Code sharing increases citations but remains uncommon

Brian Maitner¹, Paul Santos Andrade², Luna Lei³, Jamie Kass⁴, Hannah Owens⁵, George Barbosa⁶, Bradley Boyle⁶, Matiss Castorena⁶, Brian Enquist⁷, Xiao Feng⁸, Daniel Park⁹, Andrea Paz¹⁰, Gonzalo Pinilla-Buitrago¹¹, Cory Merow¹², and Adam Wilson¹

November 15, 2023

Abstract

Biologists increasingly rely on computer code to collect and analyze their data, reinforcing the importance of published code for transparency, reproducibility, training, and a basis for further work. Here we conduct a literature review examining temporal trends in code sharing in ecology and evolution publications since 2010, and test for an influence of code sharing on citation rate. We find that there is wide room for improvement in sharing code, as scientists are overwhelmingly (95%) failing to publish their code and that there has been no significant improvement over time. We also determined that there is a significant incentive to share, as we additionally find that code sharing can considerably improve citations, particularly when combined with open-access publication.

Hosted file

¹University at Buffalo Department of Geography

²Universidad Nacional de San Antonio Abad del Cusco

³University at Buffalo

⁴Tohoku University Graduate School of Life Sciences

⁵University of Copenhagen Globe Institute

⁶University of Arizona

⁷University of Arizona, USA

 $^{^8{\}rm The~University}$ of North Carolina at Chapel Hill

⁹Purdue University

¹⁰ETH Zurich

¹¹City University of New York

¹²University of Connecticut