020 

water reference state is assigned to this water feature. When a prior lake intersects more than one 1021 

water feature, all intersected features are grouped to a multipart geometry (i.e., an entity 1022 

composed of several distinct polygons that represent only one set of attributes), and this prior 1023 

lake is assigned to the multipart feature.  1024 

A more complicated case is one observed water feature intersecting multiple prior lakes. 1025 

When this occurs, the assignment polygons of the intersected prior lakes in either the 1026 

“lake_catchment” table or the “lake_influence” table can be utilized to split the observed water 1027 

feature. Figure 13 illustrates an example using the “lake_influence” table. In this example, an 1028 

observed feature in the northeast overlaps two prior lakes (lake_id 232008092 and 232009412). 1029 

To partition this feature, each of its PIXC pixels is assigned to the prior lake whose influence 1030 

area contains the pixel (Fig. 13c). Since the influence areas are Thiessen polygons (section 3.4), 1031 

this assignment essentially groups the water pixels based on the closest prior lake. The pixels are 1032 

then re-vectorized based on their prior lake assignment to form separate water features, and the 1033 

corresponding WSE and water areas are recalculated. Eventually, water storage change for each 1034 

feature is computed using the reference water state of the prior lake assigned to the feature. Any 1035 

prior lake that is not observed under an overpass, such as an intermittent lake during the dry 1036 

season, is also added to L2_HR_LakeSP_Prior but as an empty geometry with only prior 1037 

attributes. Water storage change is not calculated for L2_HR_LakeSP_Unassigned where 1038 

features are not linked to any prior lake, thus lacking a reference water state to effectively derive 1039 

storage change. 1040 
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 1041 

Figure 13. Example of lake assignment using the operational PLD. (a) SWOT-observed water 1042 

features in a hypothetical region. (b) Associated prior lakes. Prior lakes 232142722 (lake_id) and 1043 

232132172 are not observed by this overpass and will be gathered by L2_HR_LakeSP_Prior as 1044 

empty geometries with only prior attributes. The observed water feature in the central east is 1045 

linked to no prior lake and will be gathered by L2_HR_LakeSP_Unassigned. The observed water 1046 

feature in the northeast intersects both prior lakes 232008092 and 232009412. It will be a single 1047 

feature in L2_HR_LakeSP_Obs but will be split into two separated features in 1048 

L2_HR_LakeSP_Prior. The observed feature associated with prior lake 232123812 will be 1049 

gathered by both L2_HR_LakeSP_Obs and L2_HR_LakeSP_Prior with identical geometry. (c) 1050 

Zoom-in of the case where one observed feature intersects two prior lakes and how the pixels of 1051 

this water feature are reorganized by the assignment polygons in the “lake_influence” table. 1052 

5 Versioning plan  1053 

The operational PLD introduced in this paper represents the initial version that is used to 1054 

generate the official SWOT vector lake products. With the accumulation of SWOT observations 1055 

throughout the mission period, the PLD will be recursively updated to improve the functionality 1056 

and quality, according to the versioning plan currently configured below.  1057 
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5.1 Five update levels 1058 

We envision five levels (Levels 0 to 4) of PLD update depending on the quality of the 1059 

prior lake polygons and the attributes computed from the SWOT vector lake products. Level 0 1060 

refers to manual inputs from data users. Level 1 updates lake storage parameters, i.e., ref_wse, 1061 

ref_area, date_t0, and ds_t0. As described in Section 3.3.3, ref_area in the initial PLD version is 1062 

populated as the area of the prior lake polygon, and ref_wse are filled with “no data”. With 1063 

SWOT measurements being available, these two attributes will be updated using the values of 1064 

wse and area_total attributes in the LakeSP product (CNES internal document, 2022b) 1065 

corresponding to the 80th percentile of the time series for each prior lake during the update cycle 1066 

(see timeline in Section 5.3). Accordingly, the storage change parameters at the reference state 1067 

(date_t0 and ds_t0) will be computed with reference to the date of the first valid SWOT 1068 

observation of the prior lake. Level 2 generates and updates the hypso_curve table. The 1069 

hypso_curve table will be generated by fitting the (wse, area) pairs in the LakeSP product from 1070 

the first valid observation for the prior lake (section 3.1). Each time the table is updated, the 1071 

fitting will be redone using all (wse, area) pairs available from the first valid observation to the 1072 

end of the update cycle. Level 3 updates the geometry of each existing prior lake. This will be 1073 

done by intersecting the polygons associated with the three highest wse values, of this prior lake 1074 

in the LakeSP_Prior product. Level 4 adds new prior lakes that are absent from the previous 1075 

PLD version. New prior lakes will be obtained from the water features that are observed to be 1076 

persistent in the LakeSP_Unassigned product. 1077 

5.2 Three priority categories 1078 

Along with the five update levels, we will classify the prior lakes into three categories 1079 

(P1 to P3) based on how easy or complex the update can be, with consideration of the prior lake 1080 

geometry, SWOT coverage, and relationship with SWOT-observed water features. These classes 1081 

will be used to guide the update priority. Class P1 represents the “easiest” prior lakes and is 1082 

defined as any lake that satisfies the following criteria: (1) having a size compliant with the 1083 

SWOT observation requirement (area_total in the vector lake product > 6.25ha); (2) being fully 1084 

observed by SWOT at least once per cycle (cycle_flag = 3); (3) being fairly isolated from other 1085 

lakes (min_dist > 300 m); and (4) exhibiting low complexity in relation to SWOT observation, 1086 

i.e., one prior lake generally corresponds to one SWOT-observed lake feature. Class P2 contains 1087 

the prior lakes that have the same first three criteria as Class P1 but exhibit higher complexity in 1088 

relation to SWOT observation, where one prior lake corresponds to many SWOT-observed lake 1089 

features. Class P3 refer to all the other prior lakes. 1090 

5.3 General timeline 1091 

The first major update of the PLD will be applied only on the prior lakes overflown 1092 

during the Cal/Val phase (under the 1-day fast-track orbit) using the initial validated product. 1093 

This update is expected to occur around 16 months after the launch of SWOT (i.e., April 2024, 1094 

about one year into the mission after the Cal/Val phase), when the initial validated product is 1095 

released. Prior lakes of Class P3 will go through a Level-0 update (manual inputs); lakes of Class 1096 

P2 will experience a Level-1 update (populating ref_wse, ref_area, date_t0, and ds_t0 1097 

attributes); and lakes of Class P1 will have a Level-2 update (generating the hypso_curve table). 1098 

The second major update of the PLD will occur approximately one year after the first update. 1099 

This update will involve prior lakes that are covered by the nominal orbit, using the same 1100 
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methodology described for the first major update. Level-3 (geometry) and Level-4 (new lakes) 1101 

updates will not be considered before the third major update of the PLD, which may occur 1102 

approximately 3 years after the launch of SWOT (i.e., December 2025 or later). These expected 1103 

PLD updates will reflect an improved understanding of global lake distribution and dynamics as 1104 

SWOT observations accumulate, and in return, the updated PLD will also improve the 1105 

processing of SWOT vector lake products. In addition to facilitating SWOT data production, the 1106 

PLD, with its high-resolution lake mask and multiple operational tables, can be applied to 1107 

benefiting a wide range of disciplines such as limnology, hydrological modeling, ecology, and 1108 

climate science.  1109 
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