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Abstract 

Synonyms are part of the scientific progression in taxonomy and nomenclature and reflect the 

evolving knowledge about species based on revisionary systematics. However, synonyms 

frequently cause problems in biodiversity repositories, so understanding the causes of the 

variation of botanical synonyms is essential. Recent studies attribute variation in synonyms to 

intrinsic and extrinsic drivers, such as nomenclature, taxonomic group membership (e.g., of 

orchids), and the age of the accepted name. Here, we examine the drivers of the synonyms for 

a large global subset of all angiosperms. Across 137,378 accepted names of 193 angiosperm 

families and 5,019 genera present in 355 botanical countries and regions worldwide, range size, 

the age of the accepted name, and insularity (insular or mainland occurrence, or occurrence on 

both) emerged as drivers with a positive effect on angiosperm synonyms. After accounting for 

these three factors, the residual differences in the number of botanical continents and the 

interaction between insularity and the range size became less significant. The combined multi-

predictor model explained about 41% of the global variation in angiosperm synonymy (96%, 

including the random effects of the families, genera, and the presence patterns of accepted 

species on one or more botanical continents). We suggest that geographic distance between 

taxonomists enables wide-ranging species and species with insular distributions to accumulate 

more synonyms. Also, the age of an accepted name plays a vital role in synonym accumulation. 

Our results can help to set priorities in revising floras and checklists and to resolve synonymy 

problems in biodiversity databases, likely leading to more realistic global species numbers. As 

the drivers may also impact other plant taxa, the study likely has implications for a wider range 

of families and genera. 

Introduction 

Taxonomy aims at identifying, characterizing, and classifying living organisms and thereby sets 

the foundation for hypothesis-driven research in ecology, biogeography, and conservation 

biology (e.g., Isaac et al., 2004, Wilson, 2004, Thomson et al., 2018). Taxonomists use 

morphological, genetic, behavioral, and biochemical characters to identify and describe taxa 

following specific nomenclatural principles and rules. The principle of priority (Turland et al., 

2018), essential to naming organisms, states that the accepted name is the earliest validly 

published name for a given species; younger names are considered synonyms if more than one 

name describes the same species. Synonyms may emerge for different reasons, for instance, 

from different taxonomists interpreting and classifying interspecific variation differently; the 

two resulting philosophies are referred to as 'splitting' and 'lumping'. If a splitter and a lumper 



classify species of the same genus, the former will usually recognize more species than the 

latter. 

It was suggested that if multiple names exist for the same species, these were not solely caused 

by altered taxonomic relationships, e.g., that the natural variation of a species was unknown, 

and various forms of the same species were given different names (e.g., Mori, 2013). For 

example, it was speculated that taxonomists might show preferences toward attractive taxa and 

that this would increase synonym numbers (Pillon & Chase, 2006, Lughadha et al., 2016). An 

uneven distribution of synonymy among families and high concentrations in a few large 

families like Asteraceae, Orchidaceae, and Poaceae was detected by Lughadha et al. (2016). 

Other studies explored cases of taxonomists describing unknowingly and independently the 

same species more than once (e.g., Valdecasas et al., 2008, Joppa et al., 2011, Ickert-Bond et 

al., 2019). For example, due to the geographic distance between taxonomists, wide-ranging 

species may accumulate more synonyms (e.g., Baselga et al., 2010, Mori, 2013, Fenneman, 

2017). This assumption might also be realistic for continents separated by large bodies of water 

that expand the range, like the Americas and Africa. Also, species with island distributions 

might accumulate more synonyms because of a higher number of endemic species (Kier et al., 

2009) and complex distributional ranges or because of a researcher's assumption that a species 

discovered on an island is endemic. Other studies proposed that the time passed since the 

original description of the accepted name plays a crucial role in the accumulation of synonyms 

(Alroy, 2002, Baselga et al., 2010, Joppa et al., 2011). Finally, some taxonomists noted that 

other taxonomists were creating species' names as if to 'retain a place in posterity' through 

authorship of taxa (Bruun, 1950, Pillon & Chase, 2006, Dubois, 2008, Evenhuis, 2008). 

Synonyms are an integral part of the natural progression of taxonomy and nomenclature and 

reflect the ever-changing knowledge about species (Valdecasas et al., 2008, Mori, 2013). 

Revealing synonyms helps to deepen our understanding of organisms by better understanding 

otherwise hidden properties of organisms (Holman, 1987). Recent studies, however, showed 

that the degree of synonymy is quite substantial for some taxa. In some insect groups, the 

observed ratio of synonyms to accepted names plus synonyms (synonymy rate) exceeds 50% 

(Gaston & Mound, 1993, Wells et al., 2019). Similarly, it was estimated that around 66% of all 

published seed plant names are synonyms (Wortley & Scotland, 2004).  

Taxonomic uncertainties resulting from the inconsistent treatment of species' delineation and 

synonymy represent a major challenge for integrating biodiversity data in public data 

repositories and may lead to erroneous results (Alroy, 2002, Gotelli, 2004, Dubois, 2008, Jansen 



& Dengler, 2010). For instance, unresolved synonyms artificially increase the number of names 

in biodiversity repositories. Synonyms also confuse taxonomy when, for example, it is difficult 

to recognize whether a species' name in a repository is simply an alias of a more common 

species (Gaston & Mound, 1993). The same applies to a synonym that cannot correctly relate 

to an accepted parent name. When taxonomic sources do not consistently identify a scientific 

name as a synonym, the likelihood for misinterpretation in checklists and other floristic and 

faunistic treatments increases (Gotelli, 2004, Jansen & Dengler, 2010, Meyer et al., 2016). As 

a result, thousands of floras and checklists used worldwide are rarely congruent in their 

taxonomy (Dubois, 2008, Jansen & Dengler, 2010).  

Here, we analyzed the variation of synonym numbers in angiosperm names worldwide and 

tested five competing but not mutually exclusive hypotheses contributing to synonymy (Table 

1). We examined the variation in synonym numbers across families and genera. Furthermore, 

we explored the variation in synonymy across botanical continents where the species were 

distributed, species' insularity (defined as a species occurrence on islands, the mainland, or 

both), and the species' range sizes. Finally, we tested the age of the accepted name as a proxy 

for the time passed since the description of an accepted name. Our results can be used to identify 

plant taxa that may have an increased probability of unidentified and unresolved synonyms, and 

to set priorities in revising checklists, floras, or biodiversity databases. The identified name 

discrepancies can also be further tracked for negative effects across related floras, checklists, 

and repositories. The outcome of this study likely has implications for a broader range of plant 

families and genera beyond those examined in the current study. 

Material and Methods 

Data cleaning and preparation of the analysis file 

On February 13, 2020, we retrieved 537,000 seed plant name records of 270 families from the 

World Checklist of Selected Plant Families (hereafter: WCSP; WCSP, 2020), including 

species’ accepted names, synonyms, and publication information. We removed 27,538 non-

angiosperm names (Stevens, 2016), 12,927 erroneous, and 7,974 unplaced names (both 

categories were already flagged by the WCSP). 161,392 accepted names and 340,271 synonyms 

from 193 angiosperm families remained. An additional 18,262 lower-level names (e.g., 

subspecies) with 27,453 synonyms were removed, leaving 143,130 accepted names and 

312,791 synonyms for a total of 455,921 angiosperm names. We also removed 24,542 

synonyms containing nonsensical publication year values (e.g., 0 (zero), 3- or 5-digit years, 

multiple years, and comments) that could not be matched to an accepted name. For 475 accepted 



names with nonsensical years (1,577 assigned synonyms), it was impossible to derive the age 

of the accepted names even from the oldest synonym. We used parent-dependant relationship 

information to link the remaining 279,694 synonyms (dependants) to their respective accepted 

parent names (142,655 records) and counted them (synonym number: synNum; hereafter, 

variable names in italics). The synNum served as the response variable during hypothesis 

testing. The publication year was unavailable for 3,694 accepted names (1.1%). In this case, we 

used the oldest synonym. The oldest publications date to 1753 (Linnaeus, 1753) and end in 

2019 (spanning a total of 267 years). Therefore, we calculated the age of an accepted name by 

subtracting the publication year from 2020. For further analyses, we used the full accepted 

name, family (predictor variable of hypothesis H1a, Table 1), genus (H1b), age of an accepted 

name (H5), and the synNum. 

In addition, we used occurrence information for 143,130 accepted seed plants at the species 

level (in one or more of the 378 TDWG countries and regions, hereafter: TDWG entity, level 

3, indicated by 1, presence, and 0, absence; Brummitt, 2001, WCSP, 2020a). From this, second, 

WCSP file (hereafter: occurrence file) and a spatial polygon (TDWG, 2021), we prepared the 

predictor variables botanical continent, where a species is present (hereafter: “BC”; H2a) and 

number of botanical continents on which a species occurs (hereafter: BCNum, H2b). In 

addition, we established the predictor variable insularity of a species and computed the range 

size by summing the areas of the respective TDWG units. We considered eight botanical 

continents (by TDWG Level 1 code, Brummitt, 2001), excluding Antarctica, to avoid the bias 

of a large continent with very few species (WCSP, 2020a. If a species was reported in a TDWG 

unit (given in the occurrence file for each accepted name), we marked the corresponding 

botanical continent ('1', presence and '0', absence). Furthermore, we summed up the BCNum. 

We concatenated the species' occurrences on the eight botanical continents into an eight-digit 

BC string (presence-absence patterns). The TDWG continent number was the position number 

in the string, determined from left to right. Examples for presence-absence patterns were, e.g., 

for the presence in South America only: '00000001', and presence in Europe, Africa, and South 

America: '11000001'. We determined the insularity of a species by their respective TDWG 

classification (Brummitt, 2001). For example, Australia and its continental subunits (e.g., 

Western Australia, Queensland) were classified as mainland, and Tasmania as an island. 

Depending on the determined species insularity type, we set insularity to 'I' (islands), 'M' 

(mainland), or 'A' (island and mainland) (factor with three levels). We regarded a species' range 

size as a proxy for the physical distance between taxonomists. As an estimate for range size, 

we computed the sum of all country areas where a species was reported.  



We merged the continent-related explanatory variables (the presence-absence string BC and 

BCNum), insularity, and the total range size to the initial part of the analysis file, achieving a 

final set of nine variants of five putative drivers of synonym numbers in angiosperms. Resulting 

from the merge, we identified 2,058 accepted names with 6,592 synonyms that were not 

associated with a TDWG unit or Antarctica. We also identified 3,219 records of accepted 

species with 11,278 synonyms that had not all predictor variables filled with values and 

therefore had to be removed. The data cleaning process resulted in 137,378 accepted 

angiosperm names with 261,824 synonyms.  

Statistical modelling 

Collinearity among predictor variables was tested using the R package rstatix (Kassambara, 

2020) and visualized using the GGally package (Schloerke et al., 2018; Appendix, Figures 

A1(a) to (f)). We examined skewness and kurtosis of the data using the package moments 

(Komsta et al., 2015, Appendix, Table A2), and nested, multilevel structures with lmerTest 

(Kuznetsova et al., 2017). Structural details of the data were visualized using ggplot2 

(Wickham, 2016, e.g., Appendix, Table A2) and the ggpubr function ggdensity (Kassambara, 

2020a, Appendix, Table A2(a), Density diagram).   

We used generalized linear mixed effects models (GLMM) to examine the drivers of synonym 

numbers. We analyzed the linear relationships of synNum, including interactions of explanatory 

variables and assessed variable performances using R packages ROCR (Sing et al., 2015) and 

performance (Lüdecke et al., 2021). We natural log-transformed range size to approximate its 

observed distribution to a normal distribution. The explanatory variables were standardized (z-

transformation, using the rescale function) to improve the linearity and comparability of 

coefficient estimates. We analyzed the suitable error distribution for the count data and the 

appropriate link functions (Garson, 2013). Frequent issues to be handled in count data are zero-

inflation (e.g., Hartig, 2019) and overdispersion (causing incorrect standard errors, e.g., Bell & 

Grunwald, 2011, Meyer, 2021). In terms of error distribution, Poisson, Poisson/zero inflation, 

and negative binomial, Poisson/zero inflation, the employed logit link function provided the 

best-fitting models (Tlhaloganyang & Sakia, 2020, Appendix, Table A2).  

The variables range size and age of an accepted name, insularity, and BCNum were used as 

fixed factors in the GLMM model. The other variables, family (193 levels), genus (5,019 

levels), and BC (217 levels) were used as random factors (McGill, 2015, Appendix, Figure A3). 

All variables showed significant effects (SE < 0.013, p-values < 0.001) in the GLMM analyses, 



suggesting they were predictive (Bell et al., 2019). In addition to the single predictor variables, 

we tested how the interaction of species occurring on islands, the mainland, or both related to 

their range size (hypotheses H3 and H4) influences the accumulation of synonyms (Hox et al., 

2017, partial correlation analysis: R-package ppcor, Kim 2015; p = 0). 

We fitted multi-level regression models using the R package glmmTMB, which minimized 

overdispersion and zero inflation (Bolker, 2016; see: Table A2). We used three distinct 

goodness-of-fit measures for the model selection: the Akaike information criterion (AIC; 

Burnham & Anderson, 2004), the root-mean-square error (RMSE), and the marginal and 

conditional pseudo-R2 (Nagakawa & Schielzeth,  2013, Johnson, 2014, Schielzeth et al., 2020). 

We computed models of the individual predictors in all possible combinations (Stoffel et al., 

2021; predictors: four fixed factors, one interaction, and three random factors). The possible 

combinations were determined by the mandatory specifications of the used algorithm. At least 

one random factor was compulsory for glmmTMB. The computations delivered the R2 

proportions of the fixed and random factors for the models (as the conditional and marginal 

R2s). We decomposed the R2s per explanatory variable as described in the computation 

procedure of the R packages PartR2 (Stoffel et al., 2021) and rptR (Stoffel et al., 2017). We 

selected four models, all with an almost identical AIC at a stable minimum and a maximized 

pseudo-R2 (model selection criteria; Myung, 2000. Appendix, Table A4(a) and (b)). We 

evaluated the model performances with the packages jtools (Long 2017), sjPlot (Lüdecke, 

2021), and residual information. We also analyzed the models with the DHARMa diagnostics 

package (Hartig, 2020). We performed a Kolmogorov-Smirnov (KS) test (normal distribution 

of the residuals), an overdispersion, and an outlier test. The p-values were calculated for each 

model (Appendix, Figure A5, Appendix, Table A4(a) based on 500 replications.    

While we counted synNum per accepted species, we computed a synonymy rate (synRate) from 

the sum of accepted species and their collective synNums (both from the counted, hereafter: 

observed, and predicted by the GLMM model) of a given group (synRate = (synNum/(sum of 

accepted names + synNum)) * 100 [%]; Lughadha et al., 2016). The predicted values were 

reverted from the natural log using the R exp function. The synRates allowed a species richness-

independent ranking of each categorical predictor level based on the observed or predicted 

synNum (predicted: from the model) they accumulated or computed for their accepted names 

(family, genus and BC). The predicted synNum were higher than the observed synNum. For 

example, we extracted the observed and predicted synonyms per botanical continent using the 

variable BC as a presence indicator. We summed the synonym numbers per botanical continent 



according and analyzed the variation between observed and predicted synonym numbers (a) per 

botanical continent and (b) across botanical continents (Figure 1). 

For the data retrievals, manipulations, analyses, and modeling in this study, we employed R 

Studio and R versions 3.0.2-3.2.1 (R core team, 2013). 

Results 

Data basis for model fitting  

The data cleaning exhibited out-of-scope species records, i.e., non-angiosperms (27,538 

records, including 12,928 erroneous records and 176 unplaced records, respectively marked by 

the WCSP; 5.1%, based on the initial 537,000 WCSP seed plant records), unplaced angiosperm 

names (7,799 records, 1.5%), subspecific angiosperm names including their synonyms (45,715 

records, 8.5%), and species, occurring on the continent of Antarctica (1,608 records, 0.3%). 

Among the species of interest, we also found records lacking correct values for essential 

variables. This category contained 2,052 accepted names and synonyms where no oldest name 

was available (leaving the publishing year and, subsequently, the age of an accepted name 

variable empty; 0.4%). This category comprised erroneous synonym records containing 

nonsensical data in variables essential for our study (24,542 records, 4.6%, e.g., zeroes, text in 

the publication year) that could not be matched to an accepted name. This category also 

included 1,661 accepted names with 5,381 synonyms that were not assigned to a BC (1.3%) 

and 3,219 accepted names with 17,863 synonyms that were missing proper values in one or 

more of the relevant predictor variables (3.9%). During data cleaning, we removed a total of 

137,798 records (25.7%, summed from the individual percentages). 

We ultimately obtained 137,378 accepted names (25.6%) with a total of 261,824 synonyms 

(48.8%) present in 355 TDWG units. The synNum varied strongly between zero and 377, mean 

synNum was 1.904, median synNum was 1, and the distribution was strongly right-skewed 

(skewness coefficient: 17.58) with a steep kurtosis (685.65). Natural log-transforming the 

synNum led to a slightly right-skewed, approximated normal distribution (skewness coefficient: 

1.33, kurtosis: 4.68, Appendix, Table A2(a)). 68,979 of 137,378 accepted angiosperm names 

(50.2%) had no synonyms, while five names accumulated more than three hundred synonyms 

each since 1753. The five accepted species with the highest synonym numbers were Mentha 

arvensis L. (377 synonyms), Sorghum bicolor (L.) Moench (344 synonyms), Pandanus 

tectorius Parkinson ex Du Roi (321 synonyms), Oryza sativa L. (320 synonyms), and Mentha 



aquatica L. (302 synonyms). Table 2 lists the top-fifteen accepted names with the highest 

synonym numbers among angiosperms available in the WCSP.  

The synonym numbers differed significantly across families and genera. Synonym numbers per 

family varied from no synonyms (in sixteen out of 193 families) to more than 40,000 in the 

Poaceae (47,443 synonyms) and Orchidaceae (43,839 synonyms). Cannaceae exhibited the 

highest synRate (95.2%) of all families for the twelve accepted names and 238 synonyms 

(synNum [mean]: 19.83). The relatively small family Potamogetonaceae took second place 

(88.2%) with 106 accepted names and 790 synonyms (synNum [mean]: 7.19). Large families 

such as the Poaceae ranked 12th with a synRate of 80.4% (synNum [mean]: 4.11). The 

Orchidaceae ranked 99th with a synRate of 60.3% (synNum [mean]: 1.5). (Details: Table A6(a)). 

At the generic level, synNum varied by four orders of magnitude, ranging from zero synonyms 

(in a total of 578 genera out of 5,019) up to more than 4,000 (Carex, synNum [mean]: 2.42) and 

3,000 (Dendrobium, synNum [mean]: 1.95, Euphorbia, synNum [mean]: 2.46, and Cyperus, 

synNum [mean]: 3.54). The highest synRates were found for Ricinus (R. communis, one 

accepted name and 212 synonyms) and Phillyrea (two accepted names and 247 synonyms). 

Both had a synRate of more than 99% (Details: Table A6(b)).  

The synRates also varied among the botanical continents (Figure 1, Table 3). Europe, Pacific, 

and North America emerged as the continents with the highest synRates from observed 

synonym numbers (90.7%, synNum [mean]: 9.79; 85.6%, synNum [mean]: 5.96; 84.2%, 

synNum [mean]: 5.31).  

Drivers of synonym numbers 

Collinearity among the explanatory variables was generally low and highest between the 

numerical variables range size and age of the accepted name (absolute Pearson correlations of 

0.35). Repeated testing of different error distributions and the DHARMa diagnostics showed 

that the best model performances were obtained using the glmmTMB package, the Poisson/zero-

inflation error distribution, and the logit-link function (Appendix, Table B2). Iterative GLMM 

analyses resulted in four fitted models of very similar model parameters, performing nearly 

equally well. As a result, the AIC values and the conditional and marginal R2s of the four models 

were also similar (Appendix, Table A4(a)), ranging from 4.880E+05 to 4.882E+05. The RSME 

of 4.005 revealed a high predictive accuracy with a quantified average error of 4%. The 

conditional R2s ranged from 0.958 to 0.964, and the share of the fixed factors (marginal R2) 

ranged from 0.396 to 0.414. Only Model 4 met the equidispersion requirement (conditional R2 



of 0.989, fixed factors: 0.414). According to DHARMa diagnostics (Appendix, Figure A5), the 

models did not show significant zero inflation (i.e., given the fitted model, the expected and 

modeled zeroes were in the same range, Hartig, 2019). Thus, we selected Model 4 as the final 

model to explain the combined drivers of synonym numbers.  

The combined multi-predictor GLMM model 4 explained about 41% of the global variation in 

angiosperm synonym numbers (96% including the random effects; Table 3). The model 

included the range size (explaining 21.0% of the variation in synonym numbers), the age of an 

accepted name (11.6%), and insularity (5.6%) as main predictors (Table 3). We observed root-

mean standard errors (RMSE) between 4 to 5% suggesting that the variables were highly 

predictive. Range size had a positive effect on the accumulation of synonym numbers. The 

larger the range size of an accepted species, the more synonyms it accumulated (Rank 1, Figure 

2B – with insularity, Table 3). The age of an accepted species had a positive effect on the 

species’ accumulated synonym numbers (Figure 2C): The more time had passed since the 

description of a species name, the more synonyms it accumulated. (Rank 2, Figure 2C, Table 

3). The three insularity types showed a positive effect on species’ accumulated synonym 

numbers, albeit to different extents, as displayed in the regression lines with varying points of 

intersection and slopes (Rank 3, Figure 2B). Species found on islands had a significantly lower 

synRate than those found on the mainland or even both islands and the mainland (99 percent 

confidence interval: p < 2.2e-16). Species observed only on islands showed a synRate of 51.0% 

(synNum [mean]: 1.04), and species only present on the mainland showed a synRate of 58.2% 

(synNum [mean]: 1.39). Yet, species present in both showed a synRate of 89.0% (synNum 

[mean]: 8.09). The working residuals (Hardin & Hilbe, 2007) varied somewhat for the range 

size and the age of the accepted name, and they varied slightly within the insularity based on 

the range size (Figures A7a-c). For the age of an accepted name, the working residuals varied 

only slightly. We also found differences for the BCnum and the interaction of the range size 

and insularity (Table 3). The number of botanical continents on which a species is present had 

a positive effect on accumulated synonym numbers, but showed only weak effects on global 

synonym numbers (Rank 4, Figure 2A, Table 3). The interaction of insularity and the range size 

showed very weak effects (Rank 5, Figure 2B, Table 3). The botanical continent’s synRates 

(predicted synonym numbers from the patterns, split per botanical continent: BC) confirmed 

the ranking from the observed synonym numbers, but were higher. For Europe, a predicted 

synRate of 96.5% was computed, followed by Pacific with 94.6%, and North America with 

93.3%. The observed synRate of South America increased from 67.8% to a predicted synRate 



of 86.7%, similar to Asia-Tropical, where the observed synRate increased from 69.9% to 87.6% 

(Figure 1).  

Discussion 

In this study, we analysed geographical and taxonomical patterns and drivers of synonymy of 

137,378 accepted angiosperm names and 261,824 synonyms from 5,019 genera and 193 

families on eight botanical continents. We examined five competing but not mutually exclusive 

hypotheses of synonym numbers (Hypotheses H1 to H5, Table 1). We observed a large 

variation in synonym numbers in the used global subset of angiosperms ranging from zero 

(about 50% were accepted names without synonyms) to 377 synonyms. Variation in synonym 

numbers was associated with all drivers investigated, which positively affected the 

accumulation of synonym numbers, but range size, the age of an accepted name, and insularity 

emerged as the primary drivers. Together, these three drivers explain about 41% of the global 

variation in angiosperm synonymy, the results are presented in order of their relative 

importance, below.  

Drivers of synonym numbers 

Among all analyzed factors, the range size (H4) emerged as the driver with the highest 

predictive power for the accumulation of synonyms among the three primary drivers. This 

finding supports the hypothesis that widespread angiosperm species collect more synonyms 

than range-restricted species as the the geographical distance between taxonomists is large 

(Baselga et al., 2010, Fenneman, 2017, Figure 2B).  

The age of an accepted name (H5) served as the proxy for the time that passed since the 

publication of an accepted angiosperm name. This variable also positively affected synonym 

numbers and ranked second in predictive power. The result corroborates the "historical 

accumulation of names” hypothesis which states that the more time had passed since the 

description of a species' name, the more synonyms it accumulated (e.g., Baselga et al., 2010, 

Joppa et al., 2011, Figure 2C).  

In our analyses, the three insularity types positively affected the accumulated synonym numbers 

(H3: rank 3). However, we found differences between the types' accumulation extent (Figure 

2B). Computed from counted synNum, the synRate of species present on islands and the 

mainland show 89.0%, compared to the synRates of species restricted to islands (51.0%) and 

the mainland (58.2%). Computed from predicted synNum, the synRate of species present on 

islands and the mainland still shows 63.1%, while the synRates of islands and mainland species 



drop to 2.2% and 6.3%, respectively. The results are probably due to extended species' ranges, 

and the ranges increased complexity.    

Synonym numbers were unevenly distributed among the studied families and genera and 

differed significantly (Hypothesis H1). The rank positions of families and genera (by synRate) 

may hint at particular taxa being more notable than others. For example, some families are 

morphologically difficult (e.g., Poaceae), others tend to produce hybrids (e.g., Betulaceae). 

Also, the attractiveness of a taxon may have a decisive impact on taxonomists’ motivation in 

general (Henrich & Gil-White, 2000, Pimm & Joppa, 2015, Jensen, 2019). However, 

attractiveness is subjective and difficult to quantify. Thus, our results cannot support findings 

in previous studies which suggested that particular families, like Orchidaceae, accumulate more 

synonyms due to being more attractive to researchers than others (Pillon & Chase, 2006, 

Lughadha et al., 2016) (Tables A6(a) and (b). Yet, the attractiveness of taxonomic study objects 

in the selection process of researchers (e.g., due to specific pollination mechanisms, ecology, 

and horticultural value, Heß, 1990, Lughadha et al., 2016) may warrant a study on their 

consequences on research biases. 

The expectation that species in particular botanical continents and continent combinations will 

accumulate synonyms more frequently was confirmed. However, the botanical continent 

proved to be a contradicting driver when comparing the predictive power of the continent 

patterns to the number of continents a species is present. With almost 32%, the botanical 

continent accounted for a dominant proportion as a random effect (H2a, continent patterns: high 

conditional pseudo R2 share). The number of continents, a species is present, had a positive 

effect on the accumulation of synonyms, albeit with very low predictive power, accounting only 

for 3% of the global variation (H2b, number of continents: very low marginal pseudo R2 as a 

fixed effect). 

Synonym numbers varied systematically by botanical continent (Hypothesis 2a). Europe, 

Pacific, and North America emerged as the continents with the highest synRates based on 

observed synonym numbers (from nearly 85% to more than 90%). The synRates from predicted 

synonym numbers confirmed these results, although predicted synonym numbers were slightly 

higher (by about 10%) as compared to observed synonym numbers. Contrary to this overall 

trend, the observed synRate of South America and Asia-Tropical, however, increased by 15 to 

20% (Figure 1). Overall, these results are consistent with the notion that numbers of invalid, 

infraspecific, and hybrid names are significantly higher in Europe than in surrounding areas, 

which coincides with the high number of systematists working there (Pillon & Chase, 2006). 



(Hypothesis 2b). Also, for the Eupelmidae (family of parasitic wasps), it was found that the 

larger their species range size and the more western a Eupelmid species was located, the earlier 

a species was described both in Afrotropical and in the Palearctic biogeographical regions 

(Baselga et al., 2010). 

Considering species with high synonym numbers, it is striking that mostly their range is 

recorded across a higher number of botanical continents. In addition, some of these species are 

native only to one or a few continents. The botanical continent's predictive power was possibly 

influenced by such species introduced to new continents. The extension of species' range sizes 

due to cultivation or invasiveness may have created new opportunities for species to accumulate 

additional synonyms outside their native range. For example, Mentha arvensis with 377 

synonyms was a taxon in our analysis that accumulated the highest number of synonyms. The 

species is native to Africa and Asia-Tropical, and was introduced to Europe in the 16th century 

as a pharmaceutical (Roy et al. 2020). M. arvensis was introduced to at least ten countries 

(GBIF, 2022), and recorded for seven out of eight continents by the WCSP (WCSP, 2020a). Its 

European relative M. aquatica (302 synonyms) is likewise pharmaceutically significant. It was 

introduced to at least seven countries (GBIF, 2022), and recorded for five out of eight continents 

by the WCSP (WCSP, 2020a). Today known as one of the most important crops worldwide 

(Dial 2012), Sorghum bicolor (344 synonyms) is an even more extreme example than M. 

arvensis, having been introduced to 54 countries or islands on eight out of eight continents 

(WCSP 2020a, GBIF 2022). S. bicolor originated in the savannahs of north-eastern Africa (De 

Wet & Harlan, 1971). Effects from such events were not considered in the models. Taking all 

findings into account, it may be interesting to investigate the role of the botanical continent on 

the accumulation of synonyms further. 

Conclusion 

In our study, we identified range size, the age of an accepted name, and insularity as the main 

drivers that positively affected the global variation of synonym numbers. Residual differences 

in the number of botanical continents and the interaction of insularity and the range size became 

less significant. Our combined multi-predictor model explained about 41% of the global 

variation in angiosperm synonymy. Four main interpretations emerged from the study. First, 

the geographic distance between taxonomists caused widespread and insular species to 

accumulate more synonyms. Also, the time passed since the publication of an accepted species 

played a dominant role – a trend that is expected by chance. Second, the rank positions of 

families and genera may hint at particular taxa being more appealing than others. Thus, the 



attractiveness of taxonomic study objects in the selection process of researchers and the 

associated research bias may warrant further study. Third, the predictive power of the continent 

patterns (high) and the number of continents a species is present (low) contradict each other. 

Also, the artificial extension of species on the botanical continents due to cultivation or 

invasiveness needs more attention. Therefore, it may be interesting to further explore the 

botanical continent's role. Fourth and finally, the outcome of this study likely has implications 

for a wider range of plant families and genera and might also extend to other groups of 

organisms. 
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Tables 

  



Table 1. Hypotheses summary: Drivers of synonym numbers, affecting the variation in synonym numbers 

and synonymy rates (synRate). Species which are affected by the drivers described in the hypotheses below are 

expected to accumulate synonyms more frequently.  

H1. Synonym number and synRate vary among families or genera. Species belonging to particular 

angiosperm families and genera – regardless of the higher taxonomic level’s species number – have an 

increased probability of being described as different species (Pillon & Chase, 2006, Lughadha et al., 

2016). Thus, we expected species of these families and genera to accumulate synonyms more frequently. 

Explanatory variables: family and genus (both categorical). 

H2a. Synonym number and synRate vary across the botanical continents / continent combinations. 

Species present in specific continents and continent combinations have an increased probability of being 

described as different species. We expected species being present in particular botanical continents and 

continent combinations to accumulate synonyms more frequently. 

Explanatory variable: occurrence on TDWG botanical continent(s) (except Antarctica) (eight-digit 

variable, binary: Y = 1 / N = 0). 

H2b. Synonym number and SynRate vary with the number of botanical continents where species 

are present. Species present on more than one botanical continent have an increased probability of being 

described as different species. We, thus, expected species present on many botanical continents to 

accumulate synonyms more frequently than species occurring on only one or few continents (extension 

of H4, below).  

Explanatory variable: number of botanical continents a species occurs (numerical: 1 to 8). 

H3. Synonym number and synRate vary with the insularity of a species. Species present on islands 

have an increased probability of being described as different species than species occurring on the 

mainland. We expected species present on islands to accumulate synonyms more frequently than species 

occurring on the mainland only. 

Explanatory variable: insularity of a species, on islands only, on the mainland only, and both on islands 

& the mainland (using the TDWG classification of the respective botanical country as island or mainland).   

H4. Synonym number and synRate vary among species range sizes. Wide-ranging species are more 

likely to be described as different species (proxy for the geographic distance between taxonomists) than 

species with small ranges. We expected species with large ranges to accumulate synonyms more 

frequently than species with small ranges (Baselga et al., 2010, Fenneman, 2017). 

 Explanatory variable: range size, computed as the sum of TDWG countries where a species occurs 

(Source: TDWG shapefile data frame). 

H5. Synonym number and synRate vary with the age of a species' accepted name. Species' accepted 

names validly published a long time ago had more time to accumulate synonyms than recently published 

accepted names (Alroy, 2002, Baselga et al., 2010). We expected early published names to accumulate 

synonyms more frequently than recently published names. 

Explanatory variable: age of a species' accepted name or – if not available or younger than the first 

published synonym –  its oldest synonym.   

  



Table 2. Summary of the fifteen accepted species names with the highest synonym numbers among the 

angiosperms studied. Images A to D show the four species with the highest synonym numbers per species name. 

(Images: A, Mentha arvensis; B, Sorghum bicolor; C, Pandanus tectorius; D, Oryza sativa). Column pubYear 

(Publication year: For each scientific name marked with *, the publication year was determined using the oldest 

synonym in the absence of the publication year of the accepted name. (Images: A: Ivar Leidus, B: Forest & Kim Starr. 

C: Judgefloro. D: C.T. Johansson. Creative commons licences: A, B, and D: CC BY-SA 3.0; C: CC BY-SA 4.0.) 

 

Family Scientific name  synNum pubYear  BotCont Human use 

Lamiaceae Mentha arvensis L.  377 1753 1 to 5,7,8 medicinal, spice 

Poaceae * Sorghum bicolor (L.) Moench 344 1753 1 to 8 staple food (crop) 

Pandanaceae Pandanus tectorius Parkinson ex Du Roi 321 1774 2 to 8 food, building 

Poaceae Oryza sativa L. 320 1753 1 to 8 staple food (crop) 

Lamiaceae Mentha aquatica L. 302 1753 1 to 3,7,8 medicinal, spice 

Asparagaceae * Cordyline fruticosa (L.) A.Chev. 233 1754 2 to 8 ornamental gardening 

Poaceae Festuca rubra L. 222 1753 1 to 8 ornamental gardening 

Euphorbiaceae Ricinus communis L. 212 1753 1 to 8 medicinal 

Poaceae Agrostis stolonifera L. 209 1753 1 to 8 ornamental gardening 

Rubiaceae Kadua affinis Cham. & Schltdl. 200 1829 6 ornamental gardening 

Oleaceae Phillyrea latifolia L. 187 1753 1 to 3 ornamental gardening 

Campanulaceae Campanula rotundifolia L. 179 1753 1,3,5,7,8 ornamental gardening 

Myrtaceae * Myrcia splendens (Sw.) DC. 170 1788 7,8 medicinal, fruits, timber 

Poaceae Festuca ovina L. 168 1753 1 to 4,7,8 - 

Cannaceae Canna indica L. 166 1753 1 to 8 ornamental gardening 

BotCont, botanical continent: 1 = Europe, 2 = Africa, 3 = AsiaTemperate, 4 = AsiaTropical, 5 = Australasia, 6 = Pacific  , 7 = 

Northern America, 8 = Southern America. synNum: synonym number. 

  



Table 1. Global model of angiosperm synonymy. Selection conditions of the model were: (1) AIC at a stable 

minimum, (2) maximized pseudo-R2, (3) DHARMa performance tests successful. Result of GLMM of a combined 

eight-predictor model, by random factors and fixed factors. H1 to H5: Hypotheses (see: Table 1). ***, p < 0.001. 

The table below is an extract of Table A4(b) (Appendix).  

Hypothesis Combined model R2 share RMSEmean z Variation 

 Random Factor R2 share 0.544 -  54.4% 

H2(a) Botanical continents (Presence on particular continents) 0.302 4.857 - 30.2% 

H1 Genus 0.223 4.404 - 22.3% 

H1 Family 0.019 4.930 - 1.9% 

 Fixed Factor R2 (Marg.) 0.414 -  41.4% 

H4 Range size 0.201 4.621    69.7 *** 20.1% 

H5 Age of accepted name 0.111 4.698  139.9 *** 11.1% 

H3 Insularity 0.054 4.800   -31.9 *** 5.4% 

H2(b) No. of botanical continents (a species is present) 0.029 4.763      3.6 *** 2.9% 

H3*H4 Range size * Insularity 0.019 5.078    17.8 *** 1.9% 

 Total R2 (Cond.) 0.958 4.005  95.8% 

  



Figures 

  



 

Figure 1. Variation of synonym numbers across botanical continents (random factor), by synonymy rates 

(observed: blue, predicted: light blue). We extracted the observed and predicted synonym numbers per botanical 

continent using the BC (eight-digit presence-absence pattern) as a presence indicator. We summed the synonym 

numbers per botanical continent and analyzed the variation between observed and predicted (a) per botanical 

continent and (b) across botanical continents. Observed synonym numbers were counted when linking synonyms 

to their parent species name. Thus, the observed synonymy rates (synRate) are derived from this number for the 

synRate formula. The predicted synonym number is derived from the glmmTMB model. Thus, the predicted 

synRate is used in the formula. Both the observed and the predicted synRates were computed as: synRate = 

(synNum/(accepted names + synNum)) * 100 [%] (Lughadha et al. 2016). The synRates allowed for a relative level 

ranking independent of each continent's absolute synonym number. Europe (90.7%), Pacific (85.6%), and North 

America (84.2%) emerged as the continents with the highest synRates from observed synonym numbers. The 

predicted synRates were even higher. For Europe, a synRate of 96.5% was computed, followed by Pacific with 

94.6%, and North America with 93.9%. The observed synRate of South America increased from 67.8% to a 

predicted synRate of 86.7%, similar to Asia-Tropical, where the observed synRate increased from 69.9% to 87.6% 

(predicted). 



   

Figure 2. Variation of synonymy rates (from the predicted fixed factor synonym numbers): A: Number of 

botanical continents, a species is present, rank 4. B: "Range size" and "Insularity" (H3/H4), individual predictor 

ranking: "Insularity", rank 5, "Range size", rank 1, interaction: rank 5. The working residuals vary by the species' 

insularity. C: "Age of an accepted name" (H5), rank 2. The plots were prepared using the effects package (Fox et 

al. 2016).   



 

Appendix 

  



 

Figure A1(a). Correlation test of predictor pair “Number of botanical continents present” (H3BCsum) and “Insularity” (H4LF). The correlation coefficient shows that the 

predictors are likely uncorrelated (0.458). (Plot: GGally package, ggpairs function, Schloerke et al. 2018). 



 

 

 

Figure A1(b). Correlation test of predictor pair “Number of botanical continents present” (H3BCsum) and “Range size” (H5Rangesize). The correlation coefficients show 

that the predictors are likely uncorrelated. 



  

Figure A1(c). Correlation test of predictor pair “Number of botanical continents present” (H3BCsum) and “Age of a species' name” (H6age, as the proxy for the time 

passed since the publication of the accepted name). The correlation coefficients show that the predictors are likely uncorrelated. 



 

 

 

Figure A1(d). Correlation test of predictor pair “Insularity” (H4LF) and “Range size” (H5rangesize). The correlation coefficient shows that the predictors are likely 

uncorrelated. 



 

Figure A1(e). Correlation test of predictor pair “Insularity” (H4LF) and “Age of a species' name” (H6age, as the proxy for the time passed since the publication of the 

accepted name). The correlation coefficient shows that the predictors are likely uncorrelated. 



 

 

 

Figure A1(f). Correlation test of predictor pair “Range size” (H5rangesize) and “Age of a species' name” (H6age, as the proxy for the time passed since the publication 

of the accepted name). The correlation coefficients show that the predictors are likely uncorrelated. 



Table B2. (a) Density distribution of the log-transformed synonym number (synNum). Observed distribution: grey; superimposed normal distribution: dashed blue. The synNum 

showed non-normal distribution with positive (right) skewness (skewness coefficient: 1.33, kurtosis: 4.68), indicating zero-inflation in the count data (Density plot: ggdensity, 

Kassambara 2020a). (b) Analysis of potential count data issues and solutions. Frequent issues to be handled in count data are zero-inflation and overdispersion. Table: Comparison 

of three suitable model-fitting methods to best handle the count data issues, using the final model parameters (lme4: Bates et al. 2015). The Poisson distribution, that included zero-

inflation (glmmTMB package, Bolker 2016), showed the optimal model-fitting results in the DHARMa diagnostic tests (Hartig 2020). 

(a) 

 

(b) GLMM Poisson Poisson/zi negative binomial 

  R package lme4::glmer glmmTMB lme4::glmnb 

  R2 cond 

R2 marg (fixed) 

0.939 0.958 0.705 

  0.398 0.414 0.361 

  AIC (E+05) 5.032 4.880 4.022 

  RMSE 3.948 4.005 4.882 

  DHARMa diagnostics    

  KS test: deviation p = 0, sign. p = 0, sign. p = 0, sign. 

  Dispersion: dev. p = 0.032, sign. p = 0.504, n. sign. p = 0, sign. 

  Outlier test: dev. p = 0.004, n. sign. p = 0.454, n. sign. p = 0, n. sign. 



 

 

 

Figure A3. Random Factor selection: Taxonomic Family and Genus, and Botanical Continents, a Species is 

Present (Factors). Each grouping factor per random factor has its own random intercept. We selected these 

predictor variables with high level numbers as random factor (McGill 2015). The three variables also exhibited 

low standard errors and very low p-values (< 0.001), suggesting that they were predictive. 

 



 

Tables B4, (a) and (b). Performance diagnostics and model evaluation. (a) Determining details of the model, by the explanatory variables, we found that model 4 minimized the 

Akaike information criterion, increased the pseudo-R2s (Diagnostics: jtools, Long 2017, sjPlot, Lüdecke 2021), and reduced overdispersion and zero inflation below a significant 

threshold, as als shown in the final DHARMa diagnostic tests (Appendix, Figure A5). (b) Four global models of angiosperm synonymy. Selection conditions of the models were: 

(1) AIC at a stable minimum, and (2) a maximized pseudo-R2. Result of GLMM of a combined nine-predictor model, by random factors and fixed factors. H1 to H5: Hypotheses 

(see: Table 1). ***, p < 0.001. 

(a) GLMM Model 1 Model 2 Model 3 Model 4 

 Performance parameters:    

 R2 cond  0.964 0.964 0.958 0.958 

 R2 marg (fixed factors) 0.421 0.440 0.396 0.414 

 Random factor share 0.543 0.524 0.562 0.544 

 AIC (E+05) 4.882 4.882 4.880 4.880 

 RMSE 4.005 4.005 4.005 4.005 

 DHARMa residual diagnostics:   

 KS test: deviation p = 0, sign. p = 0, sign. p = 0, sign. p = 0, sign. 

 Dispersion: dev. p = 0.008, sign. p = 0.016, sign. p = 0.252, n. sign. p = 0.504, n. sign. 

 Outlier test: dev. p = 0, sign. p = 0.230, n. sign. p = 0, sign. p = 0.454, n. sign. 

(b) Factor Model 1 Variation Model 2 Variation Model 3 Variation  Model 4 Variation 

 Random Factor R2 share 0.543 
 

0.524 
 

0.562 
 

 0.544 
 

 Botanical continents 0.312 31.2% 0.301 30.1% 0.311 31.1%  0.302 30.2% 

 Genus of species 0.231 23.1% 0.223 22.3% 0.231 23.1%  0.223 22.3% 

 Family of species - 0.0% - 0.0% 0.020 2.0%  0.019 1.9% 

 Fixed Factor R2 (Marg.) 0.421 
 

0.440 
 

0.396 
 

 0.414 
 

 Range size 0.214 21.4% 0.215 21.5% 0.202 20.2%  0.201 20.1% 

 Age of accepted name 0.118 11.8% 0.118 11.8% 0.111 11.1%  0.111 11.1% 

 Insularity 0.058 5.8% 0.058 5.8% 0.054 5.4%  0.054 5.4% 

 No. inhab. continents 0.031 3.1% 0.031 3.1% 0.029 2.9%  0.029 2.9% 

 Range size * Insularity - 0.0% 0.018 1.8% - 0.0%  0.019 1.9% 

 Total R2 (Cond.) 0.964 
 

0.964 
 

0.958 
 

 0.958 
 



 

 

 

Figure A5. DHARMa diagnostic protocols (Hartig 2020) for the four best-performing models 1 to 4. See also: Table 3 and Appendix, Tables A4, (a) and (b) for further details. 



 

Table A6(a). 25 angiosperm families with the highest synRates. Listed are families with more than 10 accepted 

names. Large families such as Orchidaceae (28,899 accepted names, rank 99), Rubiaceae (10,796 accepted names, 

rank 94), and Myrtaceae (5,778 accepted names, rank 96) rank in the middle, due to their synRate. B6(b). 25 

angiosperm genera with the highest synRates. Notably, many of the genera in the table have only one or a few 

accepted species (names). Images: Angiosperm families (Table A6(a): A. Canna generalis, Pos. 1; B: 

Potamogeton gramineus, Pos.2) and genera (Table A6(b): C. Rizinus communis, Pos. 1; D: Phillyrea angustifolea, 

Pos. 2). Abbreviations: accNum: Number of accepted species. synNum: Number of synonyms. synRate: synonymy 

rate. 

 

 Table B6(a).     

Pos family accNum synNum synRate% Ratio: synnum/accnum 

1 Cannaceae 12 238 95.20% 19.8 

3 Potamogetonaceae 106 790 88.20% 7.5 

5 Ruppiaceae 11 69 86.30% 6.3 

7 Irvingiaceae 12 67 84.80% 5.6 

8 Paeoniaceae 36 187 83.90% 5.2 

10 Betulaceae 172 846 83.10% 4.9 

11 Stilbaceae 21 100 82.60% 4.8 

12 Juncaginaceae 22 99 81.80% 4.5 

13 Cornaceae 103 463 81.80% 4.5 

14 Typhaceae 62 272 81.40% 4.4 

15 Pontederiaceae 45 193 81.10% 4.3 

17 Alismataceae 138 583 80.90% 4.2 

19 Poaceae 11540 47443 80.40% 4.1 

20 Tofieldiaceae 28 114 80.30% 4.1 

24 Basellaceae 19 76 80.00% 4.0 

26 Fagaceae 958 3757 79.70% 3.9 

28 Oleaceae 619 2162 77.70% 3.5 

29 Plantaginaceae 57 198 77.60% 3.5 

31 Cymodoceaceae 18 61 77.20% 3.4 

36 Altingiaceae 15 48 76.20% 3.2 

37 Pandaceae 17 54 76.10% 3.2 

39 Juncaceae 470 1460 75.60% 3.1 

40 Bignoniaceae 874 2710 75.60% 3.1 

41 Melanthiaceae 184 554 75.10% 3.0 

46 Nothofagaceae 38 113 74.80% 3.0 



 

 

      

 Table B6(b).     

Pos H1family genus recnum synNum synRate 

1 Euphorbiaceae Ricinus 1 212 99.5% 

2 Oleaceae Phillyrea 2 247 99.2% 

3 Poaceae Avenula 1 83 98.8% 

4 Arecaceae Cocos 1 56 98.2% 

5 Apocynaceae Nerium 1 45 97.8% 

6 Campanulaceae Platycodon 1 41 97.6% 

7 Poaceae Arctophila 1 41 97.6% 

8 Poaceae Molinia 2 77 97.5% 

9 Lamiaceae Mentha 24 889 97.4% 

10 Poaceae Apluda 1 36 97.3% 

11 Poaceae Taeniatherum 1 34 97.1% 

12 Poaceae Vulpiella 1 34 97.1% 

13 Poaceae Sasaella 11 341 96.9% 

14 Poaceae Oplismenus 7 212 96.8% 

15 Myrtaceae Blepharocalyx 4 120 96.8% 

16 Araceae Pistia 1 29 96.7% 

17 Poaceae Vahlodea 1 27 96.4% 

18 Potamogetonaceae Stuckenia 7 176 96.2% 

19 Hydrocharitaceae Hydrilla 1 25 96.2% 

20 Asparagaceae Eustrephus 1 25 96.2% 

21 Potamogetonaceae Groenlandia 1 25 96.2% 

22 Apocynaceae Apocynum 4 97 96.0% 

23 Poaceae Trachypogon 4 97 96.0% 

24 Poaceae Dupontia 1 24 96.0% 

25 Poaceae Ampelodesmos 1 24 96.0% 

Image credit and Licenses: A: Bob Dass, B: Krzysztof Ziarnek, C: Kurt Stueber, D: K. Vliet. Creative commons 
licences: A: CC-BY-2.0, B: CC-BY-SA-4.0, C: CC BY-SA 3.0-migrated, D: CC A-Share Alike 4.0 International. 

  



 

Figure A7. Working residuals of the global model of angiosperm synonymy. (a) The working residuals vary 

with the number of botanical continents, a species is present (variable BCNum; (b), the working residuals vary 

within the different insularities and the range size, respectively, (c) The working residuals vary with the age of an 

accepted name. Details regarding the predictor rankings, see Table 3). All residual plots support the confidence 

intervals of the predicted regression lines. The plots were prepared, using the effects package (Fox et al. 2016). 


