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Grazia Pennino8, David Rivas Camargo9, and Noel S Keenlyside9

1Ecopath International Initiative (EII)
2Barcelona Supercomputing Center
3UBC Insitute of the Oceans and Fisheries
4Institute of Marine Science (ICM-CSIC), Barcelona, Spain
5Barcelona Supercomputing Centre
6Institute of Marine Science (ICM-CSIC)
7University of Queensland
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Key Points 19 

Most marine ecosystem modellers lack the skills and resources to systematically calibrate, 20 
validate and assess the models for uncertainty 21 

Here we present a low-tech and open source run framework to use any computer network as a 22 
distributed model execution and assessment system 23 

We use the framework to mass-execute an Earth System (ESM)/Ecosystem Model (MEM) 24 
ensemble to assess the ecosystem impact of ESM uncertainty  25 
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Abstract 26 

Marine Ecosystem Models (MEMs) are increasingly driven by Earth System Models (ESMs) to 27 
better understand marine ecosystem dynamics, and to analyse the effects of alternative 28 
management efforts for marine ecosystems under potential scenarios of climate change. 29 
However, policy and commercial activities typically occur on seasonal-to-decadal time scales, a 30 
time span widely used in the global climate modelling community but where the skill level 31 
assessments of MEMs are in their infancy. This is mostly due to technical hurdles that prevent 32 
the global MEM community from performing large ensemble simulations with which to undergo 33 
systematic skill assessments. Here, we developed a novel distributed execution framework 34 
constructed of low-tech and freely available technologies to enable the systematic execution and 35 
analysis of linked ESM / MEM prediction ensembles. We apply this framework on the seasonal-36 
to-decadal time scale, and assess how retrospective forecast uncertainty in an ensemble of 37 
initialised decadal ESM predictions affects a mechanistic and spatiotemporal explicit global 38 
trophodynamic MEM. Our results indicate that ESM internal variability has a relatively low 39 
impact on the MEM variability in comparison to the broad assumptions related to reconstructed 40 
fisheries. We also observe that the results are also sensitive to the ESM specificities. Our case 41 
study warrants further systematic explorations to disentangle the impacts of climate change, 42 
fisheries scenarios, MEM internal ecological hypotheses, and ESM variability. Most importantly, 43 
our case study demonstrates that a simple and free distributed execution framework has the 44 
potential to empower any modelling group with the fundamental capabilities to operationalize 45 
marine ecosystem modelling. 46 

Plain Language Summary 47 

Climate change and human activities like fishing are affecting the balance of marine ecosystems 48 
and the services they provide. To understand impacts better, scientists use computer models that 49 
consider climate, ocean conditions, and ocean life.  50 

To make robust decisions, decision makers need robust science delivered by robust models. This 51 
requires running many computer simulations, but the complexity of marine ecosystems models 52 
makes this difficult. Typically, only institutions with sufficient financial and technical means can 53 
overcome these difficulties, which leaves the majority of marine ecosystem modellers wanting. 54 

Here we introduce a possible solution to overcome the difficulties, using only simple and free 55 
technologies to facilitate the systematic execution of complex ecosystem models across networks 56 
of computers, to allow any modelling group to perform these exercises. 57 

We demonstrate our solution by running a global marine ecosystem model, EcoOcean, hundreds 58 
of times to see how it is affected by variability in ocean conditions. Using available laptops and 59 
desktops, we can now complete this task in 30 hours; where prior this modelling task would have 60 
taken weeks to complete. It is conceptually simple solutions such as these that may make the 61 
process of marine ecosystem modelling easier and more operational around the globe, thus 62 
opening the door for scientific management breakthroughs.  63 
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1 Introduction 64 

Climate change and anthropogenic activities such as fishing are having far-reaching 65 
consequences for the functioning and stability of marine food webs and the ecosystem services 66 
that humanity relies on (e.g, Halpern et al., 2019; Pörtner et al., 2014). To better understand such 67 
impacts and their consequences for ocean life and ecosystem services, the global ocean science 68 
community increasingly deploys modelling systems that incorporate climate, ocean circulation, 69 
biochemistry and marine life under multiple stressors (e.g., Stock et al., 2023). Marine 70 
Ecosystem Models (MEMs) forced with Earth System Models (ESMs) are such modelling 71 
systems, where ESMs represent the fundamental physical, chemical and biological processes 72 
governing the evolution of the Earth system and the interactions within its major components 73 
(i.e. atmosphere, ocean, cryosphere and land), while MEMs represent mechanistically the non-74 
linear dynamics between marine species and within marine food webs (Steenbeek et al., 2021; 75 
Tittensor et al., 2018).  76 

At present, the scientific agenda on future climate change largely focuses on the decadal to 77 
century time scales (Coll et al., 2020; Lotze et al., 2019; Pörtner et al., 2022). Although this long 78 
term time scale is valuable for strategic planning, the majority of immediate political and 79 
commercial decisions are made on shorter time scales, the seasonal-to-decadal scale (Figure 1; 80 
Meehl et al., 2009; Payne et al., 2022).  81 

 82 

Figure 1 - Schematic of model- and decision time horizons, from short term forecasts to medium 83 
term predictions to long term projections. Short term forecasts are entirely dependent on starting 84 
conditions (the “initial value” problem), where long term projections are mostly affected by 85 
external drivers (the “forced boundary conditions” problem). Medium term predictions are 86 
affected by both problems (Adapted from Meehl et al. 2009). 87 

At short time scales, from days up to a month, the predictive capacity of ocean and atmosphere 88 
models is firmly limited by the chaotic nature of the Earth system. Infinitesimal perturbations 89 
applied to a given set of initial conditions (the “initial value” problem, Collins, 2002; Meehl et 90 
al., 2009) lead to diverging trajectories in rather short temporal windows. On the other hand, at 91 
long time scales from decades to centuries, slow changes in  external radiative forcings such as 92 
solar irradiance, aerosols and greenhouse gases (Meehl et al., 2009, the “boundary conditions 93 
problem”, 2021) induce long-term trends that emerge over the chaotic variability. Since the 94 
pioneering studies of Smith et al. (2007), Keenlyside et al. (2008), and Pohlmann et al. (2009), 95 
the climate modelling community has been largely investing in improving the predictability on 96 
intermediate time scales, from months up to a decade, where climate models are both sensitive to 97 
initial value constraints and boundary conditions (Figure 1). This exercise has been underpinned 98 
by multi-model coordinated initiatives like the Decadal Climate Prediction Project (DCCP; Boer 99 
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et al., 2016) and has been recently replicated with more complex Earth System Models (e.g., 100 
Ilyina et al., 2021; Li et al., 2016; Sospedra-Alfonso et al., 2021) capable of simulating, among 101 
other things, atmospheric chemistry and ocean biogeochemistry. These predictions rely on the 102 
initialization of the models with conditions that describe the best knowledge of a given observed 103 
state, a process that allows leveraging the predictability that arises from slow-paced internal 104 
variability processes, and are additionally driven with the historical and projected evolution of 105 
the main radiative forcing factors (e.g. solar irradiance, volcanic aerosols, concentrations of 106 
greenhouse gases) to capture the externally forced variability. The performance of these ESM-107 
based predictions is evaluated by performing large sets of retrospective ensemble forecasts that 108 
are evaluated in terms of their ability to reproduce the observed variability. These predictions are 109 
typically initialised every year, and contain several ensemble members that are run forward for 110 
up to ten years (Figure 2; Boer et al., 2016).  111 

Figure 2 - Schematic of retrospective predictions to assess the impact of chaotic variability on 112 
the ability of ESMs to predict observations. The Y axis represents any dependant ESM variable 113 
included in retrospective predictions. 114 

A next logical step is to assess whether/how predictive capacity of key ecosystem drivers within 115 
ESMs can significantly enhance the predictive skill in ecological models – a core scientific 116 
objective of EU Horizon 2020 project TRIATLAS (Tropical and South Atlantic Climate-Based 117 
Marine Ecosystem Prediction for Sustainable Management). To date, impacts of uncertainty 118 
related to the internal variability of ESMs on decadal time scales has been investigated for a 119 
handful of ecological hypotheses with encouraging results. For example, Årthun et al. (2018), 120 
Thorson (2019) and Payne et al. (2022) demonstrated improved confidence in predicting habitat 121 
suitability and species distribution shifts related to changes in ocean temperatures. Park et al. 122 
(2019) demonstrated that inter-annual variations in fish catches can be anticipated from ESM-123 
based skilful predictions of phytoplankton and sea surface temperatures.  124 

However, to our best knowledge, a systematic quantification of how ESM variability on decadal 125 
scales could cascade through complete marine food webs, and an evaluation of whether this 126 
variability has the potential to significantly change MEMs trajectories with the aim to improve 127 
the predictability of a MEM, have not yet been performed. Such an exercise would require 128 
systematically executing a MEM for potentially hundreds of retrospective forecasts, and 129 
analysing large volumes of spatial-temporal model output. This would require computing power 130 
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far beyond a single workstation, and although the concept of using the combined power of a 131 
network of computers to solve demanding computational tasks dates at least back to the 1970’s 132 
(e.g., Farber, 1970; Jones & Schwans, 1979; Vouk, 2008), the MEM community is mostly 133 
unable to utilise distributed computing power due to compounding challenges. Inherent 134 
limitations related to their computational complexity and structure, with long run times to 135 
represent non-linear processes at different temporal and spatial scales that cascade through food 136 
webs make MEMs incompatible with common high-performance computing technologies and 137 
computing scientific software execution infrastructures (Steenbeek et al., 2021). Scientific 138 
workflow management systems (Curcin et al., 2010; Wang et al., 2008), code execution 139 
frameworks (e.g., Ludescher et al., 2013), and commercial cloud computing solutions tend to 140 
require that hosted applications execute cleanly, safely, orderly and optimised by abiding to strict 141 
guidelines regarding programming languages and code architecture, execution efficiency, 142 
resource use, and scalability (e.g., Rimal et al., 2011). As MEMs are mostly developed on 143 
limited academic budgets with little involvement of IT staff, re-coding a MEM to match such 144 
requirements is too costly and perhaps even undesirable in order not to get locked into 145 
proprietary technological execution frameworks (Steenbeek et al., 2021). On the other hand, 146 
distributed computing via networked computers, virtual machines and virtualization technologies 147 
such as Kubernetes (Jeffery et al., 2021) and workload managers such as SLURM (Yoo et al., 148 
2003) could certainly carry the systematic execution of ESM/MEM complexes in their original 149 
form, but require dedicated funding and technical support to operate and maintain. Whereas a 150 
few fortunate modellers may have access to institutional distributed computing environments and 151 
the dedicated staff to assist in the operation, the majority of the MEM community is left without 152 
practical solutions to systematically and comprehensively assess their models (Steenbeek et al., 153 
2021). 154 

The global MEM community needs a simple, generic and open-access framework that uses low-155 
tech and free software to support the systematic mass-execution and mass-analysis of data- and 156 
computationally demanding scientific tools. Such a framework must allow the execution of 157 
software written in any language, as MEMs have been implemented in a broad range of 158 
platforms such as .NET, C, Fortran, Matlab, Python and R (e.g., Audzijonyte et al., 2019; Pal et 159 
al., 2020; Steenbeek et al., 2016). Such a framework must also support ecosystem modellers in 160 
deploying their workflows and toolkits in their original form. Ecosystem modelling is a complex 161 
field that combines understanding of marine biology and ecology, biochemistry, hydrology, 162 
fisheries dynamics and socio-economics, and that relies on the operation of a wide range of 163 
complex software tools to process, generate and analyse data. Thus, rather than requiring that 164 
analytical processes are translated into a common annotation, a scientific framework must 165 
acknowledge this diversity in software tools and support the execution of scientific workflows as 166 
they are. And last, to facilitate ease of use, the framework must seamlessly scale up desktop 167 
workflows across available hardware.  168 

With these constraints met, such a framework would form the scaffolding for executing 169 
computationally demanding applications such as MEM validation, calibration and uncertainty 170 
assessments (Figure 3). 171 
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 172 

Figure 3 - A schematic overview of the workflow needed to systematically assess MEMs, here 173 
used to perform a hypothetical limited uncertainty assessment. The left panel shows this exercise 174 
deployed on a single desktop computer; the right panel shows this same exercise, transparently 175 
dispatched across any available hardware. 176 

Here we present a prototype MEM run framework that we constructed to facilitate the systematic 177 
execution of marine ecosystem models. We apply this prototype framework to systematically run 178 
the seasonal-to-decadal retrospective predictions obtained from two different ESMs, EC-Earth3-179 
CC and NorCPM1, through the mechistic, spatiotemporal explicit trophodynamic MEM 180 
EcoOcean. Through this, we demonstrate the feasibility of the approach as an important step 181 
toward making Marine Ecosystem Modelling operational. 182 

2 Materials and Methods 183 

Here we describe the main design considerations in developing the framework, and we present a 184 
case study to demonstrate that the framework can be used to systematically mass-execute MEMs. 185 
We then perform an indicative analysis to quantify whether ESM uncertainty has the potential to 186 
significantly affect the output of a complex and mechanistic global MEM, examining relevant 187 
functional groups within the food web in selected subregions of the global ocean. We outline the 188 
ESMs, the MEM and the runtime environment that we used, the application of the framework to 189 
perform the simulations, and a cursory analysis of modelling results.  190 

2.1 Framework 191 

The aim of the prototype MEM multi-run framework is to demonstrate that computationally 192 
heavy mechanistic and spatiotemporal MEMs can be systematically executed and analysed. 193 
Following the recommendations of Steenbeek et al. (2021), one should be able to operate the 194 
framework with minimal reliance on technical expertise, funding and specialised hardware to 195 
facilitate global uptake. Thus, instead of adopting an existing workflow management system, we 196 
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opted to develop a framework from the ground-up to solely focus on the needed functionality 197 
without any additional complexity or restrictions related to funding and intellectual property. 198 

The conceptual structure of the prototype MEM multi-run framework, henceforth referred to as 199 
“the framework”, is outlined in Figure 4.  200 

 201 

Figure 4 - The conceptual structure of the MEM multi-run framework. Set up as a server-client 202 
structure, the framework (2) dispatches the jobs that are defined within a scientific workload 203 
across available hardware (1). The framework loosely interacts with scientific software to 204 
execute the tasks within a job (3) and relies on available shared storage solutions (4) to distribute 205 
input data to clients, and collate resulting output on the server. The ‘eye’ icon reflects the loose 206 
interactions where the framework checks upon the state of external software and data without 207 
any form of technical integration and dependency. When a workload has been processed, 208 
scientific software is notified, which can dispatch a new scientific workload if desired.  209 

Four independent and loosely connected layers (hardware, framework, application and shared 210 
storage) interplay as follows: 211 

1. Hardware: The hardware layer can consist of any computing hardware able to run a particular 212 
MEM. 213 

2. Framework: The framework layer handles the execution of scientific work across a 214 
computing network, and consists of the following components: 215 

● A workload, which is a text file that describes the scientific work that the framework needs 216 
to execute. A workload consists of a number of independent computational experiments 217 
(Jobs), each in turn consisting of one or more executions of specific modelling scripts 218 
(Tasks). The workload also states which wrap-up job should be executed if the workload 219 
execution succeeds or fails. The wrap-up jobs provide the scientific application to decide 220 
on next execution steps such as dispatching a new workload. For a conceptual example of 221 
what a workload could look like, refer to Supplementary Material text S1, inset 1. 222 
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● A server, which is a small piece of software that maintains an active connection to available 223 
clients, with whom it can exchange information. Jobs in a workload are dispatched to 224 
clients; 225 

● One or more clients, where the jobs are executed. Clients maintain an active connection to 226 
the central server and exchange information with it. 227 

● Clients and the server can exchange information through a range of communication 228 
protocols built into the framework, each catering to different usage scenarios but that may 229 
require varying levels of IT expertise to deploy. 230 

● A server-side work dispatcher handles and monitors workload execution: the dispatcher 231 
sends Jobs to clients, tracks their execution based on feedback from the clients, keeps track 232 
of the overall status of the workload execution, and upon completion, orders the server-233 
side execution of the wrap-up job. 234 

● A client-side job and task runner handles the sequential execution of the tasks within a job. 235 
Task execution involves starting scientific software, monitoring its progress, and waiting 236 
for its termination (or actively terminating it if scientific software has become 237 
unresponsive). Job and task execution status updates are sent back to the server. Security 238 
measures are in place to ensure that the framework only operates on pre-authorized folders 239 
and executables.  240 

3. Application: The application layer consists of the scientific software that has been made 241 
available to the framework. Any software can be included as long as it can be parameterized and 242 
executed via a command line. 243 

4. Shared storage: The shared storage layer makes sure that server-side input data is made 244 
available to client processes, and that scientific output generated at the client side is collated on 245 
the server. The prototype framework does not contain facilities to synchronise data, as there are 246 
plenty of viable solutions in the form of shared (network) storage, cloud storage providers, and 247 
file-sharing services.  248 

Specific considerations 249 

For ease of deployment and to demonstrate versatility, the prototype framework and any 250 
scientific application deployed across it are kept fully independent. Server-side scientific 251 
applications place workload text files in a predestined location for the work dispatcher to find. At 252 
workload execution completion, server-side wrap-up jobs can be used to activate the scientific 253 
applications once again to analyse execution results, and to dispatch a follow-up workload if 254 
desired. 255 

Running jobs and tasks: The framework was made to launch two types of scientific 256 
applications.  257 

The first category comprises the execution of stand-alone executables whose runtime behaviour 258 
can be controlled through the command line and that may execute a programmed script. The 259 
framework launches the executable and monitors its progress while capturing standard output 260 
and error information (Ritchie, 1984) to aid troubleshooting, and process exit codes (Maleki, 261 
2022) to know whether a task succeeded or failed. If a stand-alone executable becomes 262 
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unresponsive it can be terminated after a specified time-out. When the stand-alone executable 263 
terminates, exit codes with a value of zero indicate that the execution succeeded. 264 

The second category includes internal executions - code that resides within the execution client - 265 
via a software engineering mechanism known as “runtime reflection” (Redondo et al., 2008; 266 
Schmidt et al., 2000, p. 134). Instead of indicating a physical separate executable, a task alias 267 
refers to the name of a specifically formed and recognizable piece of code that resides in the 268 
client code base and that implements a task. This code is dynamically looked up, executed and 269 
monitored for completion while standard output and error information (Ritchie, 1984) and the 270 
exit code are collected by the framework. In-client code is intended to facilitate running the 271 
framework on environments where clients cannot launch separate executables such as HPC 272 
clusters. 273 

Information exchange: Because the framework can be deployed over operating systems (OS-274 
es) that may be configured differently, scientific software deployed over the framework should  275 
use consistent natural language specific formatting of numbers, date- and time fields, and OS 276 
specifics such as text file line endings, etc.  277 

Extensibility: In the particular case study outlined here, we implemented the framework in 278 
Microsoft Visual Basic.NET, compiled to .NET Standard 6.0 which produces executables that 279 
can be installed and natively executed on Windows and Linux OS-es. In order to customise the 280 
framework to future needs and to change and improve its functioning, the framework source 281 
code is organised as an open-source API that is open to modifications and extensions. 282 

Installation and deployment: In order to use the framework, operators will need to prepare 283 
target computers with the framework software, cloud storage provider software, and the 284 
programs needed for the execution of a scientific workload. This is an unavoidable and possibly 285 
challenging task, but for use cases such as we present here where we interconnect regular 286 
desktop computers via cloud storage providers, this task should not be any more challenging than 287 
configuring a desktop computer for regular use.  288 

For additional framework design considerations refer to Supplementary Material text S1.  289 

2.2 Earth System Models 290 

For this case study, two contrasting ESMs participating in TRIATLAS, EC-Earth3-CC and 291 
NorCPM, delivered estimates in photoplankton biomasses and sea water temperatures for the 292 
years 1950-2015. ESM variable names and units were standardized to the Climate Model 293 
Operator Rewriter (CMOR) standard 3.3 (Nadeau et al., 2018). Both models delivered a single 294 
continuous simulation reconstructing the evolution of the global biophysical system, and an 295 
ensemble of yearly starting retrospective predictions characterized by three arbitrarily selected 296 
members of their full ensemble. We used three members as a good trade-off to reasonably 297 
sample the ESM forecast uncertainty, while limiting the computational burden for the MEM 298 
simulations. Here we provide a brief technical summary of the two contrasting ESMs and their 299 
contribution to the case study. Considering two ESM models with different physical and 300 
biogeochemical ocean components, and for which the decadal predictions are also initialized in a 301 
different manner,  offered the ability to explore the sensitivity of the MEM predictions to the 302 
uncertainties in the state variables used as boundary conditions.  303 

EC-Earth3-CC (Döscher et al., 2022) is the ESM version of the global climate model EC-Earth 304 
that includes a description of the carbon cycle at its standard resolution. Its atmospheric 305 
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component is the Integrated Forecast System (IFS) from the European Centre for Medium-Range 306 
Weather Forecasts (ECMWF) and uses a T255 horizontal resolution and 91 vertical levels. The 307 
ocean component is NEMO3.6 (Madec & the NEMO team, 2023), which includes the sea ice 308 
model LIM3 (Rousset et al., 2015) and the ocean biogeochemistry model PISCES (Aumont et 309 
al., 2015) integrated in the code. NEMO3.6 is run with an ORCA1 horizontal grid (i.e nominal 310 
one-degree horizontal resolution) and 75 vertical levels. Dynamical vegetation, land use, and 311 
terrestrial biogeochemistry are provided by LPJ-GUESS (B. Smith et al., 2014). The library 312 
OASIS3-MCT (A. Craig et al., 2017) is used for the coupling of most of the model's 313 
components. More detailed information on EC-Earth3-CC and its different components can be 314 
found in Döscher et al. (2022). 315 

The predictions from EC-Earth3-CC were performed following the experimental protocol for the 316 
Decadal Climate Prediction Project (DCPP) experiments DCPP-A (Boer et al., 2016), with start 317 
dates for every 1st of November in the period 1980 to 2019. Start dates prior to 1980 were not 318 
included as the quality of the atmospheric/oceanic reanalysis used to initialise the ESM model 319 
cannot be properly validated for the pre-satellite era (i.e., before 1980) due to the lack of 320 
widespread biogeochemical observations. A total of 15 members were produced for each start 321 
date, with a forecast length of 7 years, instead of 10, to save computational resources.  322 

The initialization protocol is a precursor of the methodology applied for the climate predictions 323 
of Bilbao et al. (2021). The ocean physical and biogeochemical conditions come from a 324 
reconstruction performed with the ocean component of EC-Earth3-CC (hereafter referred to as 325 
RECON) forced at the surface using an atmospheric reanalysis. In this reconstruction, 326 
observations for temperature and salinity are assimilated at the surface by adding fluxes for heat 327 
and freshwater to the energy and salinity conservation equations. At the same time, the interior 328 
of the ocean is also nudged towards a reference re-analysis product for both temperature and 329 
salinity. It is important to notice that no observations of ocean biogeochemistry or sea-ice are 330 
assimilated such that these fields are left free to evolve in response to ocean physics. More 331 
details about the EC-Earth3-CC initialization procedure as well as about the reference 332 
observation products used can be found in Supplementary Material text S2. 333 

For this application, EC-Earth3-CC delivered monthly vertically integrated large and small 334 
phytoplankton carbon concentrations (lphyc and sphyc), and mean potential sea water 335 
temperatures (thetao) for the top 150m, the entire water column, and the bottom.  These variables 336 
were delivered for a 1980-2015 continuous historical run (RECON) and for an ensemble of three 337 
7-year retrospective predictions (i.e. r6i1p1f1, r7i1p1f1 and r8i1p1f1 DCPP-A members) with 338 
yearly start dates for the whole period 1980-2013. 339 

NorCMP1, short for the Norwegian Climate Prediction Model version 1 (Bethke et al., 2021), is 340 
based on the Norwegian Earth System Model version 1 (NorESM1; Bentsen et al., 2013; Iversen 341 
et al., 2013) which is in turn based on the Community Climate System Model version 4 (CCSN4; 342 
Gent et al., 2010; Vertenstein et al., 2010) after important modifications. Its ocean component 343 
uses a standard horizontal grid (gx1v6) with 53 layers in an isopycnic vertical coordinate, which 344 
includes prognostic biogeochemical cycling in the form of the HAMburg Ocean Carbon Cycle 345 
(HAMOCC; Maier-Reimer, 1993; Maier-Reimer et al., 2005) adapted to this isopycnic ocean 346 
model framework (Tjiputra et al., 2010). The atmospheric component consists of the Oslo 347 
version of the Community Atmosphere Model (CAM4-OSLO; Kirkevåg et al., 2013), that has 348 
specialised chemistry-aerosol-cloud-radiation interaction schemes, with a two degree horizontal 349 
resolution and 26 levels in the vertical with a hybrid sigma-pressure coordinate. The land (same 350 
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grid as the atmospheric component) and the sea ice (same grid as the ocean component) 351 
components are basically the same as in CCSM4, except for a scheme for dust deposition on 352 
snow/sea ice. The overarching execution control of the coupled system and the exchange of 353 
information between model components is handled by the CCSM4 coupler CPL7 (A. P. Craig et 354 
al., 2012). Detailed descriptions of the NorESM components and its biogeochemical ocean 355 
module can be found in Bentsen et al. (2013) and Tjiputra et al. (2010), respectively.      356 

NorCPM1’s DCPP-A simulations have start dates for every 15th of October in the period 1960 357 
to 2018. A total of 10 members were produced for each start date, with a forecast length of 10 358 
years (Bethke et al., 2021). Each member of these hindcast experiments (“hindcast-i2”) are 359 
initialised by the 15 October states of the first 10 members of a data assimilation (DA) 360 
simulation (“assim-i2”), which uses oceanic observations to update ocean and sea ice 361 
components. This DA simulation uses a 1950-2010 SST reference climatology for computing 362 
anomalies, replacing the climatology of the observations by the model climatology calculated 363 
from the NorCPM1’s 30-member no-assimilation historical experiment, and additionally updates 364 
the sea ice state via strongly coupled DA of the observations (Bethke et al., 2021). The DA 365 
scheme updates all ocean physical state variables but not the biogeochemical state variables. 366 
However, Fransner et al. (2020) showed that the initialization has no important effect on the 367 
predictability of ocean biogeochemistry beyond lead year 1, but also showed that assimilating 368 
SST can potentially constrain the near-surface primary production and hence the biogeochemical 369 
variability. 370 

For this application, NorCPM1 delivered monthly mean integrated phytoplankton carbon (phyc), 371 
and mean potential sea water temperatures (thetao) for the top 150m, the entire water column, 372 
and the bottom.  These variables were delivered for a 1980-2015 continuous historical run 373 
(HIST) and for an ensemble of  three10-year retrospective predictions initialized every year in 374 
1980-2008, which corresponds to members r1i2p1f1, r5i2p1f1 and r10i2p1f1 of the DCPP-A 375 
ensemble. 376 

2.3 Marine Ecosystem Model 377 

The MEM deployed in this case study is EcoOcean, a mechanistic, spatiotemporal ecosystem 378 
modelling complex of the global ocean that includes food-web dynamics from primary producers 379 
to top predators under influence of anthropogenic activities and climate change. EcoOcean has at 380 
its core the Ecopath with Ecosim (EwE) modelling approach (Christensen & Walters, 2004), 381 
where the spatial-temporal module Ecospace has been heavily modified to represent spatial 382 
heterogenity in fishing and the behaviour, growth and movement of functional groups across the 383 
worlds’ oceans (Christensen et al., 2015; Coll et al., 2020). 384 

EcoOcean was parameterized and calibrated as described in Coll et al. (2020), as used for the 385 
Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) simulation round 2b to explore 386 
how projected climate change might affect future (2016-2100) ocean ecosystems (Tittensor et al., 387 
2021). The EcoOcean MEM operates on a spatial grid of one decimal degree at monthly time 388 
steps with a food web that consists of 52 interconnected functional groups. Functional groups are 389 
represented spatially accounting for approximately 3400 species that underpin the functional 390 
groups. Functional groups disperse, gravitating towards cells with more suitable feeding 391 
conditions and lower risks of depredation, where feeding suitability is determined by the 392 
Ecospace habitat foraging capacity model (Christensen et al., 2014) modified by cell-specific 393 
responses, temperature-adjusted metabolic rates, and species’ native ranges to constrain the 394 
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initial distribution of functional groups to observed occurrences (Coll et al., 2020). Fishing is 395 
driven by historical effort (1950-2015) for 14 fleets (Rousseau et al., 2019). Historical fishing 396 
effort is introduced as a total per each of the 66 Large Marine Ecosystems, within each fishing 397 
effort is distributed via a simple gravity model that considers the distributions and market value 398 
of targeted functional groups versus the cost of fishing in any given location that is not closed to 399 
fishing (Christensen et al., 2015). 400 

Relevant to this case study is how EcoOcean utilises the Earth System model output to drive its 401 
global ecosystem dynamics. EcoOcean contains three functional groups of phytoplankton: large, 402 
small and diazotrophs, that alongside benthic producers and bacteria act as the nutritional 403 
foundation for the food web. When connected to global Earth System Models, EcoOcean 404 
typically overwrites its spatially distributed phytoplankton biomasses with ESM-delivered 405 
phytoplankton biomass for matching timesteps (Coll et al., 2020; Steenbeek et al., 2013; 406 
Tittensor et al., 2018), scaled to 1950 biomass estimates EcoOcean was calibrated to. 407 
Furthermore, EcoOcean v2 (Coll et al., 2020) linked sea surface temperature to affect functional 408 
group productivity and distributions via the built-in habitat foraging capacity model (Christensen 409 
et al., 2014). For this case study, functional group responsiveness to climate was extended by 410 
associating pelagic, benthopelagic and demersal functional groups with mean temperatures for 411 
the top 150m, entire water column and bottom, respectively. This refinement was made to 412 
capture temperature fluctuations at depth as delivered by the ESM retrospective predictions. 413 

2.4 Runtime environment 414 

The framework was deployed across a network of computers with varying specifications as 415 
shown in Table 1. All computers hosted 64-bit Operating Systems and were powerful enough to 416 
execute EcoOcean. Machines were located in two physical locations, interlinked via a Dropbox 417 
(www.dropbox.com) professional plan with 2TB of storage space for mass data transfer, and a 418 
free Sync (www.sync.com) account for framework communication. For every 4 threads or fewer, 419 
a separate framework client was created, which meant that the runtime environment was able to 420 
simultaneously perform 24 executions of EcoOcean (Table 1, Nº clients). 421 

Table 1 - the computers used to perform the case study, with key characteristics 422 

Computer Year OS Processors Nº threads Nº clients 

Desktop 2013 Win 7 2 x i5 quad-core 8 2 

Laptop 2015 Win 10 1 x i7 quad-core 4 1 

Laptop 2018 Ubuntu 2 x i7 quad-core 8 2 

Desktop 2020 Win 10 2 x i7 quad-core 8 2 

Tower 2022 Win 10 20 x i7 quad-core 48 12 

Laptop 2023 Win 11 14 x i7 quad-core 20 5 

Total         24 

2.5 Application 423 

The EcoOcean executions were encapsulated in a custom developed command-line utility, 424 
henceforth referred to as the “EcoOcean wrapper”, that configured the EcoOcean model for 425 
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executing a specific simulation, executed the simulation, intercepted and condensed EcoOcean 426 
maps over time into time series, and saved these time series into one ZIP file per run. By 427 
specifying a ZIP output file name adhering to a simple and strict naming protocol, the command 428 
line utility understood exactly how to configure and run EcoOcean, how to name the output ZIP 429 
file, and how to finally place these output ZIP files directly into a Dropbox folder dedicated to 430 
multi-run framework server-side data collation. 431 

All EcoOcean simulations started in the year 1950 after a ten-year spin-up (or burn-in) period, 432 
and were executed through 2015. EcoOcean output was collated for the period 1980-2015. For 433 
both ESMs, EcoOcean was executed with and without fishing following Coll et al. (2020). ESM 434 
data were delivered to EcoOcean in the form of monthly varying maps. The maps representing 435 
mean temperatures for the top 150m, water column and bottom were fed into the EcoOcean 436 
habitat foraging capacity model (Christensen et al., 2014), and the maps for large and small 437 
phytoplankton were used to force the magnitudes and distributions of the corresponding 438 
phytoplankton groups within EcoOcean (Coll et al., 2020). 439 

For the two ESMs and the two fishing scenarios, EcoOcean was driven by ESM historical data to 440 
gather simulation baseline output. Then, for the two ESMs, two fishing scenarios and every 441 
retrospective prediction start year for the three members, EcoOcean was executed with historical 442 
data up to the start year of a retrospective prediction, after which EcoOcean was executed until 443 
the end of the retrospective predictions while being driven by the ESM data for that retrospective 444 
prediction. For the retrospectice prediction experiments, output was only collected for the period 445 
covered by the 7- (EC-Earth3-CC) or 10 (NorCPM1) year retrospective predictions. 446 

As EC-Earth3-CC data started at 1980, historical data for the year 1980 were repeated during the 447 
EcoOcean spin-up period and for the period from 1950 through 1980. NorCPM1 did not 448 
distinguish explicitly between small and large phytoplankton; therefore, the total phytoplankton 449 
biomass data was used to proportionally drive large and small phytoplankton dynamics in 450 
EcoOcean. 451 

2.6 Analysis 452 

EcoOcean produced global 1 degree gridded maps of biomass and catch (where applicable) by 453 
functional group at monthly time steps, which can produce a file volume upward of 50GB per 454 
simulation. To save storage space while retaining important signals, we condensed EcoOcean 455 
output into time series for the hydrological basins of the world (Figure 5; FAO, 2020) and the 456 
major fishing areas for statistical purposes (Figure 6; FAO, 2015) as defined by the Food and 457 
Agricultural Organization (FAO). Each time series described the mean biomass and catch, per 458 
functional group and per region, weighted by cell area. The use of regional time series was 459 
decided on as an effort to capture regional variability in ecosystem dynamics for MEM run 460 
comparison whilst significantly reducing the volume of model output transferred and analysed. 461 
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2 North Atlantic 

3 Central Atlantic, 
Mediterranean and the 
Black Sea 

4 South Atlantic 

Figure 5 - The eleven ocean sub-basins as defined by FAO, used in the 384 MEM simulations to 462 
summarise trends in functional group catches and biomasses. In this manuscript, only areas 2, 3 463 
and 4 (north-, central- and south Atlantic) are presented. 464 

  

 

21 NW Atlantic 

27 NE Atlantic 

31 CW Atlantic 

34 CE Atlantic 

41 SW Atlantic  

47 SE Atlantic  

 
 

Figure 6 - The fishing areas for statistical purposes as defined by FAO, used in the 384 MEM 465 
simulations to summarise trends in functional group catches and biomasses. In this manuscript, 466 
only areas 21 and 27 (northwest- and northeast-), 31 and 34 (centralwest- and centraleast-) and 467 
41 and 47 (southwest- and southeast Atlantic) are presented. 468 

Although EcoOcean produced global results for 51 functional groups, this prototype case study 469 
focused on trends in biomass for only 6 functional groups: small, medium and large pelagic fish, 470 
and small, medium and large demersal fish. The choice of small, medium and large fish would 471 
allow for detecting direct changes induced by phytoplankton variability (small fish) and trophic 472 
cascades (medium and large fish). Different vertical positioning of selected functional groups 473 
could reveal relevant effects at depth. All comparisons were made for fished and non-fished 474 
MEM executions.  475 
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Results were analysed for three FAO sub basins: the north, central and south Atlantic, in line 476 
with the aims of EU Horizon 2020 project TRIATLAS (Figure 5). 477 

2.7 Statistical measures 478 

We explored the utility of a number of simple statistical measures to quantify how ESM 479 
uncertainty affects the output of EcoOcean when compared to output generated via the ESM 480 
baseline runs. In the formulae below, n = number of observations 𝑦 ;  𝑦  = observations 481 
(EcoOcean output driven by the ESM baselines);  𝑦  = estimations (EcoOcean output-driven by 482 
ESM retrospective predictions). 483 

All statistical measures were calculated for three pelagic and three demersal fish functional 484 
groups, for both ESMs, for the three TRIATLAS regions (North, Central and South Atlantic), 485 
under fished and non-fished scenarios.  486 

1. Root Mean Squared Error or RMSE (equation 1) measures the average magnitude (t/km2) of 487 
the differences between predicted values and observed values. A lower RMSE indicates better 488 
predictive performance. It penalises larger errors more heavily than smaller errors due to the 489 
squaring of the errors. RMSE is sensitive to outliers since it squares the errors. RMSE is 490 
therefore a useful metric to quantify for which ecosystem components, and in which regions, 491 
ESM uncertainty mostly affects the marine ecosystem. Such outliers could indicate direct 492 
sensitivities to small perturbations, or could indicate ecosystem cascades. 493 

𝑅𝑀𝑆𝐸  
1
𝑛

𝑦 𝑦  Eq. 1

2. Mean Absolute Error or MAE (equation 2) measures the average magnitude (t/km2) of the 494 
absolute differences between predicted values and observed values. Like RMSE, a lower MAE 495 
indicates better predictive performance. MAE treats all errors equally and is not as sensitive to 496 
outliers as RMSE. MAE is a useful metric to quantify where ESM uncertainty has less impact on 497 
MEM predictions. 498 

𝑀𝐴𝐸
1
𝑛

|𝑦 𝑦 | Eq. 2

3. Symmetric Mean Absolute Percentage Error or SMAPE (equation 3) measures the 499 
percentage difference between predicted values and observed values, averaged across all 500 
observations. It is symmetric because it considers both overestimations and underestimations 501 
equally. SMAPE is easy to interpret in percentage terms and is suitable when dealing with data 502 
with varying scales. Because SMAPE ignores scale and direction, it is a useful metric to directly 503 
compare the relative error, directly or indirectly caused by ESM uncertainty, between functional 504 
group predictions for the historical runs and for the runs executed with ESM uncertainty for all 505 
regions.  506 
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𝑆𝑀𝐴𝑃𝐸
1
𝑛

|𝑦 𝑦 |
|𝑦 | |𝑦 |

100 Eq. 3

4. Pearson's Correlation Coefficient (equation 4) measures the linear relationship between 507 
predicted values and observed values. It ranges from -1 to 1, where 1 indicates a perfect positive 508 
linear correlation, -1 indicates a perfect negative linear correlation, and 0 indicates no linear 509 
correlation. A higher absolute value of the correlation coefficient suggests a stronger linear 510 
relationship between predictions and observations. Additionally, the Pearson coefficient can 511 
reveal hidden correlations for data that are not normally distributed. This coefficient is thus 512 
useful in correlating the linearity between historically- and uncertainty-driven MEM simulations, 513 
indicating where significant deviations may require further study. 514 

𝑟
∑ 𝑦 𝑦 𝑦 𝑦

∑ 𝑦 𝑦 ∑ 𝑦 𝑦
 Eq. 4

5. Directional Symmetry or DS (equation 5) measures the percentage of occurrences where the 515 
sign, positive or negative, of an observed and a predicted time series is the same. This coefficient 516 
is useful to correlate the direction of change between historically- and uncertainty-driven MEM 517 
simulations. 518 

𝐷𝑆 𝑦, 𝑦
100

𝑛 1
𝑑 ,  

𝑑
1,  𝑖𝑓 𝑦 𝑦 𝑦 𝑦 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Eq. 5

4 Results 519 

4.1 Framework performance 520 

The prediction experiments resulted in a workload of 384 jobs, each job containing only one 521 
task: the invocation of the EcoOcean wrapper command-line utility. The driver data delivered by 522 
both ESMs comprised approximately 1 million time-tagged maps at a volume just over 415 GB. 523 
EcoOcean produced an estimated volume of 5 TB in output maps that were condensed into time 524 
series CSV files by the EcoOcean execution wrapper on the framework clients. The EcoOcean 525 
wrapper then compressed the time series CSV files and placed them in the Dropbox output folder 526 
for automatic transport to the framework server computer. By using time series, the framework 527 
produced a more manageable output volume of 50 GB, which was compressed to 3GB for file 528 
transfer to the server for analysis. The full set of EcoOcean simulations required approximately 529 
2600 hours of CPU time, but via the framework used here - with a total of 164 computational 530 
cores (Table 1) - the complete set of simulations was performed in just under 30 hours.  531 

The stability of the framework was assessed by randomly stopping and starting, and randomly 532 
adding and removing, computational clients during extensive test runs. The framework recovered 533 
from the resulting communication failures within a few minutes, rescheduling interrupted model 534 
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executions or dispatching work to newly available clients. The use of cloud storage providers for 535 
main communication transport was slow but quite reliable. On a few rare occasions, the cloud 536 
storage providers stopped synchronising information entirely, which is an acknowledged remote 537 
possibility for both Dropbox (Dropbox.com, 2023) and Sync (Sync.com, 2023). In such cases, 538 
the affected client computers were no longer able to participate in a particular simulation run 539 
until their local cloud daemons were manually restarted. In one particular simulation test run, the 540 
framework server daemon stopped synchronising, which effectively terminated the entire 541 
experiment since the framework does not (yet) feature server redundancy. 542 

The 384 ecosystem model executions functioned as expected, without errors in accessing and 543 
integrating ESM data into the running model, executing the model, extracting and collating 544 
output, and placing the output in the desired, pre-configured output locations. 545 

4.2 Simulations 546 

The simulations provided four sets of output - for the two different ESMs under fished and non-547 
fished oceans, each featuring time series trends for the 11 ocean sub-basins and 19 ocean 548 
statistical areas for fisheries purposes, for 52 functional groups. Figure 7 shows what these data 549 
look like when plotted. 550 

 551 

Figure 7 - An example of EcoOcean estimates for medium pelagic fish in the central Atlantic 552 
and Mediterranean, when the MEM is driven by output from EC-Earth3-CC under historical 553 
fishing pressure. The black line represents the EcoOcean output when driven by the continuous 554 
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ESM baseline, and the three coloured lines represent EcoOcean estimates when deviating away 555 
from the baseline for 7-year retrospective predictions. Ecosystem output is plotted relative to the 556 
annual average 1980 value. 557 

Overall, results show that across the food web and the observed regions, the EcoOcean biomass 558 
trajectories displayed varying degrees of responsiveness to ESM uncertainty, depending on 559 
position of the selected functional group in the EcoOcean food web, the presence of fishing, the 560 
region analysed, and choice of earth system model linked to EcoOcean. For instance, Figure 8 561 
and Figure 9 show EcoOcean estimates when driven by EC-Earth3-CC and NorCPM1 562 
respectively, for the same functional group, large pelagic fish, which encompasses dolphinfish, 563 
sailfish, tuna, mackerel, marlin, swordfish and others. From these plots, a few things become 564 
clear.  565 

● The impact of retrospective predictions for EC-Earth3-CC (Figure 8) tends to deviate from 566 
the observationally-constrained reference, while the impact of retrospective predictions for 567 
NorCPM1 (Figure 9) centres around the baseline r1i1p1f1 simulation. 568 

● Fishing severely impacts large pelagic fish, regardless of ESM selected.  569 

● Although the overarching trends are similar between the two ESMs, fishing has a much 570 
stronger relative impact on large pelagic fish in the Central Atlantic when EcoOcean is 571 
driven with EC-Earth3-CC output than with NorCPM1. 572 

● NorCPM1 appears to introduce higher seasonal variability than EC-Earth3-CC, but this is 573 
probably an artifact of driving both small and large phytoplankton with the same single 574 
NorCPM1 phytoplankton estimates. Having both large and small phytoplankton follow 575 
exactly the same trend is expected to exaggerate the impact of phytoplankton fluctuations 576 
onto the EcoOcean food web, which in the case of EC-Earth does not happen as large and 577 
small plankton compete for the same nutrients. 578 
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579 
Figure 8 - Average EcoOcean biomass trends for large pelagic fish in three selected Atlantic 580 
FAO sub-ocean regions, for the years 1980-2015, when the MEM is driven by EC-Earth-CC 581 
historical data r1i1p1f1 (black line, one continuous EcoOcean run) and realisations r6i1p1f1, 582 
r7i1p1f1, and r8i1p1f1 (coloured lines). The left column shows EcoOcean biomass trends 583 
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without fishing, the right column includes historical fishing. All plots scale relative to their 1980 584 
annual mean to standardise axes and to highlight the relative trends. 585 

 586 

Figure 9 - Average EcoOcean biomass trends for large pelagic fish in three selected Atlantic 587 
FAO sub-ocean regions, for the years 1980-2015, when the MEM is driven by NorCPM1 588 
historical data (black line, one continuous EcoOcean run) and realisations r1i2p1f1, r5i2p1f1, 589 
and r10i2p1f1 (coloured lines). The left column shows EcoOcean biomass trends without fishing, 590 
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the right column includes historical fishing. All plots scale relative to their 1980 annual mean, 591 
with standardised scales to highlight the relative trends. 592 

The statistical measures (Table 2 and Table 3) captured these differences, comparing the last five 593 
years of the baseline simulation (“observations”) against the mean model output for the 594 
retrospective predictions (“predictions”):  595 

● For both Pelagic and Demersal components, the Root Mean Square Error (RMSE) and 596 
Mean Absolute Error (MAE) were lower for EC-Earth3-CC than NorCPM1, indicating that 597 
in absolute terms, EcoOcean output was less affected by internal sensitivity of EC-Earth3-598 
CC than NorCPM1; 599 

● On the other hand, the Symmetric Mean Absolute Percentage Error (SMAPE) was 600 
generally lower for NorCPM1 than for the simulations driven by EC-Earth-CC, indicating 601 
that the trends produced by EcoOcean were less sensitive to internal uncertainty in the 602 
scenarios driven by NorCPM1 than EC-Earth3-CC; 603 

● The Pearson’s Correlation Coefficient was higher under fishing scenarios, regardless of 604 
ESM used. This indicates that fishing has a much stronger impact on EcoOcean output than 605 
ESM internal variability; 606 

● Last, Directional Symmetry was higher for NorCPM1 than for EC-Earth3-CC, indicating 607 
that observations and predictions were generally more directionally aligned for NorCPM1 608 
than EC-Earth3-CC. 609 

Please note that RMSE and MAE measure absolute errores while SMAPE measures relative errors, 610 
which is reflected in Tables 1 and 2 in the range differences in all the categories. 611 

Efforts to relate changes in ESM drivers to the various MEM outputs did not yield any useful 612 
signals, and will require a systematic attribution investigation.  613 
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Table 2 - Statistical measures to capture pelagic fish temporal biomass dynamics for 2010-2015. 614 

615 
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Table 3 - Statistical measures to capture demersal fish temporal biomass dynamics for 2010-616 
2015 617 

 618 

A side-by-side comparison of ecosystem trends for regions at different scale shows how different 619 
aggregation regions may reveal quite different trends (Figure 10). All side-by-side comparison 620 
plots (Figures S1-S36) are included in the supplementary material to indicate the vast spread of 621 
variation that emerges when aggregating MEM output over spatial areas with different sizes. 622 
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 623 

Figure 10 - Medium demersal fish biomass time series as predicted by EcoOcean when driven 624 
by NorCPM1. The plots show time series for FAO subocean south Atlantic (top row), and for the 625 
two subdivisions of that subocean, the southwest Atlantic (middle row) and the southeast 626 
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Atlantic (bottom row). Time series are shown without fisheries (left column) and with historical 627 
fisheries (right column). 628 

5 Conclusions 629 

In this study, we demonstrated that a distributed run framework built from simple technologies 630 
can be used to systematically run a marine ecosystem model, paving the way for systematic 631 
assessments that, prior, were deemed impossible to those without access to well supported 632 
powerful hardware and programming experience. 633 

5.1 Experience using the framework 634 

The framework performed well, despite its conceptual simplicity and reliance on the most basic 635 
technologies. The use of cloud storage providers for framework communication was not without 636 
caveats. We started out by using one storage provider, Dropbox, to handle all server-client data 637 
transfer, but we observed a high number of cancelled and restarted EcoOcean runs. Status logs 638 
showed that the server often perceived remote clients as having become unresponsive and 639 
repeatedly rescheduled their jobs, which we traced back to crucial framework status messages 640 
getting intermixed with, and delayed by, the slow transfer of large input and output data files. 641 
Swapping over to two separate cloud storage providers (Sync for framework communication, 642 
and Dropbox for bulk data transfer), with each cloud storage provider operating on different 643 
folders, solved the issue. An important piece of advice was provided by the Dropbox 644 
development team, who recommended using the same cloud provider account on the server and 645 
all clients to avoid soaring data usage across accounts. Additionally, in rare cases cloud storage 646 
providers may stop synchronising which, if this were to occur at the server, stops the framework 647 
from working. Some clever coding in the future can detect a hanging cloud provider and restart 648 
it.  649 

Although the use of cloud storage providers does demonstrate that a framework can be 650 
constructed from the most basic technologies, if faster and more streamlined communication 651 
protocols can be used one should not hesitate to embrace those with fervour. For this, the 652 
framework is of modular design and already hosts a number of faster and more reliable data 653 
communication protocols that require some IT skills and network management authority to 654 
configure. To avoid any kind of unnecessary complexity, the use of cloud providers was 655 
therefore ideal to showcase the framework. 656 

To demonstrate that the run framework can be OS agnostic, our setup included one Linux 657 
computer among five Windows computers. We were able to make this setup work as 1) both the 658 
framework and the EcoOcean execution wrapper were written in .NET Standard which natively 659 
run on both OS-es; and 2) we were able to fully handle typical OS incompatibilities in our code 660 
by enforcing strict data handing conventions. However, as the framework is intended dispatching 661 
workloads that rely on any scientific software, framework operators may find that mixed OS 662 
family deployments may be very complicated to setup and operate. We recommend that these 663 
should be avoided at all costs, and if mixed OS family setups cannot be avoided, we surmise that 664 
it may be technically easiest to containerize (Bentaleb et al., 2022) the framework server and 665 
clients to the same operating system across available hardware. 666 

We consider the framework that we present here a rough proof of concept that needs to improve 667 
in terms of usability, stability and security. In terms of usability, the framework currently offers 668 
only bare basic troubleshooting features, collecting execution and error logs in the formats 669 
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produced natively by the software executed by the user. There are plenty of inspirational 670 
methodologies in existence that can be easily adopted (Kandan et al., 2020) to find and 671 
understand errors. Additionally, by only collecting software logs but not observing the state of 672 
the ecosystem in conjunction, faults caused by the operating system may be presently very hard 673 
to identify. 674 

In terms of stability, there is a significant risk of running a framework and launching tasks 675 
directly on a target operating system. During the execution of a workload, launched programs 676 
may allocate more than their fair share of available resources (such as available processors, 677 
runtime memory and disk space). In the worst case, badly behaving programs can crash an 678 
operating system. For those with the means and know-how, it would make sense to execute 679 
framework clients on virtual machines or containers. These technologies primarily shield the 680 
underlying operating system from badly behaving software. Containers increasingly replace 681 
virtual machines due to their ability to control resource allocation (Herbein et al., 2016) and to 682 
load-balance the use of system resources (e.g., Hota et al., 2019). Such features ensure smoothly 683 
flowing executions of hosted software. The framework - or the very concept of the framework - 684 
can be easily adapted to execute workloads across more stable environments. 685 

In terms of security, the idea of remote execution of software is generally not encouraged in the 686 
world of computing. For this, framework activity must be shielded via secure user authentication 687 
and industry standard encryption of all data transferred (e.g., Papadogiannaki & Ioannidis, 2021). 688 

5.2 Case study application 689 

Aside from demonstrating the utility of the framework, the case study also aimed to investigate 690 
whether uncertainty within Earth System Models, in the form of retrospective predictions, has 691 
the potential to significantly affect the output of a Marine Ecosystem Model as a step towards 692 
improving the predictability of MEMs. The brief conclusion is: that depends. 693 

For the functional groups and areas that were explored here, the impact of fishing overwhelmed 694 
the impact of ESM uncertainty on EcoOcean results; the natural variability represented in 695 
retrospective predictions played a lesser role in affecting EcoOcean outcomes than historical 696 
fisheries. For this case study, we did not re-validate EcoOcean’s ability to replicate reconstructed 697 
catches when driven by ESMs EC-Earth3-CC and NorCPM1. A comprehensive re-validation 698 
will be the subject of the oncoming ISIMIP3a simulations (Blanchard et al., 2023). Follow-up 699 
work could even consider uncertainty in reconstructed fishing effort. However, these coarse 700 
results underscore that effectively managed oceans should prioritise sustainable fisheries 701 
practices (e.g., Maury et al., 2017). 702 

The use of time series to reduce data volumes analysed was computationally and storage-wise 703 
efficient, but this simplification risks losing important variability in heterogeneous and large 704 
areas. As our results showed, aggregating across the entire southern Atlantic obscured trends that 705 
became clear when assessing the western and eastern parts of the basin in separation. Future 706 
work should explore how to meaningfully measure the sensitivity and performance of a MEM 707 
with regards to selecting meaningful regions that are small enough to capture relevant dynamics, 708 
and large enough to facilitate speedy analysis. Regional analysis can focus on areas with 709 
ecological, geophysical or environmental similarity (e.g., marine ecoregions; Spalding et al., 710 
2007) or other classes of ecoregions (see Rubbens et al. 2023 and references therein). Time 711 
periods for comparison should be carefully selected around known events and regime shifts, and 712 
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possibly even known effects of seasonality (e.g., Lloret-Lloret et al., 2022) and time-delayed 713 
teleconnections (e.g., Gómara et al., 2021; Lehodey et al., 2020). We performed a limited time 714 
series analysis using only five simple statistics, but there are plenty of other MEM-specific skill 715 
metrics suggested in the literature (e.g., Bennett et al., 2013; Hipsey et al., 2020; Kempf et al., 716 
2023; Stow et al., 2009) that could be put to the test. Additionally, advanced vectorization 717 
(Quislant et al., 2022) seems to offer significant potential for analysing spatiotemporal MEM 718 
output to overcome the limitations of using predefined - and possibly poorly chosen - regions. 719 

As Coll et al. (2020) already identified, driving MEM dynamics with alternative EMSs can come 720 
with huge uncertainty, too. The two ESMs included here differed significantly in their approach 721 
to representing past environmental conditions. EC-Earth3-CC historical environmental 722 
conditions were available from 1980 onwards, starting 30 years later than the NorCPM1 723 
historical data. EcoOcean is calibrated for 1950; and to amend the gap in driver data for EC-724 
Earth3-CC, we applied 1980 driver data for the 1950-1980 period, thus ensuring that EcoOcean 725 
had a much more stable spin-up period than when driven by NorCPM1 data. On the other hand, 726 
NorCPM1 offered only one phytoplankton group whereas EC-Earth3-CC offered two; different 727 
resolutions in the phytoplankton data also meant that both ESMs differently affected food 728 
availability to the global food web. For the three sub-ocean basins and six functional groups 729 
explored here, EcoOcean showed similar trends under fished and hypothetically non-fished 730 
oceans when driven by either ESM, but the trends greatly differed in magnitude depending 731 
which ESM was used to drive the environmental conditions for the MEM.  732 

In order to better understand why EcoOcean behaves the way it does, and to quantify if ESM 733 
uncertainty has the potential to improve the predictability of EcoOcean, a systematic exploration 734 
of attribution is needed to quantify which MEM components are sensitive to which aspects of 735 
ESM uncertainty. This could be explored by running different ESM/MEM experiments where 736 
ESM internal variability is systematically applied to isolated drivers whilst measuring the impact 737 
on MEM output (e.g., Heneghan et al., 2021), and whilst properly validating MEM output 738 
against available observations (such as regional trends of species biomasses, regional catch 739 
statistics, and global reconstructed fisheries catches). This would also require quantifying the 740 
relative importance of other types of uncertainty related to, for instance, trophic structure of the 741 
food web and deployed ecological hypotheses (e.g., Coll et al., 2020). 742 

5.3 Future challenges 743 

Up to now, understanding and improving the behaviour of MEMs has been largely a manual 744 
process of tweaking model settings guided by intuition and analysing model output (Pethybridge 745 
et al., 2019). The framework that we developed here will be the starting point for exploring the 746 
effectiveness of proposed skill metrics (Olsen et al., 2016; Payne et al., 2016), validation 747 
frameworks (Hipsey et al., 2020) and evaluation protocols (Planque et al., 2022); for assessing 748 
various types of uncertainty; and on the long-term, MEM calibration capabilities. 749 

In terms of validation, complex spatial-temporal models are mostly validated by correlating 750 
model output with observations (Pethybridge et al., 2019; Spence et al., 2021). However, to 751 
ensure that a MEM produces results for the correct reasons, validation should also consider the 752 
internal state of a MEM while it executes (e.g., Hipsey et al., 2020; Steenbeek et al., 2021). 753 
Indicators of ecosystem dynamics (e.g., Network analysis; Ulanowicz, 2004) and measures of 754 
ecological expectations (PREBAL; Link, 2010) can be complemented with assessments of 755 
internal state variables related to species displacement, predator/prey overlap, changing 756 
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environmental conditions and the presence of anthropogenic pressures can capture whether a 757 
MEM produces output for the correct reasons, and can provide modellers with valuable insight in 758 
the behaviour of their MEMs.  759 

In terms of systematic uncertainty assessments, the multi-run framework provides a foundation 760 
for systematically combining parametric uncertainty assessments (e.g., Steenbeek et al., 2018; 761 
Vilas et al., 2023) with other forms of uncertainty related to model structure (e.g., Coll et al., 762 
2020; Heneghan et al., 2021), Initialization and Internal variability uncertainty (this case study) 763 
and scenario uncertainty (e.g., de Mutsert et al., 2021; Lotze et al., 2019; Schewe et al., 2019; 764 
Tittensor et al., 2021). 765 

Combining uncertainty assessments with validation strategies that also consider state variables, 766 
modellers can systematically disentangle a model's strengths and weaknesses in search of better 767 
model calibrations. Here lies the next big challenge for the global modelling community: to work 768 
towards (semi-)automated calibration of spatial-temporal MEMs (e.g., Vilas et al., 2023). By 769 
now allowing any modelling group to mass-execute their models systematically across available 770 
hardware, the framework can serve as a scaffolding for orchestrating the great number of runs 771 
required, which will involve some form of looped and MEM-specific sensitivity testing, 772 
parameter estimation and validation scheme. 773 

Here may lie an opportunity for Machine Learning approaches that are increasingly applied to 774 
marine ecology (Rubbens et al., 2023). While properly designed statistical approaches can 775 
distinguish acceptable from unacceptable ecosystem trends for specific marine ecosystem 776 
models, ML approaches can perhaps expand this understanding to infer full food web dynamics 777 
from changing environmental conditions, species distributions and fisheries. Following 778 
promising work by Trifonova et al. (2017) and Uusitalo et al. (2018), we hope that ML 779 
approaches can, one day, assist in the search for more representative parameterizations of 780 
complex and mechanistic ecosystem models. A framework such as ours will be essential to 781 
mass-execute and perturb MEMs to generate the training datasets needed, and may be able to act 782 
as a foundation for ML-assisted MEM calibration. 783 

Our multi-run framework is no silver bullet. With the expansion of computational capabilities 784 
also comes the responsibility of using these capabilities wisely. The paradigm “garbage in, 785 
garbage out” (A. J. Smith, 1994) is more relevant than ever when scaling up complex model 786 
simulations. It is equally useful to utilise the computational capabilities of distributed run 787 
frameworks wisely. To avoid wasteful brute-force approaches, one could turn to the use of short 788 
press perturbations to identify the most sensitive parameters (Pantus, 2007) and hence 789 
dramatically reduce the number of simulations that are really necessary to attain better insights in 790 
the workings of complex and mechanistic marine ecosystem models.  791 

Wrapping up 792 

Remote execution frameworks are nothing new, and industry standards greatly surpass the 793 
framework described here in all aspects. Our framework shares a number of key principles with 794 
Slurm (Yoo et al., 2003), a much more robust and mature, but also much more complicated and 795 
technically demanding framework to install and operate. Our framework achieves distributed 796 
computing capabilities with the simplest of software components, scaling up desktop workflows, 797 
across mundane hardware, without the need for IT skills or programming. That, in itself, is a 798 
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breakthrough achievement that we hope the global modelling community will build on to make 799 
ecosystem modelling operational, for anyone. 800 

The most significant benefit of the framework that we have built here is a full separation of 801 
technique (e.g., the technical challenges of repeatedly executing a MEM) from application (e.g., 802 
the purpose that the MEM is repeatedly executed for). This allows modellers to just focus on 803 
formulating large-scale scientific workloads that the framework then distributes across any 804 
available hardware. However, the most significant value of the framework prototype presented 805 
here are the ideas within. The simple client/server architecture can be deployed across any 806 
hardware configuration: across desktops, virtual machines, docker containers, web servers, and 807 
High-Performance Clusters. Any new deployment may require adapting or entirely rewriting 808 
framework components to fully utilise hardware capabilities, and to cater to related security and 809 
technical constraints. Tech-savvy users may opt to rewrite the multi-run framework in an 810 
existing workflow environment. We set out to breach the stigma that MEMs cannot be easily 811 
executed systematically; it is now up to the global modelling community to take our ideas further 812 
to make the process of ecosystem modelling operational.  813 

The framework presented here is a mere first but important step towards making the process of 814 
marine ecosystem modelling more operational. By applying the framework to a global available 815 
MEM, we illustrate how it can be useful and how it can be applied to improve our understanding 816 
of uncertainty components of complex modelling frameworks, thus opening the door for 817 
scientific management breakthroughs. 818 
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