
P
os
te
d
on

14
N
ov

20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
69
99
73
09
.9
55
02
50
8/
v
1
—

T
h
is

is
a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r-
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Forecasting Animal Distribution through Individual Habitat

Selection: Insights for Population Inference and Transferable

Predictions

Veronica Winter1, Brian Smith2, Danielle Berger2, Ronan Hart2, John Huang2, Kezia
Manlove2, Frances Buderman1, and Tal Avgar2

1The Pennsylvania State University
2Utah State University

November 14, 2023

Abstract

Species distribution and habitat selection models frequently use data collected from a small geographic area over a short window

of time to extrapolate patterns of relative abundance to unobserved areas or periods of time. However, these types of models

often poorly predict how animals will use habitat beyond the place and time of data collection because space-use behaviors

vary between individuals and are context-dependent. Here, we present a modelling workflow to advance predictive distribution

performance by explicitly accounting for individual variability in habitat selection behavior and dependence on environmental

context. Using global positioning system (GPS) data collected from 238 individual pronghorn, (Antilocapra americana), across

3 years in Utah, we combine individual-year-season-specific exponential habitat-selection models with weighted mixed-effects

regressions to both draw inference about the drivers of habitat selection and predict space-use in areas/times where/when

pronghorn were not monitored. We found a tremendous amount of variation in both the magnitude and direction of habitat

selection behavior across seasons, but also across individuals, geographic regions, and years. We were able to attribute portions

of this variation to season, movement strategy, sex, and regional variability in resources, conditions, and risks. We were also

able to partition residual variation into inter- and intra-individual components. We then used the results to predict population-

level, spatially and temporally dynamic, habitat-selection coefficients across Utah, resulting in a temporally dynamic map of

pronghorn distribution at a 30x30m resolution but an extent of 220,000km2. We believe our transferable workflow can provide

managers and researchers alike a way to turn limitations of traditional RSF models - variability in habitat selection - into a

tool to improve understanding and predicting animal distribution across space and time.
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Abstract18

Species distribution and habitat selection models frequently use data collected from a small19

geographic area over a short window of time to extrapolate patterns of relative abundance to20

unobserved areas or periods of time. However, these types of models often poorly predict how21

animals will use habitat beyond the place and time of data collection because space-use behaviors22

vary between individuals and are context-dependent. Here, we present a modelling workflow to23

advance predictive distribution performance by explicitly accounting for individual variability in24

habitat selection behavior and dependence on environmental context. Using global positioning25

system (GPS) data collected from 238 individual pronghorn, (Antilocapra americana), across 326

years in Utah, USA, we combine individual-year-season-specific exponential habitat-selection27

models with weighted mixed-effects regressions to both draw inference about the drivers of habitat28

selection and predict space-use in areas/times where/when pronghorn were not monitored. We29

found a tremendous amount of variation in both the magnitude and direction of habitat selection30

behavior across seasons, but also across individuals, geographic regions, and years. We were able31

to attribute portions of this variation to season, movement strategy, sex, and regional variability in32

resources, conditions, and risks. We were also able to partition residual variation into inter- and33

intra-individual components. We then used the results to predict population-level, spatially and34

temporally dynamic, habitat-selection coefficients across Utah, resulting in a temporally dynamic35

map of pronghorn distribution at a 30x30m resolution but an extent of 220,000km2. We believe36

our transferable workflow can provide managers and researchers alike a way to turn limitations of37

traditional RSF models - variability in habitat selection - into a tool to improve understanding and38

predicting animal distribution across space and time.39
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1 Introduction40

One of the central aims of ecology is to understand why species have their observed spatio-41

temporal distributions (Yates et al. 2018a). Ecologists draw inference about why an organism is42

present at a particular geographic location by comparing environmental attributes of that location to43

attributes of locations that are available to the organism. This comparison between what habitat44

units (pixels or patches) organisms use and what habitat units they could use is facilitated by a class45

of models that we will refer to as species-habitat association analyses (SHAAs; Matthiopoulos, J. R.46

Fieberg, and Aarts 2020). SHAAs include species-distribution models (SDMs), habitat-selection47

functions (HSFs, also known as resource-selection functions or RSFs), and their respective variations48

developed to accommodate different data types and relax model assumptions (e.g., step-selection49

functions or SSFs; Matthiopoulos, J. Fieberg, et al. 2015; Matthiopoulos, J. R. Fieberg, and Aarts50

2020; J. Fieberg, Signer, et al. 2021). Drivers of species presence inferred from SHAAs can be51

used to guide habitat improvements through the manipulation of resources, risks, and conditions to52

meet population management objectives (Matthiopoulos, J. Fieberg, et al. 2015). Still, the allure of53

SHAAs and their prevalence in the ecological literature is tied to the promise of their predictive54

capabilities, rather than their capacity for inference (Matthiopoulos, Field, and MacLeod 2019).55

Using correlations between an organism’s presence and habitat attributes in environmental space,56

SHAAs can be used to predict the probability of habitat use in geographic space outside of the57

space and time the organism was observed (Matthiopoulos, J. Fieberg, et al. 2015). The predictive58

capabilities of SHAAs have been used to address fundamental questions in both applied and59

theoretical ecology, including delineating habitat for conservation (C. J. Johnson, Seip, and Mark S.60

Boyce 2004), prioritizing translocations (Antoine Guisan et al. 2013), assessing anthropogenic61

impacts on wildlife (Street et al. 2015), forecasting species’ responses to climate change (Kleiven62

et al. 2018), evaluating the potential for disease outbreaks (C. M. Beale and Lennon 2012) or spread63

of an invasive species (Barbet-Massin et al. 2018), and quantifying niche overlap (Buckley et al.64

2010). However, a recent emphasis on the validation of predictive SHAA models reveals that most65

fall short of their promised powers of projection, suffering from poor model transferability when66
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results are extrapolated beyond the observation extent (Paton and Matthiopoulos 2016; Aldossari,67

Husmeier, and Matthiopoulos 2022; Heit et al. 2023; Gantchoff et al. 2022).68

The transferability of SHAAs is often limited by availability dependence, biological variation69

among individuals and populations. The habitat that an organism could use — the spatial extent of70

its availability domain — is typically defined by the species biology and the sampling design, which71

is question-specific (J. R. Fieberg et al. 2018; J. Fieberg, Matthiopoulos, et al. 2010; Bowersock72

et al. 2023; Bastille-Rousseau, Potts, et al. 2015). However, the inference drawn from SHAAs about73

the drivers of space-use behavior may change based on the habitat deemed available to an organism.74

For example, an obligate grazer may strongly select for habitat with more grass when grasses are75

scarce. As grass becomes increasingly prevalent on the landscape, the grazer will no longer need76

to select habitat based on grass presence because it is widely available (i.e., they still use habitats77

with grass, but that use is no longer disproportionate to the availability of the habitats with grass).78

This shift in selection behavior with resource availability is known as availability-dependent habitat79

selection (also called a ‘functional response’; Mysterud et al. 1999; McLoughlin, D. W. Morris, et al.80

2010; Matthiopoulos, Hebblewhite, et al. 2011). Availability dependence constrains the predictive81

potential of SHAAs because correlations between attributes of environmental space and habitat82

use may only be relevant for the place, time, and spatial scale of the data used to fit the model.83

Conversely, if adequately accounted for, availability and scale dependence can be harnessed to84

enhance our capacity to transfer SHAAs across space and time.85

Individual organisms in SHAAs are often treated as sampling units to draw inference about the86

habitat-selection patterns of a population or a species. However, individual variation is commonly87

observed (J. Fieberg, Matthiopoulos, et al. 2010; Bastille-Rousseau, Potts, et al. 2015; Bastille-88

Rousseau and Wittemyer 2022). Within an individual, external environmental variation interacts89

with an organism’s physiological condition and cognitive state to change the predominant drivers90

of habitat selection across space and time (Hirzel and Le Lay 2008) causing space use behavior to91

vary across space and time. Behavioral variation can occur between aggregations of individuals92

(populations, subspecies, etc.) that arises because of differences within and between organisms and93
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their experiences in environmental space. Behavioral variation limits SHAAs transferability across94

individuals (or their aggregations) because individuals may exhibit different responses to identical95

attributes of environmental space. Whereas SHAAs are typically used to draw inference and/or96

make predictions at the population or species levels, behavioral variation may act to attenuate or97

even invalidate SHAAs predictions. For SHAAs to realize their full predictive potential, availability98

dependence, and individual variation must all be adequately accounted for.99

Recent improvements have been made to SHAAs to increase their predictive performance.100

Matthiopoulos, Hebblewhite, et al. (2011) proposed a generalized functional response SHAA that101

accounts for availability dependence by allowing selection coefficients to interact with habitat102

availability. An expansion of this model, the point-by-point generalized functional response permits103

each used location to have its own defined area of availability, acknowledging that an organism most104

likely makes a behavioral decision based on its immediate surroundings (Paton and Matthiopoulos105

2016). Moreover, the proliferation of mixed models in ecology and their integration into SHAAs106

has helped to account for individual variability in habitat selection behavior. However, these model107

corrections are opaque to most users because they operate behind layers of statistical machinery.108

The “black box” formulation of many SHAAs prevents users from partitioning the sources of109

variation that restrict model transferability. Understanding why a model is not generalizable is the110

first and most essential step for addressing issues of transferability that are species- and system-111

specific. Further, most current SHAAs do not allow habitat selection coefficients to vary in space112

and time. Developing spatially and temporally explicit SHAAs that allows users to partition sources113

of variation is the next step to realizing the predictive potential of these powerful analytical tools.114

To address this need, we introduce an improved workflow for conducting SHAAs with large and115

diverse datasets — an approach we’ve termed ‘Variance- Partitioning Species-Habitat Association116

Analysis’ (VP-SHAA). This workflow consists of data preparation, modeling, and inferential and/or117

predictive stages for generating results. First, we partition the data into temporal data subdivisions118

(e.g., parts of the diurnal cycle, seasons, years, or any combination of these) and fit an exponential119

habitat-selection function to each unique individual-temporal combination. Second, we quantify120

5



the relationship between population-level habitat-selection coefficients and a set of spatio-temporal121

predictors (e.g., season and habitat availability) using mixed-effects linear regression with inverse-122

variance weighting. Third, we use the relationships derived in stage 2 to project habitat selection123

coefficients across space and time, and demonstrate both how transferability can be quantified and124

predictive maps generated. Our goal is to improve the transferability of SHAA models to unobserved125

places and times to enable wildlife managers, working with limited fiscal and manpower resources126

for species monitoring, to make data-driven conservation decisions in a rapidly changing world. We127

apply the VP-SHAA workflow to pronghorn (Antilocapra americana) monitoring data from the128

state of Utah, USA, to scale localized species-habitat relationships into state-wide predictions of129

species distribution.130

2 Methods131

Methodological approach132

Before discussing our specific application to pronghorn in Utah, we provide a concise overview of133

the VP-SHAA workflow (Figure 1). The workflow consists of three main stages: data preparation134

(Steps 1-3), modeling (Steps 4-5), and generating inferential and/or predictive results (Steps 6-7).135

Our objective was to develop predictive models of probability of use based on remotely-sensed136

landscape data and GPS telemetry data that consider multiple orders of selection (D. H. Johnson137

1980; Buderman et al. 2023). These orders of selection are inherently nested, and thus our estimates138

are conditional (i.e., when we estimate third-order selection, it is conditional on second-order139

selection). We integrate second- and third-order selection to account for temporally varying140

landscape characteristics that are available for use during within-home-range movements (third-141

order selection), while also considering individual home range selection (second-order selection)142

during biologically relevant periods of the year. Steps 1-7 listed below outline our framework for143

constructing third-order SHAA model and predictive maps. In Step 1, we define temporal availability144

domains by identifying important biological events and predictable environmental variation, such145
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as seasons. We then divide the data into within-individual temporal subdivisions based on these146

domains. Step 2 is delineating spatial availability domains for each temporal subdivision. These147

domains are squares of the same size but each is positioned on the landscape so that it is centered on148

the mean position of a specific individual at a specific temporal subdivision. In Step 3, we re-project149

remotely sensed habitat covariates onto a template raster clipped to each spatial availability domain,150

with temporally-dynamic covariate values averaged across each temporal subdivision. After these151

initial steps, we have multiple data subdivisions, each with a set of habitat covariates observed152

across a constant number of pixels for each individual. We also identify a subset of pixels as153

’used’ based on observed animal positions. In Step 4, we use logistic regression to estimate the154

parameters of an exponential habitat-selection function fitted to each data subdivision independently.155

In Step 5, we employ a mixed-effects model, with inverse-variance weights, to partition variability156

(obtained in step 4) between individual, environmental, and temporal sources. Step 6 is drawing157

inferences about pronghorn habitat associations based on model results. In Step 7, we use the fitted158

models to predict expected selection coefficients across a raster covering the regions of interest,159

creating our third order selection maps. In Appendix A, we describe our workflow for creating160

our second-order projections, which closely followed the workflow described here but defining161

the entire state as ’available’. Finally, we calculated the pixel-by-pixel product of the second- and162

third-order projections for each season, status, sex combination in our dataset (Appendix B). This163

process resulted in the creation of what we term ’unconditional third-order’ probability of use maps.164

These maps provide spatio-temporally explicit, fine-scale predictions of habitat selection behavior165

and allow us to map the expected distribution of the species in the region. Overall, our VP-SHAA166

workflow offers researchers a flexible method to evaluate population-level habitat selection by167

considering individual habitat-selection behaviors while also accounting for temporal, scale, and168

availability dependencies.169
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2.1 Data preparation170

2.1.1 Pronghorn captures171

The Utah Division of Wildland Resources (UDWR) captured pronghorn across the state from172

2017 – 2021 in eight wildlife management units (WMUs) as a part of the Utah Wildlife Migration173

Initiative. During December and early January, helicopter-capture crews net-gunned pronghorn and174

processed individuals at the capture site without the aid of chemical immobilization agents, sexing175

pronghorn and fitting each animal with a GPS collar set to record the individual’s location every176

two hours. Over the course of this study, UDWR captured 447 pronghorn and tracked individuals177

for an average of 380 days (range: 1 – 1465 days). All animal handling procedures were conducted178

and approved by the UDWR.179

Step 1. Defining the appropriate temporal data subdivision180

Since an organism’s habitat selection behavior may vary with predictable shifts in environmental181

resources, risks, and conditions, or physiological events with consistent timing (e.g., birth pulses182

or migration), the first step in our workflow is to define an appropriate temporal grain within our183

temporal extent for the GPS and habitat covariate data. Focal species biology, environmental184

seasonality, data availability, and our research question informed our choice of temporal grain and185

extent.186

Pronghorn application: Given that we were interested in pronghorn habitat selection year-187

round, we used a monthly temporal grain within an annual extent and selected four focal months188

that capture a pronghorn’s winter ranging (February), spring migration (April), summer ranging189

(July), and fall migration (November), to represent seasonal behavior in our analysis.190

Step 2. Defining the spatial extent191

The spatial extent of an availability domain should include the majority of habitat an animal192

could have used while excluding parts of the landscape that are not habitat, unavailable to the focal193

species, or unrelated to the research question. We recommend using the same spatial extent to194
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define availability domains for all individuals to minimize the influence of scale-driven availability195

dependence (McLoughlin, Case, et al. 2002; Van Beest et al. 2010; Prokopenko, Mark S. Boyce,196

and Avgar 2017).197

Pronghorn application: We delineated a 10x10km square availability domain centered on the198

pronghorn’s position mid-month for each individual-month-year data subdivision. We chose to use199

a 100km2 extent based on typical monthly home range size.200
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Figure 1: VP-SHAA workflow with three stages; A. data preparation, B. modeling, and C. results
(see ’Methodological Approach’). White and gray background denotes individual- and population-
level inference, respectively.

Step 3. Determine the habitat covariates to be included and their temporal resolution201

Environmental covariates representing resources, risks, or conditions fundamental to a species’202

biology or tied to the central research question should be considered for inclusion in the exponential203

habitat selection function (eHSF) models. Covariates should then be standardized to the same204

spatio-temporal resolution to account for scale dependence in the analysis.205
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Pronghorn application: After reviewing the primary literature, we selected a suite of environ-206

mental covariates representing known drivers of ungulate space-use (Appendix B: Table 4). Since207

habitat selection is, in part, a behavioral response to environmental variation, the spatio-temporal208

grain used to measure environmental attributes will affect our inference. We recommend using the209

temporal grain chosen in step 1 and a single spatial grain for all covariates. For pronghorn, we210

extracted covariate values from remotely-sensed products at a 30x30m spatial resolution within the211

spatial extent of the availability domain. For habitat covariates with a temporal grain finer than one212

season, we calculated the mean covariate value by pixel across the time interval.213

2.1.2 Modeling214

Step 4: Accounting for individual behavioral variability in eHSFs215

With standardized habitat covariates, we can begin to partition individual and temporal variability216

in habitat selection behavior by estimating selection coefficients for each study organism temporal217

data fold. Using eHSF models, we can compare the environmental attributes of used vs. available218

points within each individual-season-year subdivision to estimate selection coefficients for each219

covariate (Appendix B: Table 4).220

Pronghorn application: Given that a single 30x30m pixel within our availability domain221

contained the same covariate values, we assigned one available point per pixel. Used points were222

then determined by the number of GPS points collected per individual in that particular season.223

Used points were given weights of 1 and available points were given weights of 5000 following the224

guidance of J. Fieberg, Signer, et al. (2021).225

Step 5. Mixed-effect model structure for variance decomposition226

To understand the drivers of habitat selection, we employed a covariate-specific linear mixed-227

effects model, one for each estimated eHSF coefficient. This model allowed us to partition the228

variance in habitat selection among individual, temporally-dependent, availability-dependent, and229

environmental factors. The fixed-effects component of the model captured individual-level char-230
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acteristics, such as sex, season, age, and reproductive status, as well as the availability of habitat231

covariates on the landscape. By considering availability, we could differentiate between the prefer-232

ence for a specific habitat and its actual availability (availability dependence), enabling us to identify233

the underlying mechanisms driving habitat-selection variation. To account for habitat availability234

and distinguish between preference and availability driven variation, we included mean values of235

habitat covariates and anthropogenic features, such as fences and roads, across each availability236

domain. To address residual unexplained individual variation, we incorporated random effects237

for individual and WMU-year combinations. Finally, response variables (selection coefficients)238

were all weighted by their respective inverse variance, giving less influence to coefficient estimates239

associated with higher uncertainty.240

Pronghorn application: In the fixed effects component of the pronghorn covariate models,241

we included sex, movement strategy (i.e., was the individual a ‘mover’ or a ‘resident’ individual242

in a given season-year; Appendix B), season, mean habitat and precipitation covariates for each243

availability domain in the focal season, and anthropogenic features that may alter habitat selection244

behavior. We incorporated interactions between precipitation covariates, sex, movement strategy,245

and season to absorb additional temporal variability. We addressed individual variation by including246

random selection coefficient intercepts for each pronghorn in each year. We estimated seven eHSF247

coefficients across eight season-status-sex groups, resulting in a total of 56 population-level averages248

(after controlling for availability dependencies, correlations with other selection coefficients, random249

effects, and uncertainty).250

2.1.3 Generated results251

Step 6. Draw habitat selection inference using the VP-SHAA workflow252

For questions that require an understanding of the drivers of population-level habitat selection253

behavior, our workflow can be used to draw inference by plotting selection coefficients derived254

from the fixed effects of the variance-partitioning models described in step 5 against the overall255

availability of that covariate (J. Fieberg, Matthiopoulos, et al. 2010). To assess the goodness-of-fit256
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of the model, we used the r.squareGLMM() function ((Bartoń 2022)) to calculate the pseudo-R2
257

values of the model output. These values are specifically adapted for use with generalized linear258

models.259

Step 7. Make spatial predictions using the VP-SHAA workflow260

Step 7 aims to generate a fine-scale relative probability of use map of habitat selection behavior,261

allowing for an understanding of the factors that influence a particular species’ habitat selection,262

such as elevation, vegetation, and anthropogenic activities. By mapping the species’ habitat selection263

behavior at the appropriate spatial and temporal grain, we can gain insight into their ecological264

requirements and behavior, which can inform conservation and management efforts.265

Pronghorn application: Using standardized parameters from step 5, we created a fine spatio-266

temporal resolution map that reconciles second- (home range) and third-order (within home range)267

habitat selection, enabling us to predict habitat selection behavior in locations or periods where the268

species was not observed for each season-status-sex classification in our data-set. To ensure that our269

predictions were made at the same scale the model was fit, we overlaid a grid of 10x10km pixels270

across Utah, corresponding to the size of the pronghorn availability domain in step 2.271

For mapping third-order selection, we used the fixed effects from the VP-SHAA model (step272

5) to predict habitat selection within each 10x10km pixel during each season. To estimate the273

relative probability of pronghorn use, we downscaled our predictions to 30x30m by substituting our274

expected coefficient values into our eHSFs (step 4) within each 10x10km pixel. We normalized our275

third-order habitat selection rasters so that they sum to 1 within each 10x10km pixel (McLoughlin,276

D. W. Morris, et al. 2010).277

2.2 Unconditional third-order mapping278

In our methodology, we incorporated the concept of nestedness across selection orders, (see279

DeCesare et al. 2014; Joseph M. Northrup et al. 2013; McGarigal et al. 2016), as this nested280

structure leads to conditional estimates. For example, when estimating third-order selection, it281
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relies on the conditions established by second-order selection. Likewise, second-order selection282

depends on first-order selection, or selection of the geographic range of a species (which we have283

assumed to be uniform across the state, meaning every location has an equal probability of selection;284

D. H. Johnson 1980). Consequently, attempting to predict third-order selection without the inclusion285

of second-order information may yield projections that lack ecological coherence (Buderman et al.286

2023).287

To address this limitation, we generated seasonally varying second-order projections by utilizing288

the covariates from step 3 and the estimated selection coefficients from our mixed-effect models289

step 5. This allowed us to integrate large-scale environmental context into our projections. In these290

second-order projections, we defined the entire state as ’available’ to pronghorn, with the GPS291

points from each pronghorn in that season considered as ’used’ (Appendix A).292

We then used both second- and third-order projections to calculate the pixel-by-pixel product of293

these two layers for each season. This process resulted in the creation of what we term ’unconditional294

third-order’ probability of use maps. These maps provide spatially and temporally explicit, fine-295

scale predictions of pronghorn habitat selection behavior (L. R. Morris, Proffitt, and Blackburn296

2016; Buderman et al. 2023).297

2.3 Validation298

The recognition of a need for transferable models to accurately predict in environments that differ299

greatly from those used during model training has shed light on the shortcomings of current SHA300

models, particularly for wild animals (Aldossari, Husmeier, and Matthiopoulos 2022; J. R. Fieberg301

et al. 2018). Properly evaluating predictive model performance is therefore critical, especially as we302

develop management and conservation plans that depend on how animals respond to accelerating303

changes in the environment (Yates et al. 2018b). There have been many methods suggested for304

validating model predictive performance in the literature (Mark S Boyce et al. 2002; Aldossari,305

Husmeier, and Matthiopoulos 2022; Roberts et al. 2017). For this study, we use out-of-sample data306

of a withheld year, 2021, consisting of 293 individuals, 77 of which were new to the study, and two307
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WMUs not represented in previous years. This has been suggested as the ideal method for validating308

predictions because, for models to provide robust inference on ecological processes, they need to309

be able to predict processes in data that is independent from data used to fit the model (Joseph M310

Northrup et al. 2022; Coe et al. 2011). Additionally, pronghorn differ from other ungulates, such311

as elk and mule deer, in that they have low site fidelity and are facultative migrants, where their312

behavioral tactics vary within or across years (Morrison et al. 2021; Jakes et al. 2018), supporting313

the relative independence of the training data sets.314

2.3.1 Predictive model validation315

To assess the predictive performance of the VP-SHAA workflow, we fit the model using316

the selection coefficients output from the three years of pronghorn data for the withheld data317

set to obtain "true" selection coefficients. We compared the 2021 predicted coefficients to the318

"true" selection coefficients obtained using weighted Pearson’s correlation coefficients with inverse319

variance weights. To evaluate the improvement in model transferability, we compared the VP-SHAA320

full model predictions to predictions from season-only and null models. We quantified the difference321

using a goodness-of-prediction metric (Burzykowski 2023). Specifically, we subtracted the null322

model’s weighted correlation estimates from the full model’s correlation estimates and divided by 2323

for each model in Step 5.324

2.3.2 Spatial predictive validation325

We calculated the out-of-sample Boyce Index (BI) for the predicted third-order and unconditional326

projections (Mark S Boyce et al. 2002). This assessment was conducted using the 10x10km pixels,327

where GPS points were available for each season and year. We only used 10x10km pixels with328

greater than 30 GPS locations and reported the number of pixels used for each season-status-sex329

classification.330

In the case of third-order maps, we began by computing the number of locations within each331

pixel, subsequently grouping them into a fixed number of bins (specifically, 5 bins). Next, we332
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divided these values by the number of individuals present in those bins, enabling us to gauge333

the accuracy of our model’s geographic space predictions. To conduct a thorough evaluation at334

a fine scale, we examined eHSF values for all 30x30m pixels within a 10x10km pixel for each335

season-status-sex classification. To measure model transferability, we applied Spearman’s rank336

correlation (Nielsen et al. 2010) for each 10x10km cell and calculated the mean and standard337

deviation for each season-status-sex classification.338

For unconditional third-order maps, we calculated the number of points within each pixel339

and organized them into predetermined bins. However, to account for variation in the number340

of 10x10km pixels used in our third-order validation for each classification, we scaled the bin341

count by multiplying it by 5. This scaling ensured consistency across classifications. Additionally,342

we normalized these values by the number of individuals to assess the accuracy of our model’s343

geographic space predictions. We evaluated model transferability using Spearman’s rank correlation344

(Nielsen et al. 2010).345

2.3.3 Functional response validation346

To properly assess the importance of controlling for functional responses for enhanced predictive347

capacity and transferability, we performed our BI validation on a null model where availability348

dependence was not controlled for. Here, the availabilities for each covariate were set as a zero in349

our workflow, and the spatial predictions and validations were performed as stated above.350

3 Results351

3.1 Variance Decomposition and Mixed Model Results352

Results from step 5 demonstrate that the fixed effects of the full covariate models explained353

an average of 34.1% of the selection coefficient variation while the season only models explained354

an average of 9% of variation (marginal R2, Table 2). We assessed an intercept only model as a355

benchmark for comparison. With the addition of random effects for individual and WMU-year,356
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the full, season only, and null (intercept-only) models captured an average of 99% of the variation357

(conditional R2, Table 2).358
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Table 1: Goodness-of-fit: Marginal and conditional R2 percentage values for each Full, Null, and Season only covariate model output for
pronghorn (Antilocapra americana), Utah, USA.

Full model Season only Model Null Model

Covariates R2 (marginal) R2 (conditional) R2 (marginal) R2 (conditional) R2 (marginal) R2 (conditional)

Elevation 57 99 02 99 0 99
Roughness 43 99 20 99 0 99
Aspect (Easting) 12 99 02 99 0 99
Aspect (Northing) 33 99 20 99 0 99
Herbaceous cover 21 99 01 99 0 99

Shrub cover 50 99 12 99 0 99
Tree cover 23 99 06 99 0 99
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3.2 Habitat Selection Inference359

A visualization of the distributions of the seven eHSF coefficients show tremendous variability,360

with coefficients encompassing both positive (selection) and negative (avoidance) values across data361

subdivisions (Figure 2). Hence, if we had not subdivided the data, we might have expected to see362

no effect of most of the covariates (i.e., the positive and negative values would cancel out). Further,363

estimates obtained from one data subdivision of movement tactic, season, or sex seem to tell us364

little about the effects on other subdivisions.365

The graphical output from inference drawn at step 6 demonstrates 42 of the 56 population-level366

averages had confidence bounds that overlapped 0, indicating a lack of significance (Figure 2).367

Selection for herbaceous cover was evident for females during winter (β = 0.488) and movers368

during both spring (β = 0.343) and fall (β = 0.499). However, summer residents avoided herbaceous369

cover (β = -0.300). Spring movers (β = -0.244) and winter females (β = -0.0232) avoided shrub but370

spring residents select for shrub (β = 0.302). Movers avoided tree cover during spring (β = -0.815),371

residents in the fall (β = -0.278), and by females in winter (β = -1.15). Winter females (β = -0.108)372

and spring movers (β = -0.139) selected against north-facing slopes.373
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Figure 2: Estimates and 95% confidence intervals for relative habitat selection strength in pronghorn
(Antilocapra americana, 2018-2020, Utah, USA) based on seven covariates. Significance is a
color-coded gradient, with lighter shades indicating lower significance, darker shades indicating
higher significance, and gray indicating non-significance. The dashed horizontal line represents
zero.
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3.3 Spatial Predictions374

Figure 3: Spatially predictive summer habitat selection maps for female pronghorn across Utah using VP-SHAA framework, with eHSF
results mapped following McLoughlin, D. W. Morris, et al. (2010). Panels A-C display third-order, second-order, and unconditional
third-order selection mapping, respectively, with the points in panel B representing the mean GPS location for pronghorn monitored during
the summer of 2021. Panel C provides a fine-scale enhancement of unconditional third-order mapping. The blue polygon represents the
Great Salt Lake. Color intensity reflects relative probability of use and darker shades indicating lower probability of use.
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The predictive habitat selection maps produced by step 7 demonstrate differences in relative375

probability of selection for each season-status-sex classification (Appendix B). Here, third-order376

(Figure 3A), second-order (Figure 3B), and unconditional third-order mapping (Figure 3C) indicate377

predicted habitat selection in each 30x30m pixel within the 100km pixels across the study area for378

female movers and residents in summer. Although Figure 3c and Figure 3A look visually similar,379

Figure 3c selection has greater variation and definition at the 30m spatial resolution. Female resident380

selection is representative of third-order pronghorn habitat selection across all season-status-sex381

data subdivisions, with lower expected use of high elevation areas, depicted in purple (Figure 3A).382

3.4 Transferability383

We assessed model transferability for our predicted selection coefficients in our three mixed384

effects models in step 5 as well as our spatial predictions for mapping selection for 2021 data.385

Positive correlations between predicted and observed pronghorn habitat coefficients demonstrate386

that both the full and null models of habitat selection are predictive, but the magnitude of the387

selection coefficients suggests that their predictive performance is poor. The full model was able to388

better predict pronghorn habitat selection for six of the seven covariates when compared to the null389

model and three of the seven when compared to the model containing seasonal effects only (Table390

2).391
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Table 2: Out-of-sample validation using Pearson’s weighted correlation to estimate predictive capacity for the full vs. season only and
full vs. null models, along with the goodness-of-prediction metric. Positive values indicate better predictive performance in the full and
season only covariate model compared to the null covariate model, while negative values suggest the opposite.

Observed vs Predicted Goodness-of-prediction Goodness-of-prediction
Selection Coefficients Full model Season model Null model (Full vs Season) (Full vs Null)

Elevation 0.088 -0.094 -8.20E-17 0.091 0.045
Roughness 0.254 -0.015 1.16E-16 0.137 0.130
Aspect (Easting) -0.0365 0.056 -2.96E-16 -0.046 -0.018
Aspect (Northing) 0.336 0.360 3.99E-16 -0.022 0.158
Herbaceous cover 0.040 -0.001 -9.02E-17 0.30 0.030

Shrub cover 0.156 0.353 -4.40E-16 -0.10 0.077
Tree cover 0.216 0.076 -1.03E-16 -0.030 0.108
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To evaluate model transferability to novel environments, we used the BI index to assess predic-392

tive capabilities on our third-order, unconditional-order, and a null model containing no availability393

dependence. The BI correlation values differed between resident and mover individuals in each394

season-status-sex classification (table 3). Mover status demonstrated higher rank correlation esti-395

mates than residents across all mapping order-season-sex classification.396

Table 3: Out of sample validation: Spearman’s rank correlation estimations applied to out-of-sample
data for estimating predictive capacity of third-, unconditional third-order, and a null, no availability
dependence model for each season-status-sex combination. Values closer to one demonstrate higher
association of prediction, and a negative value demonstrates a negative association of prediction.

Third-order Unconditional third-order Null
Season Status Sex Mean SD n Rank value Rank value

Resident F 0.17 0.73 77 0.40 0.35Winter
Resident M -0.01 0.69 49 0.22 0.63

Resident F 0.56 0.55 11 0.70 0.54

Resident M -0.48 0.73 7 -0.6 0.80

Mover F 0.38 0.67 92 0.82 0.85

Spring

Mover M 0.46 0.60 31 0.89 0.76

Resident F 0.15 0.60 6 0.2 0.61

Resident M -0.33 0.65 7 -0.61 -0.13

Mover F 0.22 0.73 91 0.58 0.95

Summer

Mover M 0.15 0.85 27 0.62 0.61

Resident F 0.56 0.38 7 0.89 0.86

Resident M 0.84 0.19 2 0.67 0.87

Mover F 0.27 0.73 79 0.70 0.62

Fall

Mover M 0.14 0.72 37 0.66 0.83

4 Discussion397

Habitat selection behavior arises from an interaction between an individual’s internal state and398

the external environment, both of which can vary in space and time. As we have demonstrated here,399
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habitat selection is typically observed at the individual level, and it may be challenging to draw any400

generalizable conclusions at the population-level. In the absence of careful variance partitioning, we401

might have concluded that, on average, pronghorn in Utah did not strongly select for or avoid any402

habitat components within their seasonal home ranges (Figures 3). Looking only at the third-order403

selection, we may have also drawn the conclusion that accounting for availability at the individual-404

level was insufficient to make inference at the population-level (Figure 3a). Using the VP-SHAA405

workflow however, we were able to tease apart the drivers of variability in individual-level habitat-406

selection to draw inference about population-level patterns. Accounting for availability dependence407

and differences in sex and movement strategy between individuals were particularly important408

for drawing accurate inference about habitat selection behavior. To make accurate predictions409

from fine-scale data across large management regions, our results suggest corrections for scale410

dependence is necessary and adjustments for availability dependence can be useful.411

4.1 Drivers of pronghorn habitat selection in Utah412

To our knowledge, our study provides the first comprehensive analysis on pronghorn habitat413

selection considering an array of temporally static and dynamic habitat covariates across a large414

environmental gradient. Of the environmental covariates previously explored as drivers of pronghorn415

habitat selection, our findings are largely corroborated by the body of existing literature. Sawyer416

et al. (2019) found that pronghorn strongly avoid trees, which is supported by our findings that417

females in winter, movers in spring, and residents in fall avoid tree cover. After conducting a fecal418

analysis, Jacques et al. (2006) found pronghorn demonstrate a preference for grasses over shrubs,419

but with selection for shrubs increasing in the winter, which aligns with our results. Movers during420

spring and females during winter avoided shrub cover and selected instead for herbaceous resources.421

Our study was also able to expand on additional environmental factors that might contribute to422

pronghorn habitat selection; for example, we found evidence of no selection or avoidance for423

elevation across all seasons and movement types. We also found selection for rougher terrain by424

residents during spring and avoidance by movers during fall. Overall, few studies on ungulates,425
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let alone pronghorn, have been able to draw inference on selection across multiple populations or426

across a study area with as much climatic and topographical diversity as Utah.427

Pronghorn in Utah did not strongly select for or avoid habitat components within their seasonal428

home ranges. There are three possible explanations for this general pattern of weak, population-level429

habitat selection. First, the seven habitat covariates considered here could be of little importance430

to pronghorn as they make habitat selection decisions, but previous pronghorn habitat selection431

research suggests that this is likely untrue (Jacques et al. 2006; Sawyer et al. 2019; Jacques et al.432

2006). Second, individual pronghorn may exhibit unique, specialized habitat selection behavior433

so that there are no common patterns at the population-level, although, the small magnitude of434

the individual-level random effects in our analysis suggests this is not the case. Lastly, pronghorn435

may select for seasonal ranges rather than specific habitat types within those ranges, satisfying436

their ecological needs through second-order habitat selection and negating the need for third-order437

selection (as observed in Figure 3A).438

Our analysis highlights the evident link between habitat selection and an individual’s behavioral439

state, especially when comparing the movement syndromes of migration and residency in pronghorn.440

While other studies have found that the direction and strength of an individual’s habitat selection441

is dependent on their behavioral state (Picardi et al. 2022; Klappstein, Thomas, and Michelot442

2023), our results demonstrate that the predictive capacity of SHAA models is also conditional on443

behavioral state. The differential predictive success for each movement strategy may stem from the444

scale in which these groups are selecting for habitat. While movers choose two separate seasonal445

ranges at the second-order and then select for specific habitat attributes within those ranges at the446

third-order, residents appear to select only for home ranges at the second-order, exhibiting little447

within-home range selection. It is difficult to say if habitat attributes are driving movement behavior448

or if movement behavior influences habitat selection, but both appear important when predicting449

species distribution.450

Understanding the relationship between movement syndromes and habitat selection holds451

great importance for developing effective conservation strategies for migratory species (Matthew J452
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Kauffman et al. 2021). The mapping and preservation of migration corridors play a pivotal role in453

the conservation of migratory or partially migratory species (Merkle et al. 2022). Our unconditional454

selection model had high predictive accuracy for a migratory species, possibly because pronghorn455

are selecting for habitat at multiple scales, making our VP-SHAA workflow a valuable tool for456

habitat-based migratory corridor delineation (refer to Table 3). While we only have applied our457

model to a single species in one geographic area, we anticipate that a hybrid model of scale selection458

will always perform better when predicting the behavior of species who travel long distances before459

returning to localized movements, like migrants. Our workflow is a valuable conservation and460

management tool for individuals or agencies working to delineate migratory habitat, like the Utah461

Wildlife Migration Initiative, because of its behavioral state-dependent predictive capabilities which462

are exceptionally good for migrant populations or species.463

4.2 Individual Variation in Habitat Selection and Population-level inference464

While making management decisions, it is common to consider population-level inference.465

However, individual animals may exhibit consistent variations in their responses to environmental466

cues, which can undermine the effectiveness of population-based recommendations for certain467

subgroups (Matthiopoulos, J. Fieberg, et al. 2015; Paton and Matthiopoulos 2016). In our VP-SHAA468

workflow, we comprehensively addressed individual variation by incorporating sex, movement status,469

and an individual random effect into our full model, capturing over three times the variation in habitat470

selection across populations. Additionally, we accounted for individual-specific environmental471

conditions by adjusting for availability dependence. By controlling for individual-level variation, we472

were able to draw more robust conclusions about the factors influencing pronghorn habitat selection473

at the population level. Additionally, by accounting for individual variation during different seasons474

throughout the year, we gained further insights into how individuals and subsequent groups select475

or avoid habitat based on its availability. This information can provide valuable insights into how476

these factors influence behaviors such as movement.477
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4.3 VP-SHAA workflow and model transferability478

The VP-SHAA workflow generally met our expectations regarding its predictive capabilities,479

albeit with mixed outcomes. Notably, our unconditional third-order mapping enhanced model480

transferability in twelve out of the fourteen season-status-sex groups. However, our model with481

availability dependence yielded higher rank values in only eight of the fourteen groups compared to482

the null models. This discrepancy suggests that while availability dependence may prove beneficial483

in certain cases, its effectiveness varies across different contexts. Nonetheless, our VP-SHAA484

workflow, whether with or without availability dependence, consistently displayed robust predictive485

capabilities. Its temporal transferability equips modelers with the tools to assess the potential486

impacts of environmental change on species, their selection, and their distributions. This empowers487

conservation managers to anticipate the effects of global change more effectively.488

Furthermore, the spatial transferability aspect of our models evaluates the extent to which pa-489

rameterized models can be generalized to other regions, relying on predictions through interpolation490

rather than extrapolation (Aarts et al. 2013). The VP-SHAA framework stands out due to its adapt-491

ability to species-specific conditions and its capacity to incorporate critical factors that influence492

specific systems, such as conspecific density, predation pressure, and the presence of competing493

species. It not only enhances transferability with respect to habitat covariates for pronghorn within494

this ecosystem but also reveals disparities between migratory behavioral tactics and our ability to495

make accurate selection predictions.496

Overall, the VP-SHAA has laid the foundation for a more transferable spatio-temporal frame-497

work. Our approach effectively captures the large variation in individual selection where no clear498

pattern could be derived, demonstrating robust predictive capabilities, and our results conclusively499

illustrate that the VP-SHAA workflow significantly improves model transferability for pronghorn in500

this system.501
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4.4 Spatial predictions across a diverse environmental gradient502

When only mapping third-order predictions, we found discrepancies between our results and503

expectations, grounded in species biology. For example, pronghorn were predicted to strongly select504

for the salt flats of northeastern Utah near the Great Salt Lake. This is because at a fine spatial505

scale, the salt flats have habitat attributes that pronghorn do select for, like very flat areas with few506

trees. However, third-order selection, by definition, is within home-range selection, so by using a507

third-order model we are assuming that pronghorn live on the salt flats, which is highly inaccurate.508

Orders of selection are inherently nested and thus our estimates are conditional. Predicting without509

second-order information often leads to maps that are inconsistent with expected ecological patterns510

(Buderman et al. 2023), as we saw for pronghorn .Our findings underscore the critical importance511

of considering both availability and scale dependence in SHAA analyses, highlighting the need for512

a comprehensive approach to habitat selection modeling.513

4.5 Conclusions514

As anthropogenic development and climate change drive rapid environmental shifts, effective515

conservation requires that resource managers understand how habitat selection behavior varies over516

space and time to predict how organisms will respond to future change. Our proposed VP-SHAA517

workflow is a spatially explicit and transparent model framework that partitions individual variation518

in habitat selection behavior to draw population-level inference and prediction. We controlled519

population-level selection coefficients by systematically considering individual variability, availabil-520

ity and extent dependence, and temporal shifts in environmental space. This approach overcomes521

limitations researchers face drawing inferences across populations spanning an environmental522

gradient that could otherwise constrain our ability to make predictions in novel places or times. The523

flexibility of this workflow further enables customization of the model to match specific systems524

or research questions by incorporating different sources of variability in habitat selection behavior.525

The application of the VP-SHAA workflow for pronghorn in Utah sheds light on previous unknown526

drivers of habitat selection and established a baseline understanding of behavior that will motivate527
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future pronghorn research. Overall, our results demonstrate the inferential and predictive capabilities528

of the VP-SHAA workflow, an adaptable approach controlling for variation that otherwise confound529

habitat selection analyses.530

References531

Beale, Donald M. and Arthur D. Smith (1970). “Forage Use, Water Consumption, and Productivity532

of Pronghorn Antelope in Western Utah”. In: The Journal of Wildlife Management 34.3, pp. 570–533

582. ISSN: 0022-541X. DOI: 10.2307/3798865. URL: https://www.jstor.org/stable/534

3798865 (visited on 09/07/2020).535

Johnson, Douglas H. (1980). “The Comparison of Usage and Availability Measurements for536

Evaluating Resource Preference”. en. In: Ecology 61.1, pp. 65–71. ISSN: 1939-9170. DOI: 10.537

2307/1937156. URL: https://onlinelibrary.wiley.com/doi/abs/10.2307/1937156538

(visited on 02/06/2023).539

Guisan, A., S. Weiss, and A. Weiss (July 1999). “GLM versus CCA spatial modeling of plant540

species distribution”. en. In: Plant Ecology 143.1, pp. 107–122. ISSN: 1573-5052. DOI: 10.541

1023/A:1009841519580. URL: https://doi.org/10.1023/A:1009841519580 (visited on542

06/23/2022).543

Mysterud, Atle et al. (Oct. 1999). “Habitat selection by roe deer and sheep: does habitat rank-544

ing reflect resource availability?” In: Canadian Journal of Zoology 77.5. Publisher: NRC545

Research Press, pp. 776–783. ISSN: 0008-4301. DOI: 10 . 1139 / z99 - 025. URL: https :546

//cdnsciencepub.com/doi/abs/10.1139/z99-025 (visited on 08/15/2022).547

Boyce, Mark S et al. (Nov. 2002). “Evaluating resource selection functions”. en. In: Ecological548

Modelling 157.2, pp. 281–300. ISSN: 0304-3800. DOI: 10.1016/S0304-3800(02)00200-4.549

URL: http://www.sciencedirect.com/science/article/pii/S0304380002002004550

(visited on 10/26/2020).551

31



Maggini, R., A. Guisan, and D. Cherix (Dec. 2002). “A stratified approach for modeling the552

distribution of a threatened ant species in the Swiss National Park”. en. In: Biodiversity &553

Conservation 11.12, pp. 2117–2141. ISSN: 1572-9710. DOI: 10.1023/A:1021338510860.554

URL: https://doi.org/10.1023/A:1021338510860 (visited on 06/23/2022).555

McLoughlin, Philip D., Ray L. Case, et al. (June 2002). “Hierarchical habitat selection by barren-556

ground grizzly bears in the central Canadian Arctic”. en. In: Oecologia 132.1, pp. 102–108.557

ISSN: 1432-1939. DOI: 10.1007/s00442-002-0941-5. URL: https://doi.org/10.1007/558

s00442-002-0941-5 (visited on 07/05/2022).559

Berger, Joel (Apr. 2004). “The Last Mile: How to Sustain Long-Distance Migration in Mammals”.560

en. In: Conservation Biology 18.2, pp. 320–331. ISSN: 0888-8892, 1523-1739. DOI: 10.1111/561

j.1523- 1739.2004.00548.x. URL: http://doi.wiley.com/10.1111/j.1523-562

1739.2004.00548.x (visited on 10/19/2020).563

Johnson, Chris J., Dale R. Seip, and Mark S. Boyce (2004). “A quantitative approach to con-564

servation planning: using resource selection functions to map the distribution of moun-565

tain caribou at multiple spatial scales”. en. In: Journal of Applied Ecology 41.2. _eprint:566

https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.0021-8901.2004.00899.x, pp. 238–251. ISSN:567

1365-2664. DOI: 10.1111/j.0021-8901.2004.00899.x. URL: https://onlinelibrary.568

wiley.com/doi/abs/10.1111/j.0021-8901.2004.00899.x (visited on 08/15/2022).569

O’Gara, Bart W. et al. (2004). Pronghorn: Ecology & Mangemt. University Press of Colorado.570

Jacques, Christopher et al. (Jan. 2006). “Evaluating Diet Composition of Pronghorn in Wind Cave571

National Park, South Dakota”. In: Prairie Naturalist 38, pp. 239–250.572

Hirzel, Alexandre H. and Gwenaëlle Le Lay (2008). “Habitat suitability modelling and niche573

theory”. en. In: Journal of Applied Ecology 45.5, pp. 1372–1381. ISSN: 1365-2664. DOI:574

10.1111/j.1365-2664.2008.01524.x. URL: https://onlinelibrary.wiley.com/doi/575

abs/10.1111/j.1365-2664.2008.01524.x (visited on 06/23/2022).576

Buckley, Lauren B. et al. (2010). “Can mechanism inform species’ distribution models?” en.577

In: Ecology Letters 13.8. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1461-578

32



0248.2010.01479.x, pp. 1041–1054. ISSN: 1461-0248. DOI: 10.1111/j.1461-0248.2010.579

01479.x. URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1461-580

0248.2010.01479.x (visited on 04/01/2022).581

Fieberg, John, Jason Matthiopoulos, et al. (July 2010). “Correlation and studies of habitat selection:582

problem, red herring or opportunity?” In: Philosophical Transactions of the Royal Society B:583

Biological Sciences 365.1550. Publisher: Royal Society, pp. 2233–2244. DOI: 10.1098/rstb.584

2010.0079. URL: https://royalsocietypublishing.org/doi/full/10.1098/rstb.585

2010.0079 (visited on 08/15/2022).586

McLoughlin, Philip D., Douglas W. Morris, et al. (2010). “Considering ecological dynamics in587

resource selection functions”. en. In: Journal of Animal Ecology 79.1, pp. 4–12. ISSN: 1365-588

2656. DOI: 10.1111/j.1365-2656.2009.01613.x. URL: https://onlinelibrary.wiley.589

com/doi/abs/10.1111/j.1365-2656.2009.01613.x (visited on 07/13/2022).590

Nielsen, Scott E et al. (2010). “Dynamic wildlife habitat models: Seasonal foods and mortality risk591

predict occupancy-abundance and habitat selection in grizzly bears”. In: Biological Conservation592

143.7, pp. 1623–1634.593

Van Beest, Floris M. et al. (2010). “Forage quantity, quality and depletion as scale-dependent mech-594

anisms driving habitat selection of a large browsing herbivore”. en. In: Journal of Animal Ecol-595

ogy 79.4. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2656.2010.01701.x,596

pp. 910–922. ISSN: 1365-2656. DOI: 10.1111/j.1365-2656.2010.01701.x. URL: https:597

//onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2656.2010.01701.x (visited598

on 07/05/2022).599

Coe, Priscilla K et al. (2011). “Validation of elk resource selection models with spatially independent600

data”. In: The Journal of Wildlife Management 75.1, pp. 159–170.601

Larsen, Randy T. et al. (2011). “Does small-perimeter fencing inhibit mule deer or pronghorn602

use of water developments?” en. In: The Journal of Wildlife Management 75.6. _eprint:603

https://onlinelibrary.wiley.com/doi/pdf/10.1002/jwmg.163, pp. 1417–1425. ISSN: 1937-2817.604

33



DOI: 10.1002/jwmg.163. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/605

jwmg.163 (visited on 06/23/2022).606

Matthiopoulos, Jason, Mark Hebblewhite, et al. (2011). “Generalized functional responses for607

species distributions”. en. In: Ecology 92.3. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1890/10-608

0751.1, pp. 583–589. ISSN: 1939-9170. DOI: 10 . 1890 / 10 - 0751 . 1. URL: https : / /609

onlinelibrary.wiley.com/doi/abs/10.1890/10-0751.1 (visited on 08/15/2022).610

Beale, Colin M. and Jack J. Lennon (Jan. 2012). “Incorporating uncertainty in predictive species611

distribution modelling”. In: Philosophical Transactions of the Royal Society B: Biological612

Sciences 367.1586. Publisher: Royal Society, pp. 247–258. DOI: 10.1098/rstb.2011.0178.613

URL: https://royalsocietypublishing.org/doi/full/10.1098/rstb.2011.0178614

(visited on 08/15/2022).615

Aarts, Geert et al. (2013). “Quantifying the effect of habitat availability on species distributions”. en.616

In: Journal of Animal Ecology 82.6, pp. 1135–1145. ISSN: 1365-2656. DOI: 10.1111/1365-617

2656.12061. URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/1365-618

2656.12061 (visited on 08/15/2022).619

Guisan, Antoine et al. (2013). “Predicting species distributions for conservation decisions”. en.620

In: Ecology Letters 16.12, pp. 1424–1435. ISSN: 1461-0248. DOI: 10.1111/ele.12189.621

URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/ele.12189 (visited on622

08/15/2022).623

Northrup, Joseph M. et al. (2013). “Practical guidance on characterizing availability in re-624

source selection functions under a use–availability design”. en. In: Ecology 94.7. _eprint:625

https://onlinelibrary.wiley.com/doi/pdf/10.1890/12-1688.1, pp. 1456–1463. ISSN: 1939-9170.626

DOI: 10.1890/12-1688.1. URL: https://onlinelibrary.wiley.com/doi/abs/10.627

1890/12-1688.1 (visited on 01/23/2023).628

DeCesare, Nicholas J et al. (2014). “Linking habitat selection and predation risk to spatial variation629

in survival”. In: Journal of Animal Ecology 83.2, pp. 343–352.630

34



Bastille-Rousseau, Guillaume, Jonathan R Potts, et al. (2015). “Unveiling trade-offs in resource631

selection of migratory caribou using a mechanistic movement model of availability”. In: Ecog-632

raphy 38.10, pp. 1049–1059.633

Matthiopoulos, Jason, John Fieberg, et al. (2015). “Establishing the link between habitat selection634

and animal population dynamics”. en. In: Ecological Monographs 85.3, pp. 413–436. ISSN:635

1557-7015. DOI: 10.1890/14-2244.1. URL: https://esajournals.onlinelibrary.636

wiley.com/doi/abs/10.1890/14-2244.1 (visited on 05/04/2021).637

Street, Garrett M. et al. (Nov. 2015). “Habitat selection following recent disturbance: model638

transferability with implications for management and conservation of moose (Alces alces)”.639

In: Canadian Journal of Zoology 93.11. Publisher: NRC Research Press, pp. 813–821. ISSN:640

0008-4301. DOI: 10.1139/cjz-2015-0005. URL: https://cdnsciencepub.com/doi/641

full/10.1139/cjz-2015-0005 (visited on 05/24/2022).642

McGarigal, Kevin et al. (2016). “Multi-scale habitat selection modeling: a review and outlook”. In:643

Landscape ecology 31, pp. 1161–1175.644

Morris, Lillian R., Kelly M. Proffitt, and Jason K. Blackburn (Nov. 2016). “Mapping resource645

selection functions in wildlife studies: Concerns and recommendations”. en. In: Applied Ge-646

ography 76, pp. 173–183. ISSN: 0143-6228. DOI: 10.1016/j.apgeog.2016.09.025. URL:647

https://www.sciencedirect.com/science/article/pii/S0143622816304714 (visited648

on 02/06/2023).649

Paton, Robert Stephen and Jason Matthiopoulos (2016). “Defining the scale of habitat availability650

for models of habitat selection”. en. In: Ecology 97.5, pp. 1113–1122. ISSN: 1939-9170. DOI:651

10.1890/14-2241.1. URL: https://onlinelibrary.wiley.com/doi/abs/10.1890/14-652

2241.1 (visited on 08/15/2022).653

Aikens, Ellen O., Matthew J. Kauffman, et al. (2017). “The greenscape shapes surfing of resource654

waves in a large migratory herbivore”. en. In: Ecology Letters 20.6, pp. 741–750. ISSN: 1461-655

0248. DOI: 10.1111/ele.12772. URL: https://onlinelibrary.wiley.com/doi/abs/656

10.1111/ele.12772 (visited on 02/07/2021).657

35



Prokopenko, Christina M., Mark S. Boyce, and Tal Avgar (Feb. 2017). “Extent-dependent habitat658

selection in a migratory large herbivore: road avoidance across scales”. en. In: Landscape659

Ecology 32.2, pp. 313–325. ISSN: 1572-9761. DOI: 10.1007/s10980-016-0451-1. URL:660

https://doi.org/10.1007/s10980-016-0451-1 (visited on 07/05/2022).661

Roberts, David R et al. (2017). “Cross-validation strategies for data with temporal, spatial, hierar-662

chical, or phylogenetic structure”. In: Ecography 40.8, pp. 913–929.663

Barbet-Massin, Morgane et al. (Mar. 2018). “Can species distribution models really predict the664

expansion of invasive species?” en. In: PLOS ONE 13.3. Publisher: Public Library of Science,665

e0193085. ISSN: 1932-6203. DOI: 10.1371/journal.pone.0193085. URL: https://666

journals.plos.org/plosone/article?id=10.1371/journal.pone.0193085 (visited667

on 08/15/2022).668

Fieberg, John R. et al. (2018). “Used-habitat calibration plots: a new procedure for validating species669

distribution, resource selection, and step-selection models”. en. In: Ecography 41.5. _eprint:670

https://onlinelibrary.wiley.com/doi/pdf/10.1111/ecog.03123, pp. 737–752. ISSN: 1600-0587.671

DOI: 10.1111/ecog.03123. URL: https://onlinelibrary.wiley.com/doi/abs/10.672

1111/ecog.03123 (visited on 10/19/2022).673

Jakes, Andrew F et al. (2018). “Classifying the migration behaviors of pronghorn on their northern674

range”. In: The Journal of Wildlife Management 82.6, pp. 1229–1242.675

Kleiven, Eivind Flittie et al. (Oct. 2018). “Seasonal difference in temporal transferability of an676

ecological model: near-term predictions of lemming outbreak abundances”. en. In: Scientific677

Reports 8.1. Number: 1 Publisher: Nature Publishing Group, p. 15252. ISSN: 2045-2322. DOI:678

10.1038/s41598-018-33443-6. URL: https://www.nature.com/articles/s41598-679

018-33443-6 (visited on 08/15/2022).680

Yates, Katherine L. et al. (Oct. 2018a). “Outstanding Challenges in the Transferability of Ecological681

Models”. en. In: Trends in Ecology & Evolution 33.10, pp. 790–802. ISSN: 0169-5347. DOI:682

10.1016/j.tree.2018.08.001. URL: https://www.sciencedirect.com/science/683

article/pii/S0169534718301812 (visited on 08/15/2022).684

36



Yates, Katherine L. et al. (Oct. 2018b). “Outstanding Challenges in the Transferability of Ecological685

Models”. en. In: Trends in Ecology & Evolution 33.10, pp. 790–802. ISSN: 0169-5347. DOI:686

10.1016/j.tree.2018.08.001. URL: https://www.sciencedirect.com/science/687

article/pii/S0169534718301812 (visited on 05/24/2022).688

Matthiopoulos, Jason, Christopher Field, and Ross MacLeod (2019). “Predicting population change689

from models based on habitat availability and utilization”. In: Proceedings of the Royal Society690

B 286.1901, p. 20182911.691

Sawyer, Hall et al. (2019). “Long-term effects of energy development on winter distribution and692

residency of pronghorn in the Greater Yellowstone Ecosystem”. en. In: Conservation Science693

and Practice 1.9, e83. ISSN: 2578-4854. DOI: 10.1111/csp2.83. URL: https://conbio.694

onlinelibrary.wiley.com/doi/abs/10.1111/csp2.83 (visited on 10/26/2020).695

Wickham, Hadley et al. (Nov. 2019). “Welcome to the Tidyverse”. en. In: Journal of Open Source696

Software 4.43, p. 1686. ISSN: 2475-9066. DOI: 10.21105/joss.01686. URL: https://joss.697

theoj.org/papers/10.21105/joss.01686 (visited on 06/23/2022).698

Aikens, Ellen O., Kevin L. Monteith, et al. (2020). “Drought reshuffles plant phenology and reduces699

the foraging benefit of green-wave surfing for a migratory ungulate”. en. In: Global Change700

Biology 26.8, pp. 4215–4225. ISSN: 1365-2486. DOI: 10.1111/gcb.15169. URL: https:701

//onlinelibrary.wiley.com/doi/abs/10.1111/gcb.15169 (visited on 04/12/2021).702

Jones, Paul F. et al. (2020). “Annual Pronghorn Survival of a Partially Migratory Population”. en.703

In: The Journal of Wildlife Management 84.6, pp. 1114–1126. ISSN: 1937-2817. DOI: 10.1002/704

jwmg.21886. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/jwmg.21886705

(visited on 07/12/2022).706

Matthiopoulos, Jason, John R. Fieberg, and Geert Aarts (Dec. 2020). Species-Habitat Associations:707

Spatial data, predictive models, and ecological insights. en. Accepted: 2020-12-15T21:11:06Z.708

University of Minnesota Libraries Publishing. DOI: 10.24926/2020.081320. URL: http:709

//conservancy.umn.edu/handle/11299/217469 (visited on 08/15/2022).710

37



Fieberg, John, Johannes Signer, et al. (2021). “A ‘How to’ guide for interpreting parameters in711

habitat-selection analyses”. en. In: Journal of Animal Ecology 90.5, pp. 1027–1043. ISSN:712

1365-2656. DOI: 10.1111/1365-2656.13441. URL: https://onlinelibrary.wiley.com/713

doi/abs/10.1111/1365-2656.13441 (visited on 06/22/2022).714

Kauffman, Matthew J et al. (2021). “Mapping out a future for ungulate migrations”. In: Science715

372.6542, pp. 566–569.716

Morrison, Thomas A. et al. (2021). “Drivers of site fidelity in ungulates”. en. In: Journal of Ani-717

mal Ecology 90.4. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/1365-2656.13425,718

pp. 955–966. ISSN: 1365-2656. DOI: 10 . 1111 / 1365 - 2656 . 13425. URL: https : / /719

onlinelibrary . wiley . com / doi / abs / 10 . 1111 / 1365 - 2656 . 13425 (visited on720

05/19/2022).721

R Core Team (2021). R: A Language and Environment for Statistical Computing. R Foundation for722

Statistical Computing. Vienna, Austria. URL: https://www.R-project.org/.723

Aldossari, Shaykhah, Dirk Husmeier, and Jason Matthiopoulos (2022). “Transferable species724

distribution modelling: Comparative performance of Generalised Functional Response models”.725

In: Ecological Informatics 71, p. 101803. ISSN: 1574-9541. DOI: https://doi.org/10.1016/726

j.ecoinf.2022.101803. URL: https://www.sciencedirect.com/science/article/727

pii/S1574954122002539.728

Bartoń, Kamil (Sept. 2022). MuMIn: Multi-Model Inference. URL: https://CRAN.R-project.729

org/package=MuMIn (visited on 02/27/2023).730

Bastille-Rousseau, Guillaume and George Wittemyer (2022). “Simple metrics to characterize inter-731

individual and temporal variation in habitat selection behaviour”. en. In: Journal of Animal Ecol-732

ogy 91.8. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/1365-2656.13738, pp. 1693–733

1706. ISSN: 1365-2656. DOI: 10.1111/1365-2656.13738. URL: https://onlinelibrary.734

wiley.com/doi/abs/10.1111/1365-2656.13738 (visited on 08/15/2022).735

Bates, Douglas et al. (Apr. 2022). lme4: Linear Mixed-Effects Models using ’Eigen’ and S4. URL:736

https://CRAN.R-project.org/package=lme4 (visited on 06/23/2022).737

38



Gantchoff, MG et al. (2022). “Distribution model transferability for a wide-ranging species, the738

Gray Wolf”. In: Scientific Reports 12.1, p. 13556.739

Merkle, Jerod A et al. (2022). “Migration Mapper: Identifying movement corridors and seasonal740

ranges for large mammal conservation”. In: Methods in Ecology and Evolution 13.11, pp. 2397–741

2403.742

Northrup, Joseph M et al. (2022). “Conceptual and methodological advances in habitat-selection743

modeling: guidelines for ecology and evolution”. In: Ecological Applications 32.1, e02470.744

Picardi, Simona et al. (2022). “Behavioural state-dependent habitat selection and implications for745

animal translocations”. In: Journal of Applied Ecology 59.2, pp. 624–635.746

Signer, Johannes et al. (Feb. 2022). amt: Animal Movement Tools. URL: https://CRAN.R-747

project.org/package=amt (visited on 06/23/2022).748

Bowersock, Nathaniel R et al. (2023). “A test of the green wave hypothesis in omnivorous brown749

bears across North America”. In: Ecography, e06549.750

Buderman, Frances E et al. (2023). “A multi-level modeling approach to guide management of751

female feral hogs in great smoky mountains National Park”. In: Biological Invasions, pp. 1–18.752

Heit, David R et al. (2023). “The spatial scaling and individuality of habitat selection in a widespread753

ungulate”. In: Landscape Ecology, pp. 1–15.754

Klappstein, Natasha Jean, Len Thomas, and Theo Michelot (2023). “Flexible hidden Markov models755

for behaviour-dependent habitat selection”. In: Movement Ecology 11.1, p. 30.756

Burzykowski, Przemyslaw Biecek and Tomasz (2023). 15 Model-performance Measures | Explana-757

tory Model Analysis. URL: https://ema.drwhy.ai/modelPerformance.html (visited on758

03/21/2023).759

39




