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Abstract

The coupling between subducted slabs and trailing plates is often conceptualised in terms of a net in-plane force. If a significant

fraction of upper-mantle slab buoyancy (e.g. ˜ 25%) were transferred in this manner, a net in-plane force on the order of 5-10

TN/m would be typical of the trailing plates. Results from a numerical subduction model are presented here which question

both the magnitude and-perhaps more profoundly-the mode of force transmission. In this model the subducting plate (SP)

driving force is predominantly supplied by differences in gravitational potential energy (GPE). The GPE associated with plate

downbending (flexural topography) provides about half the total driving force. The magnitude of the trench GPE is related to

the amplitude of topography, but is mediated by the internal stress distributions associated with bending. Above the elastic

core, the stress is Andersonian and vertical normal stresses are lithostatic. This implies horizontal gradients in the vertical

normal stress, across columns of different elevation in the outer slope. The bulk of the trench GPE arises from this upper,

extensional section the lithosphere. Vertical shear stress (and horizontal gradients thereof) are concentrated in the elastic core of

the slab, where principal stresses rotate through 90 degrees. In this region, horizontal gradients in vertical normal stress rapidly

diminish; they fully equilibrate at about twice the neutral plane depth. For the deepest trenches on Earth, these relationships

imply trench GPE of up to about 5 TN/m. The model demonstrates that mantle slabs can drive plate tectonics simply through

downbending, where the predominant mode of slab-plate coupling is via the vertical shear force and bending moment.
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Abstract5

The coupling between subducted slabs and trailing plates is often conceptualised in6

terms of a net in-plane force. If a significant fraction of upper-mantle slab buoyancy (e.g.7

25%) were transferred in this manner, a net in-plane force on the order of 5-10 TNm−1
8

would be typical of the trailing plates. Results from a numerical subduction model are9

presented here which question both the magnitude and – perhaps more profoundly –10

the mode of force transmission. In this model the subducting plate (SP) driving force is11

predominantly supplied by differences in gravitational potential energy (GPE). The GPE12

associated with plate downbending (flexural topography) provides about half the total13

driving force. The magnitude of the trench GPE is related to the amplitude of topogra-14

phy, but is mediated by the internal stress distributions associated with bending. Above15

the elastic core, the stress is Andersonian and vertical normal stresses are lithostatic.16

This implies horizontal gradients in the vertical normal stress, across columns of differ-17

ent elevation in the outer slope. The bulk of the trench GPE arises from this upper, exten-18

sional section the lithosphere. Vertical shear stress (and horizontal gradients thereof)19

are concentrated in the elastic core of the slab, where principal stresses rotate through20

90◦. In this region, horizontal gradients in vertical normal stress rapidly diminish; they21

fully equilibrate at about twice the neutral plane depth. For the deepest trenches on22

Earth, these relationships imply trench GPE of up to about 5 TNm−1 The model demon-23

strates that mantle slabs can drive plate tectonics simply through downbending, where24

the predominant mode of slab-plate coupling is via the vertical shear force and bending25

moment.26

1 Introduction27

Slab pull is widely – although not universally – considered to be the dominant driving force for plate28

tectonics (e.g. Conrad and Lithgow-Bertelloni, 2002; Ghosh and Holt, 2012). The idea of direct coupling29

between the slab and the trailing plate is often attributed to Elasasser (1969), and was rapidly integrated30

into quantitative models (McKenzie, 1969). These early papers present the enduring idea of the downdip31

component of the slab buoyancy. It has become commonplace to depict this downdip force as a vector32

that simply follows the slab, through the hinge, ultimately applying a horizontal pull on the trailing plate33

(Forsyth and Uyeda, 1975)34

The buoyancy force associated with upper mantle slab density is very significant, typically a few times 1035

TNm−1 (Turcotte and Schubert, 2002; McKenzie, 1969; Faccenna et al., 2012; Rowley and Forte, 2022). In36

this study I refer to “slab pull” as the residual of the (large) upper mantle slab buoyancy and the (uncertain)37
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integrated tractions.While the buoyancy force must be vertical, the net effect of tractions need not be.38

Hence the residual (slab pull) may have a net horizontal component. The term “net slab pull” is used to39

describe the horizontal component of force acting on the trailing plate (i.e. as an edge force). The slab40

pull “reduction factor” is a term used to describe the conversion from the magnitude of upper mantle41

slab buoyancy, to net slab pull. A ballpark figure that seems to have emerged for this factor is about 25%42

(Faccenna et al., 2012; Stotz et al., 2018; Clennett et al., 2023; Rowley and Forte, 2022); this would imply43

net slab pull of the order of 5-10 TNm−1 for old lithosphere.44

Slab-plate coupling is not restricted to stresses within the slab, as these downwellings are expected to45

drive mantle flow which also interacts with the surface plates (McKenzie, 1969; Conrad and Lithgow-46

Bertelloni, 2002; Husson, 2012). However, the focus of this paper is the coupling that occurs within the47

slab due to the assumed capacity to support significant deviatoric stresses (O(100) MPa), relative to the48

upper mantle. A number of depth integrated quantities are commonly used in describing the loading: the49

net-in plane force (Fnet ), the shear stress resultant (V ) and the bending moment (M). These are defined in50

Table 1. As defined in this study, the net slab pull is equal to Fnet evaluated at the trench. There are sev-51

eral means by which slab plate coupling has been investigated and constrained; these constraints apply52

somewhat differently in terms of the vertical and horizontal coupling. Non-uniqueness is recognised in53

both cases (Solomon and Sleep, 1974; Davies, 1978; Becker and O’Connell, 2001).54

The vertical component of the slab-plate coupling produces plate deflection and associated gravity anoma-55

lies (Watts and Talwani, 1974), and both of these can be relatively easily measured. However there is sub-56

stantial non-uniqueness in inverting these observations for the vertical loading (e.g. V ). This is because57

the amplitude of flexure can depend very strongly on the assumed mechanical properties of the plate,58

while also being a function of the bending moment (M). (Parsons and Molnar, 1976; Caldwell et al., 1976;59

Hunter and Watts, 2016; Garcia et al., 2019). The deflection for uniform elastic plates is proportional to60

T−3
e , so for larger elastic thicknesses, much larger vertical shear stresses will be inferred. For instance,61

Zhang et al. (2023) infer V in the range 15-30 TNm−1 for the southern Marianas, which is close to the62

entire weight of the slab. However, it is doubtful that the lithosphere could support a loading pattern that63

requires an integrated vertical shear stress of this magnitude. Non-linear flexure models with an elastic-64

perfectly plastic rheology require V in the range of only 0.5-1.5 TNm−1 across Pacific Plate subduction65

zones (Turcotte et al., 1978).66

The horizontal component of slab-plate coupling is related to longstanding questions about the torque67

balance of the surface plates. Key observations that can help constrain the torque balance relate to plate68

kinematics (velocities), intra-plate stress patterns, as well as changes in these quantities over time (Forsyth69

and Uyeda, 1975; Becker and O’Connell, 2001; England and Molnar, 2022). Several studies, both global70

and regional in extent, concluded that slab buoyancy is largely balanced by deep resistance, with slab pull71

reduction factors of ∼ 10 % (Forsyth and Uyeda, 1975; Wortel et al., 1991; Copley et al., 2010; England72

and Molnar, 2022; Wouters et al., 2021). In contrast, global-scale velocity modelling has favored high net73

slab pull (reduction factors ≥ 50 %) (Conrad and Lithgow-Bertelloni, 2002; van Summeren et al., 2012).74

However, consistent present-day velocity fields can be generated by global convection models, driven75

by the whole mantle density structure, but which do not include strong slabs (Steinberger et al., 2001;76

Ghosh and Holt, 2012). Investigation of intra-plate stress patterns has generally concluded that: 1) the77

whole mantle density structure can predict long wavelength features of the intra-plate stress field, without78

requiring strong slabs (Steinberger et al., 2001; Ghosh and Holt, 2012; Osei Tutu et al., 2018); 2) the typical79

magnitude of net slab pull is of the order of other shallow lithospheric density anomalies (e.g. ridge push)80

(Richardson et al., 1976; Richardson, 1992; Coblentz et al., 1994; Sandiford et al., 2005).81

While the magnitude of both the vertical and horizontal component of slab-plate coupling are debated, the82

basic mode of coupling between slabs and trailing plates has been less controversial. The vertical coupling83

is though to be mediated through vertical shear stresses (with the bending moment also influencing the84
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flexure). Meanwhile, the horizontal coupling is generally conceptualised in terms of a net in-plane force85

transmitted through the subduction hinge (the net slab pull). Of course, net slab pull cannot arise from86

buoyancy alone (Bird et al., 2008), and the concept relies on the assumption that integrated external87

tractions acting on the slab must have a net horizontal component. This may occur, for instance, if the88

slab-normal component of the buoyancy force was balanced by the pressure distribution outside the slab89

(McKenzie, 1969; Holt, 2022).90

Subduction zone modelling (analytical, numerical and analogue) has provided some important insights91

into these issues. Several studies have concluded that slab buoyancy in such models is largely balanced92

by mantle drag, with inferred values of net slab pull being less than about 5 TNm−1, at least once the93

slab is supported by the lower mantle (Schellart, 2004; Capitanio et al., 2007, 2010; Sandiford et al., 2020).94

Such values have typically been estimated by integrating stresses seaward of the zone of bending. Other95

studies have reported that integrated basal drag is about 10% of the slab buoyancy force (Suchoy et al.,96

2021). This implies a slab pull reduction factor of a similar value. Models also show that a dominant97

component of the upper mantle drag is the pressure differential across the slab (Whittaker, 1988; Holt98

and Becker, 2016; Royden and Husson, 2006; Holt, 2022). In general, results of previous subduction zone99

models can be invoked to suggest that: a) net slab pull is predicted to be relatively low compared to total100

slab buoyancy; b) upper mantle flow-driven pressure differential could explain why the slab pull force has101

a net horizontal component (whereas the slab buoyancy force does not).102

This study revisits the issue of slab-plate coupling and provides some additional insights. Most impor-103

tantly, it shows that the coupling between slabs and plates need not occur via a horizontal net in-plane104

force; plates can be driven by mantle slabs simply through downbending, due to the generation of a105

gravitational potential energy difference. This style of slab-plate coupling, which predominantly occurs106

through vertical shear and bending moment, is remarkably similar to loading patterns inferred in static107

models of flexure (Turcotte et al., 1978; Hunter and Watts, 2016)). In section 2 I provide a brief overview108

of the numerical model, and discuss the thin-plate description of the horizontal force balance on the SP.109

In section 3.1 I use this approach to analyse the balance of driving and resisting forces on the SP. In sec-110

tion 3.2 I discuss the stress patterns in the bending plate and show how these control the magnitude of111

the trench GPE. The connections with previous studies, and some implications for global tectonics are112

discussed in Section 4.113

2 Numerical model and method of analysis114

The 2D numerical model was developed using the ASPECT code (version 2.2.0, see Heister et al. (2017);115

Kronbichler et al. (2012); Bangerth et al. (2020, 2023)). The model represents an idealised, quasi-steady116

state subduction configuration, where flow is driven solely by the thermal density structure of oceanic117

lithosphere (within both the slab and plates). At the initiation of the model, the age of the lithosphere at118

the trench is 100 Myr, and the temperature was prescribed by a half-space cooling profile. The numerical119

model is identical to that described in Sandiford and Craig (2023), which includes a detailed description120

of the model setup and parameters. Here, a brief high-level overview of the model is provided, focusing121

on the assumptions and limitations.122

The model has free-slip conditions on the sides and base, and has a free surface. The water column is not123

included so that the isostatic restoring force is proportional to the density of the asphenspheric mantle124

(∆ρ, see Table 1). A total elevation difference of about 4.5 km is developed in the model, between ridge and125

trench. The model treats the mantle and lithosphere as an incompressible visco-elastic-plastic continua in126

static equilibrium. The constitutive model incorporates the classical model of oceanic lithosphere strength127

(e.g. Goetze and Evans, 1979). Elastic shear stresses are limited by the frictional strength of faults (Byerlee,128

1978), as well as both power-law and exponential creep (Hirth and Kohlstedt, 2003; Mei et al., 2010). The129

deeper mantle deforms via a linear (diffusion creep) mechanism, which was implemented to follow radial-130
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viscosity constraints (Steinberger and Calderwood, 2006). The subduction interface is modeled in an ad131

hoc way (e.g. Sandiford and Moresi, 2019), by imposing a separate material in which the frictional strength132

is much lower (µ = 0.005) than is assumed in the rest of the model (µ = 0.8). The combination of these133

mechanisms leads to hierarchy of characteristic shear stresses: 1 MPa in the asthenosphere; 10s MPa in134

the subduction interface, as well as the lower mantle, and 100s MPa in cold part of the bending plate (<135

700◦C).136

Fig. 1 shows the model domain (4 x vertically exaggerated) at 5 Myr after the initiation time (the same137

step as discussed in Sandiford and Craig (2023)). The scalar field shows the effective strain rate. The white138

lines show streamlines of the velocity field. Fig. 2 shows several components of the stress field in the SP139

near the trench.140

Figure 1: Subduction model domain, at 4× vertical exaggeration. Scalar field shows the effective strain rate. White
lines are stream lines of the velocity. Solid black line shows the 1550 ◦C (potential temperature) contour. Dashed
black line shows the region where the horizontal force balance is quantified. Effective strain rate refers to

√
1
2
ϵ̇ij ϵ̇ij ,

where ϵ̇ij is the strain rate tensor.

The Stokes Equations, which are solved in the numerical model (by FEM), represent a solution to the stress141

equilibrium equations (subject to incompressibility) in the x and z directions:142

∂τxx
∂x

− ∂P

∂x
+

∂τxz
∂z

= 0 (1)

∂τzz
∂z

− ∂P

∂x
+

∂τxz
∂x

= −ρg (2)

The coordinate system is positive to the right (x ) and positive up (z) (e.g. Fig 1), and compressive stresses143

are negative. To analyse the horizontal force balance on the SP, a thin-plate approach is used. The thin-144

plate analysis takes the model stress fields that satisfy the equilibrium equations, where dimensions are145
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force per unit volume, and then integrates these over a sub-region that encompasses the plate (as shown146

in the white box in Fig. 1). Following integration, we have terms that a describe a balance of horizontal147

forces, with the dimensions of force per unit distance (Nm−1) in the out of plane direction. The derivation148

of this force-balance is included in Appendix 1. One of the steps in this analysis involves the substitution149

of the pressure in equation 2, in terms of vertical stress components, i.e., using P = τzz − σzz . This step150

highlights the way in the which distribution of vertical stress is coupled to the horizontal force balance,151

through the effect on the pressure (and underlies the concept of gravitational potential energy gradients).152

The thin plate description of the horizontal force balance at point x is given by:153

∫ x

xt

τxz

∣∣∣
L
dx = −(σ̄zz)

∣∣∣x
xt
− (τ̄xx − τ̄zz)

∣∣∣x
xt

(3)

Overbars represent the vertical integration from the surface (s(x)) to a reference level L, chosen here154

as 125 km relative to the ridge height. xt is the trench location. A positive change in terms in equation155

3 represent a force acting to the right on the lithosphere between xt and x . The first term on the left156

represents the integrated effect of the basal shear stress from xt to x . The first term on the right is the157

gravitation potential energy change. The second term is the (depth integrated) change in the “membrane158

stress”, representing the contribution of deviatoric stresses to the force balance (Bueler and Brown, 2009).159

For incompressible plane strain, (τxx − τzz) = 2τxx . The depth integrated membrane stress is referred to160

as the net in-plane stress (Fnet ). In more symbolic notation, we can write:161

∫ x

xt

τxzdx = ∆(GPE )−∆(Fnet) (4)

In this expression, the “GPE” has been defined as the negative of the depth integrated vertical stress. This162

means that a positive change in GPE represents a force to the left. This definition allows us to represent163

equation 4 as the variation in 3 positive quantities (as will be shown in Fig. 3). The integrals are estimated164

using interpolation and quadrature.165

Turning to the vertical stress balance, integration of equation 2 from the surface (s(x)) to an arbitrary166

depth (z) yields the following:167

σzz(x , z) = −
∫ s

z

ρ(x , z ′)gdz ′ − ∂

∂x

∫ s

z

τxzdz
′ (5)

The terms on the right hand side are referred to as the lithostatic pressure P(x , z) and the shear function168

Q(x , z), ((e.g. Schmalholz et al., 2014), see Table 1). Assuming that: a) vertical stresses are balanced at the169

base of the lithosphere (L); and b) trench deflection is purely flexural in nature, we can write:170

∂

∂x
τ̄xz = ρ̄(z)g ≈ ∆ρgw (6)

This equation says that at the compensation depth, the force due to the horizontal gradient in integrated171

vertical shear stress is balanced by the isostatic restoring force, due to the flexural deflection of the litho-172

sphere (∆ρgw ). This is simply the statement of the vertical force balance from thin plate flexure (Turcotte173

and Schubert, 2002). The integral of the vertical shear stress in that context called the shear stress resul-174

tant: V = τ̄xz . Hence we can rewrite 6 as:175

1

∆ρg

∂

∂x
V ≈ w (7)
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Equation 7 says that flexural topography (w ) must be balanced by gradients in the vertical shear stress176

resultant (V ) across the plate. However, it doesn’t specify at what depths gradients in the vertical shear177

stress (i.e. Q) are concentrated. Because the vertical normal stress (σzz ) depends on the shear function,178

and integrated vertical normal stresses appear in the horizontal force balance, the GPE associated with179

flexural topography will depend on the depth at which the shear function is concentrated.180

Fig. 2 shows the variation of the membrane stress (top panel) and the vertical shear stress (bottom panel)181

proximal to the trench. The inset panel shows the orientation of the most compressive principal stress182

(σ3). An important feature of the stress pattern is the systematic rotation of σ3, which occurs across the183

“elastic core” (the region near the neutral plane, where differential stresses due to bending have not yet184

reached the yield limit). It can be seen that the depth extent of plastic yielding in the upper (extensional)185

part of the SP, strongly effects the distribution of vertical shear stress.186

Figure 2: Distribution of the membrane stress (top panel) and vertical shear stress (bottom panel). Note that the
scale of the 2 colorbars differs by an order of magnitude. The inset in the top panel shows a portion of the plate
around the elastic core. Black bars in the inset panel show the orientation of the most compressive principal stress
(magnitude not shown). Note the rotation of the principal stresses from vertical-above to sub-horizontal-below the
core.
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Name and symbol Explanation Related equation / value

SP/OP subducting/overidding plate -

s(x) surface of plate -

zn neutral plane depth -

LAB lithosphere-asthenoshere boundary ∼ 125 km near trench

L integration depth rel. to ridge height 125 km

- membrane stress (τxx − τzz)

Fnet net (deviatoric) in-plane force Fnet =
∫ s(x)

L
(τxx − τzz)dz

σ1/σ3 most extensive/compressive principal stress

∆σ differential stress σ1 − σ2

M bending moment
∫ s(x)

L
(z − zn)(τxx − τzz)dz

V integrated vertical shear V =
∫ s(x)

L
τxzdz .

∆ρ density of lithosphere at the LAB 3175 kgm−3

P(x , z) lithostatic pressure
∫ s

z
ρ(x , z ′)gdz ′.

Q(x , z) shear function ∂
∂x

∫ s

z
τxzdz

GPE (-1 ×) integrated vertical normal stress −1
∫ s(x)

L
σzzdz

Table 1: Symbols and definitions used in this paper. For parameters used in the setup of the numerical model, see
Sandiford and Craig (2023)

3 Results187

3.1 The horizontal force balance188

The variation of horizontal forces acting on the SP is shown in the main panel of Fig. 3. Solid lines show the189

variation of the 3 terms in the horizontal force balance (Eq. 4). The total basal resisting force (red line) is ∼190

4 TNm−1. At the trench, the value of Fnet is ∼ 0.5 TNm−1, showing that net slab pull is small compared to191

the basal resisting force. Across the SP, 3 domains can be identified in which one of the terms in Eq. 3 can192

be disregarded (labelled d1, d2, d3). In d1, between the trench and the outer-rise, there is a rapid increase193

in GPE, on the order of 2 TNm−1. The basal force across this ∼ 100 km section is minimal, so that the GPE194

change must nearly balance the increase in Fnet . This increase means that the stress state becomes more195

extensional. In d2, the GPE is stationary, so that the gradient in Fnet is negative (representing a force to196

right) with equal magnitude to the basal force contribution. In d3, near the ridge, Fnet is close to zero and197

nearly stationary; here the GPE is balanced by the basal force contribution. Overall the driving force on198

the SP is dominated by GPE differences, while Fnet functions to mediate the stress.199

Another important aspect of the dynamics shown in Fig. 3 is the role of dynamic topography (DT). As200

discussed in Sandiford and Craig (2023), the SP topography deviates from the isostatic level by an amount201

(in total about ∼ 450 m) that very closely matches the gradient in pressure in the asthosphere (with a total202

variation of about 15 MPa across the 5000 km plate). Because this is a flow-driven pressure pattern, the203

topographic contribution is referred to as “dynamic” (see Schubert et al. (1978); Holt (2022) for further204

discussion). The flattening of the plate is shown in the top panel of Fig. 3. This tilt tends to oppose the GPE205

that would otherwise be generated from isostatic subsidence. The impact of the DT can estimated treating206

the force as a “slab on a slope” (e.g. Steinberger et al., 2001). Assuming an air-rock density difference of207

∆ρ, and a plate of thickness L, the horizontal component of the gravitational force due to DT is equal to:208
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dFDT = ∆ρgL
dh

dx
dx = L dP (8)

The sign choice is the same as used for GPE, with an increase in Fdt to the right, representing a net force209

to the left. The dashed blue line shown in Fig. 3 shows the total GPE minus the estimated contributions210

derived from Eq. 8. The total change in this “corrected GPE” is close to 3 TNm−1, not including the trench-211

GPE component (where the line is shown with greater transparency). This is similar to the theoretical ridge212

push contribution (Turcotte and Schubert, 2002). Because the pressure gradient under the SP is related213

to driving the return flow to the ridge, and that return flow also contributes to the basal shear, the force214

due to the DT and the basal shear can be viewed as the dual interaction of the mantle flow with the plate215

(e.g. Steinberger et al., 2001).216

Figure 3: Top panel shows the model topography, as well as the topography corrected for the horizontal variation
in “dynamic pressure” at the LAB depth (125 km). See Sandiford and Craig (2023) for further discussion. Solid lines in
bottom panel show the variation of the 3 terms in the horizontal force balance (Eq. 4). An increase in GPE (towards
the right) indicates a net force to the left. For all other terms, an increase is force to the right. The domains (d1, d2,
d3) are discussed in the main text. The dashed black line shows the GPE minus the net in-plane force, positive values
indicate total force acting to the left (the driving force), and must be balanced by the basal shear. The dashed blue
line shows the GPE, with the estimated force contribution of dynamic topography (FDT ) removed. The GPE due to
isostatic subsidence is reduced by almost a half, due to the effect of dynamic topography.

3.2 Controls on trench GPE217

This section focuses on stress patterns in the bending plate, and the relationship between these patterns218

and the magnitude of the trench GPE. Fig.4 shows the key information required to address this problem.219

The most important feature of the stress pattern – and one of the key takeaways from this study – is that220

vertical shear stresses are concentrated within the elastic core.221

Fig.4a-b highlights several key relationships between depth-integrated stress quantities. Fig.4a shows the222

horizontal variation in the bending moment (M) as well as the vertical shear stress resultant (V ) in a ∼ 300223

km region seaward of trench. These two quantities are related by dM
dx ∼ V , being the leading-order terms224

in the moment balance (e.g. Buffett and Becker, 2012). The bending moment saturates at about 25 km225

seaward of the trench, which is approximately the same location at which V changes sign. At the trench,226
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228

the integrated vertical coupling (V ) is ∼ 1 TNm−1. The (depth-integrated) vertical force balance equation227

(Eq. 7), states that horizontal gradients in V are equal to the isostatic restoring force due to the flexural229

topography. These two quantities are shown in Fig.4b, and are essentially identical apart from noise. This230

implies that the trench-outer-slope topography in the numerical model is a completely flexural feature231

(i.e. non-isostatic). The position labelled x0 is referred to as the first zero crossing: this is a stationary point232

in dV /dx .233

While Fig.4a&b show vertically-integrated quantities (e.g. M , V ), Fig.4c-e shows the depth variation in the234

underlying components of the stress. Because there is noise in the stress components – a result of plastic235

shear banding in the yielding plate – stress quantities are averaged across a finite region (20 km), shown236

with a vertically-oriented grey band in Fig.4 a-b. The thick lines in Fig.4c-e show horizontally averaged237

stresses profiles, while the faint lines show individual profiles interpolated from the model.238

Fig.4c shows the distribution of vertical shear stress with depth, which is negligible down to a depth of239

about 25 km, while a peak then occurs in the range of about 30-40 km. The red line in Fig.4d shows240

the depth distribution of the membrane stress, exhibiting the polarised pattern indicative of a bending-241

dominated stress state. Comparing Fig.4c&d, it is is clear that the peak in vertical shear stress coincides242

with the elastic core depth region (shown by the horizontally-oriented grey band). These features are243

explicable in terms of the orientation of the stress field. Above the elastic core stresses are Andersonian,244

so that while membrane stresses increase rapidly (Fig.4d) vertical shear stress remains close to zero. In the245

elastic core, the stress rotates through 90◦, which implies finite shear stress on vertical planes, assuming246

the stress field retains a deviatoric component. Indeed, this rotation of the stress field can be seen in the247

inset panel of Fig. 2.248

Further insight can be gained by comparing the membrane stress and the differential stress (Fig.4d).249

These quantities are equal, only when the stress state is Andersonian. The dashed green line in Fig.4d250

shows the magnitude of the differential stress (∆σ). Note that while ∆σ reduces in the elastic core, it does251

not go to zero (i.e. the stress field does retain a finite deviatoric component within the elastic core). ∆σ252

has a minimum of about 100 MPa, about twice the peak magnitude vertical shear stress (Fig.4c). This is253

consistent with the rotation of the stress such that within the core, vertical shear stress reaches a maxi-254

mum (equal to half 1
2∆σ) at the point where the principal stresses are oriented at 45 ◦ to the vertical. In255

terms of the vertical shear stress, the stress rotation dominates over the absolute reduction in the differ-256

ential stress. The Supplementary Information shows that such stress rotations are characteristic of the257

interior region of bending plates, as evidenced in analytic solutions to the equilibrium equations.258

Note that there is also non-negligible vertical shear stress in the yielding part of the plate beneath the259

elastic core (where stresses are limited by ductile creep). This indicates that the stress state beneath the260

neutral plane is not strictly Andersonian – a small deviation of the principal stresses away from vertical,261

combined with relatively large differential stress, results in non-negligible vertical shear stress. This can262

also be identified in the orientation of principal stress in the inset panel of Fig. 2.263

Having discussed the distribution of vertical shear stress and its relation to the bending and yielding of264

the plate, the implications for the magnitude of the trench GPE can now be assessed. Recall that differ-265

ences in GPE require horizontal differences in the vertical normal stress (Eq. 6). The vertical normal stress266

is controlled by both the lithostatic pressure (P) and the shear function (Q); if the shear function is zero267

the gradient in vertical normal stress will be lithostatic. Fig.4e shows the difference between the vertical268

normal stress averaged around xs , and the vertical normal stress at a reference location x0, where flexural269

topography is zero. In the region above the elastic core, the difference in vertical normal stresses is ap-270

proximately constant, and equal to the pressure associated with the elevation difference: ∆σyy ∼ w∆ρg ,271

as labelled with the arrow in Fig.4e. This implies that above the elastic core vertical normal stresses in272

each column are approximately lithostatic, and thus the shear function plays a negligible role in the verti-273
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cal force balance. In the depth range of the elastic core, the difference between the vertical normal stress274

rapidly diminish. This implies that the shear function does play an important role. Overall, the patterns275

shown in Fig.4e (i.e. the difference in vertical normal stress) imply that the shear function exhibits similar276

depth-variation as does the vertical shear stress (recall that the former is related to the latter by the hor-277

izontal gradient). This inference is reasonable because, for instance, if the vertical shear stress above the278

elastic core is negligible in all columns throughout the outer-slope, so too are its horizontal gradients.279

It may be useful at this point to consider an analogy between flexural and isostatic topography. In this280

analogy, the shear function can be thought of as an anomalous density with identical spatial localisation.281

So in our case, the concentration of the shear function within the elastic core, can be envisaged as an282

anomalous (increased) density in the same region. The integrated anomalous density sustains the ele-283

vation depression (relative to the reference location) and it also increases the local lithostatic gradient284

(relative to the same depth in the reference location). This increase in lithostatic gradient, diminishes the285

horizontal gradient in vertical normal stress which is present due to the elevation difference. It is widely286

appreciated that in the case of isostatic topography, the magnitude of the GPE depends on the vertical287

depth distribution of the density anomalies. Flipping our analogy around implies that exactly the same288

relationship applies in the case of flexural topography.289

A simple estimate of GPE magnitude can be made by considering the contribution of the stress differ-290

ences above the neutral plane depth. In the case of the numerical model, at the location xs , the flexural291

topography (w ) is ∼ 1 km, giving ∆σyy ∼30 MPa. This stress difference, multiplied by the neutral plane292

depth (zn = 32 km), gives a GPE difference of ∼ 1 TNm−1. This simple estimate compares reasonably well293

(albeit slightly conservatively) to the computed value (1.28 TNm−1) derived by integrating the full stress294

difference (thick black line Fig.4e) across the entire lithosphere. Clearly there is some contribution to the295

GPE difference arising from the part of lithosphere beneath the elastic core. Indeed the normal stresses296

only fully equilibrate at a depth of 60 – 70 km, consistent with the mechanical thickness of the lithosphere297

(approximately twice the neutral plane depth).298

4 Discussion299

In the model analysed in this study, a ∼ 5000 km SP experiences a total basal resisting force of about300

∼ 4 TNm−1. The driving force to overcome this resistance is predominantly supplied by differences in301

gravitational potential energy (GPE) between ridge and trench. The trench GPE and the GPE due to density-302

induced subsidence (ridge push) are of a similar order (a few TNm−1); the latter is reduced by the effect303

of dynamic topography, which acts as a subducting resisting force. This study shows that trench GPE304

is controlled by: 1) the amplitude of the downbending (w ); and 2) stress patterns in the bending plate305

– specifically the depth at which Q is localised. Vertical shear stress, as well as the horizontal gradients306

thereof (i.e. Q), are maximal within the elastic core.307

Previous studies have discussed the potential role of a strong plate core for subduction dynamics – envis-308

aged primarily in its capacity to transmit a net in-plane force (e.g. Capitanio et al., 2009). In contrast, this309

study highlights the role of the elastic core in supporting vertical shear stresses. The reason the largest310

vertical shear stresses are found in the elastic core is not because of disproportionate strength per se,311

rather it is because principal stresses undergo 90◦ rotation across the core. This characteristic behaviour312

of bending plates is discussed further in the Supplementary Information. The elastic core depth, which is313

fundamentally related to the strength distribution of the lithosphere (Sandiford and Craig, 2023), medi-314

ates the translation of downbending (predominantly related to vertical shear and bending moments) to315

horizontal (GPE-related) forces.316

In the model, the net in-plane force at the trench (Fnet ) is quite small: ∼ 0.5 TNm−1. At the outer rise Fnet317

has increased to about 2.8 TNm−1. Previous modelling studies, in which deviatoric tension in the SP was318

attributed to “net slab pull” have probably – at least to some degree – been detecting the effect of trench319
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Figure 4: Stress patterns in the SP near the trench. All values are estimated by interpolating (and integrating) directly
from the numerical model. (a) shows the horizontal variation in the vertical shear stress resultant (V ) and the bending
moment (M). The labelled vertical lines show the trench location (xt ), the first zero crossing (x0), and a point that
lies halfway between, in the outer slope (xs ), where the depth variation of stresses are investigated; (b) shows the
predicted flexural topography (e.g. Eq. 7) and compares this to the model topography. The thin blue line is the
unfiltered gradient, the thick blue line shows the same estimate with a Gaussian filter of length 1; (c) shows the
distribution of the vertical shear stress, averaged over a small region around xs (from multiple samples interpolated
across the gray region shown in (b)); (d) shows the distribution of the membrane stress in red (σxx − σzz ) and the
magnitude of the differential stress in green (σ1−σ3). The elastic core is highlighted with the horizontal grey band; (e)
shows the difference in the vertical normal stress between xs and x0. The difference in normal stress reduces rapidly
in the elastic core, and equilibrates fully at about twice the neutral plane depth.

GPE (Schellart, 2004; Capitanio et al., 2010; Sandiford et al., 2020). The model shows that net slab pull320

may not be necessary in order for mantle slabs to drive plates. Rather, what is observed might instead321

be referred to as “trench pull”. The trench is a very localised potential low, and acts like an idealised edge322

force. The plate responds to this force by developing net deviatoric tension. This reserve of extensional323

stress is used to pull the plate through a regions of stationary GPE change (d2, Fig. 3). While basal shear324

stress varies smoothly, the GPE is lumpy; the strength of the plate mediates rigid motions across these325

potential energy variations, through changes in Fnet . Overall, the model dynamics resonate with the sum-326

mary of Bercovici et al. (2015): “the pull of a slab on a plate is in fact a horizontal pressure gradient ...327
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caused by the low pressure associated with a slab pulling away from the surface ... so that the boundary328

layer or plate feeds the slab steadily and thus leads to the appearance that the slab is pulling the plate.”329

(see also Coltice et al. (2019)).330

While the bending plate reaches moment-saturation (e.g. Fig. 4a), it is far from the upper-limit of Fnet .331

This concurs with global patterns in SP seismicity – earthquakes being prevalent in the outer slope, but332

generally sparse seaward of the outer rise (Stein and Pelayo, 1991). That pattern, in turn, represents a333

problem for models of very high slab-plate coupling, where net slab pull must be close, or indeed limited,334

by SP strength (e.g. Conrad and Lithgow-Bertelloni, 2002; Zhang et al., 2023).335

The deepest trenches on Earth, within the Marianas system, reach 4-6 km depth relative to the incoming336

plate (Zhou et al., 2015; Zhang et al., 2023). Supposing the neutral plane depth reaches a maximum337

of 35 km (Craig et al., 2014; Sandiford and Craig, 2023), and using a trench depth of 6 km, an estimated338

maximum trench GPE, would be ∼ 5 TNm−1 (based on the relationships highlight in the previous section).339

Zhou et al. (2015) have argued that the trenchward-dipping outer-slope faulting pattern in the Marianas340

region, requires a net in-plane force of about 5 TNm−1. Their models do not include body forces, and341

hence while they produce flexural deformation, it is not coupled to GPE. It could be that the net-plane342

force is simply an expression of the deviatoric tension due to the trench GPE.343

Finally, the subduction model motivates consideration of the role of dynamic topography and its impact344

on driving forces. In the 2D model discussed here, the dynamic topography is controlled by an astheno-345

sphere pressure gradient, and the slope acts as a resisting force on the SP. At a global scale, the presence346

of this SP signal is ambiguous (Holt, 2022). One possibility is that any signal of slab driven pressure gra-347

dients are subordinate to a larger signal. Both tomographic and residual topography models reveal a348

consistent long-wavelength (degree 1-3) pattern, with positive anomalies in South Pacific paired with a349

negative anomalies in East Asia (Steinberger et al., 2001; Hoggard et al., 2017), which are consistent with350

the history of subduction (Ricard et al., 1993). If the residual topography is interpreted as dynamic to-351

pography, the Pacific Plate would experience a generally WNW slope, with an total amplitude of perhaps352

0.5-1 km, across distances on the order of 5000 km (Davies et al., 2023). In that case the GPE due to iso-353

static subsidence, the dynamic topography and trench GPE would all act to drive the plate in a generally354

westwards direction. If basal shear is sufficient to balance the sum of those forces, the intraplate stresses355

would remain near-neutral. If the basal shear cannot balance them, or is in fact an additional net driving356

force (Steinberger et al., 2001; Stotz et al., 2018), the Pacific Plate should enter deviatoric compression357

as it moves from the GPE highs to lows. This has been predicted for NW Pacific in several global-scale358

convection models (Steinberger et al., 2001; Ghosh and Holt, 2012; Yoshida and Zhou, 2023). In terms of359

the seismicity record, either of these possibilities are plausible (Wiens and Stein, 1983; Stein and Pelayo,360

1991; Sandiford and Craig, 2023).361

5 Conclusions362

In this study I analyse the horizontal subducting plate force balance, based on stress fields derived from363

a numerical model. The driving force is predominantly supplied by differences in GPE between ridge and364

trench. The GPE associated with the trench, provides about 2.0 TNm−1 net driving force, while the net365

in-plane force at the trench is ∼ 0.5 TNm−1. The GPE due to plate cooling and subsidence is reduced by366

almost a half (to about 1.5 TNm−1) due to the effect of dynamic topography. I discuss how stress patterns367

in the SP, which are strongly mediated by bending, control the magnitude of the trench GPE. For the368

deepest trenches on Earth, these relationships imply trench GPE of up to about 5 TNm−1. Hence mantle369

slabs can drive plate tectonics simply through the capacity downbend the plate – i.e through supplying a370

vertical shear stress and bending moment at the trench – rather than by a net in-plane force. Trenches371

will still act as plate attractors and lead to the appearance that the slab is pulling the plate.372
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Appendix 1373

Thin plate description of the horizontal force balance374

The thin-plate analysis starts with equilibrium equations (e.g. Eq. 10), where dimensions are force per unit375

volume, and then integrates these over a sub-region that encompasses the plate. Following integration,376

we have terms that a describe a balance of horizontal forces, with dimensions of Nm−1 or force per unit377

distance in the out of plane direction. Starting with the horizontal stress equilibrium:378

∂σxx

∂x
+

∂σxz

∂z
= 0 (9)

∂τxx
∂x

− ∂P

∂x
+

∂τxz
∂z

= 0 (10)

We will now vertically integrate Eq. 10, from the plate surface s(x) down to a reference LAB level L (in379

practice L is chosen as 125 km beneath the mean surface elevation):380

∫ s(x)

L

∂τxx
∂x

dz −
∫ s(x)

L

∂P

∂x
dz +

∫ s(x)

L

∂τxz
∂z

dz = 0 (11)

Now, denote the vertical integration with an overbar, and chanage the order of the derivatives/integrals:381

∂

∂x
(τ̄xx − P̄) + σxz |L = 0 (12)

This step has assumed a stress free surface. Now, we write P in terms of the definition of the vertical382

stress:383

σ̄zz − τ̄zz = −P̄ (13)

Substituting into Eq. 12 and rearranging terms:384

∂

∂x
(τ̄xx − τ̄zz) +

∂

∂x
(σ̄zz) + τxz |L = 0 (14)

This is the horizontal force balance, vertically integrated across a given depth. Positive gradients indicate385

forces to the right. We now integrate 16 over a horizontal section of the lithosphere:386

∫ x

xt

σxz

∣∣∣
L
dx = −(σ̄zz)

∣∣∣x
xt
− (τ̄xx − τ̄zz)

∣∣∣x
xt

(15)

= −∆(σ̄zz)−∆(τ̄xx − τ̄zz) (16)

And finally, define the GPE as the negative of the vertically integrated normal stress, so that a positive387

change in GPE (to the right) indicates a net a force acting the left. This final definition has no physical388

relevance, it is simply a convenience related to plotting:389

∫ x

xt

σxz

∣∣∣
L
dx = ∆(GPE )−∆(Fnet) (17)
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