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Abstract

In recent years, the increase of data availability through citizen science campaigns has raised questions on the quality of this

data. Species distribution models can be severely impacted by non-random spatial distributions of records. Multiple methods

exist to correct for spatial bias and most of them imply that the sampling is uneven in space and determined by the observers’

choices of where to search for observations. One common correction method is to include a covariate in the model as a proxy

for sampling bias and correcting for this bias by setting this covariate equal to a common value upon prediction. However, this

approach implies that each observer behaves in the same manner, which in practice may not be the case. Here, we differentiate

two common observer behaviours: exploring and following. Under this paradigm, explorers seek to observe species in new places

far away from other observations and away from common routes of transit. By contrast, followers search near already observed

species locations and remain closer to common routes of transit. In this paper, we investiage whether the current approaches

to correcting for observer bias hold under varying observer behaviours, or whether a data-driven approach based on modelled

observer behaviour may lead to better predictions. To do so, we developed a new software platform, obsimulator, to simulate

patterns of points driven by observer behaviour. We established two correction methods based on a bias incorporation approach

using k-nearest neighbours and density calculation. Broadly, we found that the method of including a bias covariate and setting

it to a common value for prediction yields the best results. We also found that the knn-based correction outperformed the

density-based correction. Additionally, we provide guidance for setting model parameters based on the ratio of explorers versus

followers in the observers’ cohort.
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Abstract5

In recent years, the increase of data availability through citizen science campaigns has raised questions on the6

quality of this data. Species distribution models can be severely impacted by non-random spatial distributions of7

records. Multiple methods exist to correct for spatial bias and most of them imply that the sampling is uneven8

in space and determined by the observers’ choices of where to search for observations. One common correction9

method is to include a covariate in the model as a proxy and correcting for this bias by setting this covariate10

equal to a common value upon prediction. However, this correction implies that each observer behaves in the11

same manner, which in practice may not be the case. We can differentiate two common observer behaviors:12

exploring and following. Under this paradigm, explorers do not always follow the road network and will seek to13

observe species in new places far away from other observations. By contrast, followers will search close to already14

observed species locations and will stay closer to the road network. As such, it is worth investigating whether15

the current approaches to correcting for observer bias hold under varying observer behaviours, or whether a16

data-driven approach based on modelled observer behaviour may lead to better predictions. To do so, we developed17

a new software platform, obsimulator, to simulate patterns of points driven by observer behaviour. We established18

two correction methods based on a bias incorporation approach using k-nearest neighbours and density calculation.19

Broadly, we found that the method of including a bias covariate and setting it to a common value for prediction20

yields the best results. We also found that the knn-based correction outperformed the density-based correction.21

Additionally, the optimal number of neighbouring points and smoothing parameters depends on the ratio of22

explorers versus followers in the observers’ cohort.23

Keywords: Spatial point pattern - Citizen science - Ecologist simulator - Observer behaviour24

1 Introduction25

Citizen science data has become a common source of information in ecology Dickinson et al. [2010], but many26

challenges still exist to fully understand the strengths and weaknesses of such data Brown and Williams [2019].27

Citizen science data has become popular for financial, practical and technological reasons Cohn [2008], Silvertown28
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[2009], Dickinson et al. [2010]. A major challenge for citizen science lies in the reliability of the data itself.29

Citizen science data may vary in quality by study area and by project Cohn [2008], Dickinson et al. [2010]. Even30

if multiple studies have shown that such projects are valuable for research, there are still some questions about31

the variability and accuracy of the data Kosmala et al. [2016], Aceves-Bueno et al. [2017]. Among other concerns,32

there may not be information about the data collection process and there is no guarantee of the validity of33

the observations nor the accuracy of the locations. With the increased use of presence-only data (PO) from34

opportunistic sources, researchers have devised statistical tools and filtering methods to cope with these concerns35

Dickinson et al. [2010], Freitag et al. [2016], Kosmala et al. [2016], Johnston et al. [2019].36

During the observation process, observer behaviour and choices can greatly impact what is reported and where37

Arazy and Malkinson [2021], Bowler et al. [2022], Dimson and Gillespie [2023], Geldmann et al. [2016]. An38

observer’s searching routine can be influenced by accessibility, such as the presence of transit lines (roads, railways39

or waterways) or by a particular environmental condition, resulting in less sampling effort in more remote40

locations. Moreover, some observers may choose to visit sites where they believe the species will be present due41

to previous records. The resulting data set of reported observations consequently represents a biased distribution42

of the true species pattern over the study area. Many methods have been developed over the years to account43

for this observer bias, including data modification (spatial filtering, the weighting of occurrences), background44

modification (target group background, presence-absence data, detectability), data integration (repeated data45

collection, combined datasets, ensemble or joint models) and incorporating bias (offset term, adding terms or46

covariates in a statistical model).47

Data modification such as spatial filtering can be done using thinning methods or sub-sampling, but it is limited48

by the sample size because it reduces the number of records available and potentially the predictive performance49

Anderson and Raza [2010], Beck et al. [2014], Boria et al. [2014], Rose et al. [2019]. Another possibility is to50

apply a simple prior weighting term to the samples or occurrences Stolar and Nielsen [2015] or into the selection51

of pseudo-absences Zaniewski et al. [2002]. Background modification and target-group background approaches52

can generate presence-absence data (PA) with the same spatial bias Phillips and Dudík [2008], Higa et al. [2015],53

Phillips et al. [2009]. However, these have been criticised for reflecting the species’ composition rather than54

distribution, and may overestimate bias in poorly sampled areas Elith and Leathwick [2007], Phillips et al.55

[2009], Mair et al. [2017]. The presence points of non-target species could be used as pseudo-absences Ranc et al.56

[2017] and can replace observer bias with species richness bias Warton et al. [2013]. More recently, Vollering57

et al. [2019] developed a “background thickening” method which increases the background density around point58

presences, showing promise for small sample sizes. Data integration can combine multiple data sources or models.59

Multiple collection repetitions can decrease the bias in the datasets but require more time and resources Tyre60

et al. [2003], Benoît and Allard [2009], Pollock et al. [2014]. One approach is pooling PO data with unbiased PA61

data, counts, or occupancy data, but this requires another unbiased dataset Fithian and Hastie [2013], Fithian62

et al. [2015], Renner et al. [2019]. An ensemble of outputs is an alternative which uses both species occurrences63
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and remote sensing information; however, access and resolution are limited and ensemble element independence64

is rarely achieved Tang et al. [2020]. Finally, accounting both for data sampling processes through correlation65

structure or latent processes and ecological responses can overcome such bias Diggle et al. [2010], Conn et al.66

[2017], Johnston et al. [2020].67

Here we focus on the latest bias correction category which happens during the modelling process. To account68

for such bias, an offset term in the linear predictors can be used, but this implies knowing the observer effort69

Chakraborty et al. [2011], Merow et al. [2016], Pacifici et al. [2017]. Some authors have introduced a spatially70

unstructured term Illian et al. [2013]; or a covariate that can inform about duration, length of search, expertise,71

ignorance score, or other information collected about observers Mair and Ruete [2016], Johnston et al. [2018],72

Kelling et al. [2019]. However, there is a possible confusion between sampling bias and autocorrelation among73

the environmental covariates Segurado et al. [2006]. Other modelling approaches offer flexibility with readily74

available tools, such as the quasi-linear Poisson point process in R to model environmental covariates and bias in75

separate clusters using harmonic Poisson point patterns Komori et al. [2020]. Finally, the bias can be corrected76

in the predictions using covariates as a proxy and thus factored out Chakraborty et al. [2011], Warton et al.77

[2013], El-Gabbas and Dormann [2018], Renner et al. [2019], Skroblin et al. [2019]. One common proxy is to78

calculate distances to the road network and correct for this bias by setting the modelled covariate equal to a79

common value Warton et al. [2013], Renner et al. [2019]. Still, this correction implies that each observer behaves80

in the same manner, which in practice may not be the case.81

While a virtual species approach via simulations is of growing interest to test parameters and performances82

of modelling approaches [Meynard et al., 2019], the virtual ecologist approach with a focus on the sampling83

and observation process is still scarce Zurell et al. [2010]. In this article, we present the obsimulator software84

that we developed to produce presence-only data sets with different observer behaviour; controlling for their85

movements and spatial distribution as well as their ability to make an observation (accuracy). From there, we86

focus on the ability of the Warton et al. [2013] method to account for sampling bias under differing observer87

behaviour profiles. We differentiate two common observer behaviours: exploring and following. Under this88

paradigm, explorers do not always follow the road network and will seek to observe species in new places far away89

from other observations. By contrast, followers will search near already observed species locations and will stay90

closer to the road network. Using second order effects of point pattern analysis methods, we study the spatial91

patterns of observations and then, correct the sampling bias in spatial predictions. We investigate whether the92

Warton et al. [2013] approach to correcting for observer bias holds under varying observer behaviours, or whether93

a data-driven approach based on modelled observer behaviour may lead to better predictions.94
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2 Material and Methods95

To investigate the impact of observers’ behaviour on the resulting pattern of species they observe, we developed96

a virtual ecologist simulator. The software defines how the observers move and which targets they reach in97

space and time to mimic the sampling process of opportunistic observations. Following the sampled observation98

process, we study the spatial distribution of the observed records and test various bias correction methods99

derived from the Warton et al. [2013] method, as illustrated in Figure 1.100

Figure 1: Method display: virtual ecologist simulator and observer bias correction. Created with BioRender.com

2.1 Virtual observer simulation101

We developed a C program for simulating point processes in continuous time and space called obsimulator102

which is run via a computer terminal. The output can be imported into R R Core Team [2017] for summary103

analysis and visualisation. An example of how the software can be used and a description of the processes appear104

in the Appendices.105

Obsimulator is defined by a process file and a model file. The process file contains the syntactic descriptions of106

the processes and their parameters (selection of targets, movement of observers and observation of species). The107

model file defines the identities and parameter values of the processes by which observers emerge, select their108

targets, move toward their targets, and make observations, as shown in Appendix ??.109

To simulate point patterns of observed targets using Obsimulator, we first define in R the initial states of our110

area of interest. The initial setup defines the city coordinates and the number of observers (both explorers and111

followers) as well as the distribution of the species (target points) that observers can potentially reach. In our112

case, we simulated targets in R following the methods outlined in Renner et al. [2019] without any sampling bias113

to model the true realization of the species in space according to their environmental preferences. We defined a114
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set of four simulated covariates x1, x2, x3, and x4 to represent the species’ habitat preferences and simulated115

5000 individuals to serve as target points for the observation process. We also created a road network along116

which observers travel to move towards targets using functions from Renner et al. [2019].117

Having generated the road network and species distribution, we simulated the observation process using 20118

observers in total. See Appendix ?? for details.119

To explore the differences in the observed patterns through differing observer behaviour, we varied:120

• The ratio of the number of explorers (E) versus the number of followers (F): 1:19, 5:15, 10:10, 15:5, or 19:1;121

• The proportion of target points that end up being observed: 5%, 25%, or 45%.122

We repeated the simulation 20 times using different seeds.123

2.2 Measuring spatial clustering124

To measure the spatial clustering of a point pattern, one can use Ripley’s K(r) function, the pair correlation125

function, or various extensions Renner [2013], Wiegand and Moloney [2013], Baddeley et al. [2016]. These126

measures can identify whether the point pattern is regular, independent or clustered using distances measures:127

• K-function:128

K̂(r) = 1
|A|

∑ ∑
i ̸=j

Ir(dij)
µ̂iµ̂j × wij × |A|

(1)

Ripley’s K-function counts the number of points within a buffer of radius r around each point location. In129

the numerator, dij is the distance between points i and j, Ir is an indicator of whether the input distance is130

less than or equal to r, and wij is a weight function that provides an edge correction. In the denominator,131

µ̂i and µ̂j are the intensities estimates at points i and j while A is the area of the spatial domain.132

• The L-function is a rescaling of the K-function, defined as follows:133

L̂(r) =

√
K̂(r)

π
(2)

For information on the temporal and spatio-temporal clustering evaluation see Guilbault [2022]. We examined the134

L-function to assess the degree of spatial clustering in the simulated patterns of observed points. Specifically, we135

used the R functions envelope and Linhom in the package spatstat to plot L̂(r) − r along with 95% confidence136

envelopes as in Baddeley et al. [2016].137

2.3 Model-based observer bias correction138

To correct for observer bias, we have extended the Warton et al. [2013] method of including covariates to model139

observer bias and setting these covariates to a common value for prediction. We fit a Poisson point process140
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model with both the four simulated environmental variables x1, . . . , x4 used to generate the targets points and a141

proxy variable zc for the observer bias. Thus we maximize the following log-likelihood function:142

log µ(s) = β0 +
4∑

i=1
xi(s) × βi + zc × βz (3)

where µ(s) is the intensity at a location s, βi is the coefficient associated with the environmental variables xi, β0143

is the intercept, and βz is the coefficient associated with the bias covariate zc.144

Our proxy covariate for the observer bias is denoted z, and is a measure of the distances between the points in145

space using one of two approaches. The first approach defines the bias according to a knn algorithm at different146

k nearest neighbor values: either single values 1, 2, 3, or 5, or a combination of values 1:k for k = 2, 3, or 5.147

These distances are calculated using the nndist function in spatstat. The second approach is a measure of the148

density of points with edge corrections, using different standard deviations of the isotropic smoothing kernel149

value: 0.1, 0.5, 1, 1.5, 2, or 5. These densities are computed using the density.ppp function in spatstat. The150

proxy covariate to correct for observer bias is created as follows:151

zc = α × c + (1 − α) × z (4)

where α ∈ [0, 1] is a coefficient to adjust the bias correction, with values closer to 1 resulting in a stronger152

correction. By setting α = 1, this correction method is equivalent to that of Warton et al. [2013]. Here, c is a153

chosen constant, commonly 0 or either the minimum or mean of z. We only focus on the minimum value of z.154

The bias covariate calculated reflects either the road network distribution, the point clustering or both. Our155

hypothesis was that the optimal choice of α may depend on the behaviour of the observers. In particular, we156

believed that a value of α closer to 1 would be optimal in settings where the relative number of followers was157

high and a value closer to 0 would be optimal in settings where the relative number of explorers was high.158

2.4 Model evaluation159

To evaluate the performances of the different models, we measure the agreement between the true species160

intensity and the predicted intensity using both Pearson’s correlation and Integrated Mean Square Error (IMSE)161

[Swanepoel, 1988, Wand and Jones, 1994]. Because the scale of the IMSE depends on the magnitude of the162

true intensity, we rescaled both the true and predicted intensities to have a common mean to make for an163

equitable comparison. In practice, we measure the intensity at the quadrature points used in fitting the models,164

which simplifies the calculation. Because IMSE can give considerable variation among methods, we will use a165

normalized IMSE (NIMSE), defined by:166

NIMSE =
∑

(µ̂(s) − µ(s))2

σ̂2
µ

(5)
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Where, σ̂2
µ is the variance of the predicted intensity from the model. We evaluate the differences in NIMSE167

and correlation between the corrected model (3) and the non-corrected model (model fitted without the bias168

proxy covariate in (3) for the same percentage of observed targets to investigate the use of the clustering bias169

correction. Superior performance for the corrected models would be reflected in a negative difference in NIMSE170

and a positive difference in correlation.171

In Section 3, we evaluate the performance of the different obsimulator parameters outlined in Section 2.1, the172

two correction methods (knn and density-based) as well as their parameters α, k, and standard deviations of the173

isotropic smoothing kernel value as defined in Section 2.3. We also examine the predicted intensity maps of174

these models.175

3 Results176

3.1 Differences in patterns of observed points177

First, we investigate the spatial distribution of observed targets by the simulated followers and explorers. In178

Figure 2 the point clustering is more noticeable with fewer explorers (towards the right of the figure) and179

concentrated around nodes and road sections. Increasing the percentage of observed targets (second and third180

rows) amplifies this clustering.181
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Figure 2: Patterns of observed points by explorers (purple) and followers (orange) from among the 5000 target points
(green). The road network is in black. Each row represents the proportion of observed points: 5%, 25% and 45%. Each
column represents a different ratio of explorers and followers: 1:19, 5:15, 10;10, 15:5, and 19:1.

The degree of spatial clustering as measured by L̂(r) − r and shown in Figure 3 appears higher and becomes182

significant (above the simulation envelope) at shorter distances u when the number of followers is higher than183

the number of explorers, with the possible exception of the ratios 5:15, 10:10, and 15:5 for 5% of observed target184

points.185
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Figure 3: Estimates of L̂(r) − r for observed patterns of points from a set of 5000 target points appear as the solid
black line. Each row represents the proportion of observed points: 5%, 25% and 45%. Each column represents a different
ratio of explorers and followers: 1:19, 5:15, 10;10, 15:5, and 19:1. The red line represents the theoretical clustering of an
inhomogeneous Poisson process. 95% confidence bounds are shaded in gray.

3.2 Correcting for observer bias186

3.2.1 Comparison of the correction methods under the Warton et al. paradigm187

First we evaluate how the different correction methods (density-based and knn-based) as well as the proxy (point188

clusters, roads network or both) influence the predictive performances for each ratio of explorers to followers. In189

Figure 4 we set the value of α to 1 as in Warton et al. [2013] and our method parameters such that k=1 (when the190

knn-based correction is used) and σ=1 (when the density based correction is used). As better predictions lead to191

lower NIMSE values, a negative difference indicates that the bias-corrected model outperforms the non-corrected192

model, while a positive difference indicates that the bias-corrected model underperforms the non-corrected model193

as explored in the appendix.194

As the proportion of observed targets increases, the models which incorporate bias correction perform increasingly195

well in comparison to the uncorrected models. This is evident from the increasing negative differences in NIMSE196

shown in Figure 4 as well as the increasing positive differences in correlation shown in Appendix ??. The197

corrections which used only the road network bias as a proxy performed the worst, while the methods which198
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modelled observer bias using point density or a combination of point density and distance from the road network199

performed the best.200

The benefit of the knn-based corrected models is most notable with a higher proportion of followers. More201

generally, with a higher proportion of explorers, the benefit of correcting for bias is small or non-existent. This202

is to be expected, as a higher proportion of explorers means fewer observers are searching near already observed203

points.204

Figure 4: Difference in NIMSE between bias-corrected predictions and non-corrected predictions for observed patterns
from a set of 5000 target points. Here, bias correction is performed using a density-based or knn distance-based proxy
variable. Lower values indicate better performance for the bias-corrected method. Each row represents the proportion of
observed points: 5%, 25% and 45%. Each column represents a different ratio of explorers and followers: 1:19, 5:15, 10;10,
15:5, and 19:1. Each colored item differentiate the proxy variables (points only, point and roads and roads only). Each
shape differentiate the set value for correction (minimum and null).

3.2.2 Nearest neighbour distances-based correction205

The best performing method with high clustering utilised a knn distance-based measure as a proxy for observer206

bias in Figure 4. Here, we investigate the performance for a range of different values of k and α. In Figure 5,207

the bias-corrected models tend to do best with values of α between 0.8 and 1. This is particularly true in the208

case of numerous followers. When the proportion of observed points decreases (5% and 25%), the benefit of209

bias correction shrinks with a higher ratio of explorers to followers, and even disappears with only 5% of target210

points observed. The choice of k also appears to have a greater effect with a smaller proportion of observed211
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points and a higher ratio of explorers to followers. In particular, the performance of the bias-corrected model is212

worse when k = 5 or aggregates different numbers of nearest neighbors (1:2, 1:3, 1:5), particularly with 5% of213

observed targets. When the ratio of observers is dominated by explorers, larger values of k (3, 5) showed the214

best performance.215

Figure 5: Difference in NIMSE between bias-corrected predictions and non-corrected predictions for observed patterns
from a set of 5000 target points. Here, bias correction is performed using a knn distance-based proxy variable. Lower
values indicate better performance for the bias-corrected method. Each row represents the proportion of observed points:
5%, 25% and 45%. Each column represents a different ratio of explorers and followers: 1:19, 5:15, 10;10, 15:5, and 19:1.
Each colored line represents a different number of nearest neighbours as presented in the plot legend.

The analogous plot using correlation as a measure of performance is shown in the Appendix in Figure ??.216

Because better predictions lead to higher correlations between the true and predicted intensity surfaces, a positive217

difference indicates that the bias-corrected model outperforms the non-corrected model whereas a negative218

difference indicates that the bias-corrected model underperforms the non-corrected model. The results are largely219

similar to those based on NIMSE. The bias-corrected model performs relatively best with higher values of α and220

when there are more followers, and there is greater variation in performance for different values of k with only221

5% of the target points observed.222
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These conclusions are also apparent from the plots of predicted intensities in Figure 6. When α = 0 as displayed223

on the left side of the figure, the bias-corrected models (first three rows) usually perform worse than the224

non-corrected models (fourth row) in comparison with the true intensity surface (fifth row). With only 5% of225

observed target points (first row), the signal is nearly imperceptible. When 25% or 45% of target points are226

observed (second and third rows), the signal becomes stronger, but still appears to lag behind the non-corrected227

model. We also note that the predicted intensity of the bias-corrected models appears closer to the true intensity228

when the number of explorers is higher.229

Figure 6: Average predicted intensity maps for bias-corrected and non-corrected models based on 20 patterns observed
from a set of 5000 target points. Here, the bias-correction was based on a knn distance-based proxy variable with α = 0
(left) and α=1 (right) and k=3. The first three rows represent bias-corrected models with 5%, 25%, and 45% of target
points observed. The fourth row represents the non-corrected model for 45% of target points observed, and the last row is
the true species intensity. Each column represents a different ratio of explorers to followers: 1:19, 5:15, 10:10, 15:5, and
19:1.

When α = 1, as shown in Figure 6, the predicted intensity maps from the bias-corrected models (first three230

rows) more closely resemble the true species intensity (’Truth’ on the fifth row) than the non-corrected models231

(fourth row), which tend to only highlight the high intensity areas. With k = 1, the corrected models had better232

performance (as reflected by a negative NIMSE difference) only for ratios that are balanced (10:10) or in favour233

of followers (1:19,5:15). For ratios that favour explorers, modelling the observer bias with k = 1 did not perform234

well, particularly with a smaller proportion of observed targets. In the predicted intensity maps, we indeed see235

that for these ratios, the correction over-represents areas of low intensity from the true species intensity.236

4 Discussion237

In this article, we implemented a virtual ecologist simulation tool obsimulator to study the impact of observer238

behaviour on the observed pattern of points. The simulator is designed to account for two types of observers’239

behaviour: explorers and followers. We have investigated differences in predictive performance with different bias240

correction approaches (knn distance-based, density-based, none) varying the ratio of explorers and followers (1:19,241
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5:15, 10:10, 15:5, 19:1), the methods’ parameters (k, σ and α), and the proportion of target points observed (5%,242

25%, 45%). We studied the spatial clustering of the patterns of points under these conditions using L-functions.243

The ratio of explorers and followers had a clear impact on spatial clustering, with greater clustering with a244

higher proportion of followers. This is expected, as followers select already-observed points as targets, leading to245

more clustered patterns. With more explorers, there are more observed targets for followers to select, leading to246

smaller clusters and larger distances.247

To correct for observer bias, we extended the method of Warton et al. [2013]. This method uses proxy covariates248

to model observer bias and then corrects them by reducing the impact of these covariates. By setting α = 1, the249

method is equivalent to that of Warton et al. [2013]. We chose to use two types of proxy covariates to model this250

bias — a knn distance-based measure and a density-based measure. The parameter α controls the degree of251

the correction, as shown in Equation (4). Regardless of the ratio of explorers and followers, the bias-corrected252

models perform best for very high levels of α between 0.8 and 1, when the correction is closest to that of Warton253

et al. [2013]. This suggests that the Warton et al. [2013] method of bias correction holds up well under various254

types of observer behaviour. The proxy variable is also an important factor to consider. Human infrastructure255

such as roads are a common bias proxy [Geldmann et al., 2016] but observer behaviour can reflect other choices256

such as moving towards known observations. This type of sampling bias is often not accounted for and can be257

corrected. We showed that accounting for observation distances to each other in context of high clustering is the258

best way to account for this observer behaviour.259

Between the two correction methods (knn distance-based and density-based), the knn distance-based correction260

showed the best performance overall. The knn distance-based method of correction depends on parameters261

like the number of nearest neighbors considered and the metric used to calculate the distance between points.262

These parameters highly impact the algorithm’s results [Guo et al., 2003, Wu et al., 2008, Weinberger and Saul,263

2009]. In this context, it is clear that the value of k impacts the performance, particularly when measured with264

NIMSE. When the number of observed points is small, such as the case with 5% of observed target points, high265

values of k such as 3 had the best performance when there is less spatial clustering (i.e. more explorers than266

followers). This suggests that with smaller data sets with not much clustering, a better prediction of the amount267

of clustering is obtained with larger numbers of k. Consequently, when lacking data, using larger numbers of268

neighboring points provides a better estimate of bias. When the number of followers is greater than or equal269

to the number or explorers with only 5% of target points observed, smaller values of k perform best (k = 1, 2,270

or both 1 and 2). When we observe 25% or 45% of target points, values of k = 1 or k = 3 exhibited the best271

performance, particularly when there is less spatial clustering due to a higher proportion of explorers and thus272

the higher number of targets observed to inform future observers.273

The density-based method of correction did not perform as well as the knn distance-based method overall,274

despite the fact that the knn distance-based method is based on a circular buffer area whereas the density-based275

method could allow for other clustering shapes. The performance of the density-based method depends on the276
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type of smoothing kernel and the bandwidth choice. In this study, we have chosen Gaussian kernels and explored277

different values of the bandwidth parameter σ, but the density.ppp function allows for other kernel types such278

as Epanechnikov, quartic, or disc which could lead to improved performance. Differences in performance due to279

the choice of σ reflect the well-known problem of bandwidth selection between over and under smoothing Chen280

[2017]. Although the density-based correction method also suffered from scaling issues in the predicted intensity281

maps, the performance measures NIMSE and Pearson correlation are invariant to scale.282

Simulations provide great tools to understand and study ecological processes. The obsimulator software allows283

users to vary observer behaviour under an explorer/follower paradigm. We have shown how clustering can be284

detected and how explorers and followers can change the pattern of observed points. Through this work, it is285

clear that identifying and correcting for observer bias leads to better predictions than not correcting for it, and286

that the best performance comes with a magnitude of correction akin to that of Warton et al. [2013], and that287

the benefit of this correction is greater with higher amounts of clustering.288

Nonetheless, more complicated observer behaviour is possible and could lead to different conclusions. Indeed,289

other methods of bias correction, possibly tailored based on perceived observer behaviour, could perform best290

through a more in-depth study of differing observer behaviour and notably by including temporal information.291

The methods presented here offer a new way to correct for clustering in a pattern by smoothing the predictions292

according to density-based or knn distance-based proxy covariates. An improved method could include a293

combination of knn and kernel density methods to reflect the true clustering attributes of the distribution Tran294

et al. [2006]. Although not covered in this article, the obsimulator software also allows users to specify different295

rates of errors in reporting. In addition, a physical obstacle may be incorporated into the simulation design to296

replicate settings in which travelers are constrained in their movement.297

Through the use of obsimulator to create different spatial patterns arising from differing observers’ behaviour,298

this work demonstrates good practice for researcher using citizen science data. The pattern of point observations299

in such opportunistic data is the result of observer behaviour and can lead to high sampling biases. The observers’300

choices of where to search commonly result in clustered patterns biased toward roads, cities, or known target301

locations that we can account for using the methods presented in this manuscript.302
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