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Abstract

A multi-inverter-fed power system is susceptible to small-signal instability owing to weak grid influence. Using the impedance-

frequency (IF) method to analyse system stability at engineering sites has the following limitations: 1) The internal information

of a grid-connected inverter is unknown because of technical confidentiality. Thus, its impedance model should fit in a grey

box. 2) The IF method defaults to the subsystem aggregation impedance without right-half-plane (RHP) poles, which may

result in incorrect stability analysis. 3) The data used for drawing the IF curve should be calculated per frequency, which

is time-consuming. To address these limitations, this study proposes a grey box method for small-signal stability analysis

of a multi-inverter-fed power system based on Bode diagrams. First, grey box impedance fitting for a single grid-connected

inverter and impedance aggregation for a multi-inverter-fed power system are discussed. Second, the principle of the proposed

method is elaborated. Using the Bode diagram, the number of RHP poles of the aggregated impedance and actual number of

circles for Nyquist curves are identified. Third, a multi-inverter-fed power system is constructed, and the effectiveness of the

proposed method is verified using case analysis and hardware-in-the-loop real-time experiments based on RT-LAB. Finally, the

advantages of the proposed method are revealed by comparing it to the IF method.
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Abstract: A multi-inverter-fed power system is susceptible to small-signal instability owing to weak grid influence. 
Using the impedance-frequency (IF) method to analyse system stability at engineering sites has the following 
limitations: 1) The internal information of a grid-connected inverter is unknown because of technical confidentiality. 
Thus, its impedance model should fit in a grey box. 2) The IF method defaults to the subsystem aggregation impedance 
without right-half-plane (RHP) poles, which may result in incorrect stability analysis. 3) The data used for drawing 
the IF curve should be calculated per frequency, which is time-consuming. To address these limitations, this study 
proposes a grey box method for small-signal stability analysis of a multi-inverter-fed power system based on Bode 
diagrams. First, grey box impedance fitting for a single grid-connected inverter and impedance aggregation for a 
multi-inverter-fed power system are discussed. Second, the principle of the proposed method is elaborated. Using 
the Bode diagram, the number of RHP poles of the aggregated impedance and actual number of circles for Nyquist 
curves are identified. Third, a multi-inverter-fed power system is constructed, and the effectiveness of the proposed 
method is verified using case analysis and hardware-in-the-loop real-time experiments based on RT-LAB. Finally, the 
advantages of the proposed method are revealed by comparing it to the IF method. 
Keywords: Multi-inverter-fed power system, small-signal stability, grey-box impedance model, impedance-frequency 
method, Bode diagrams, right-half-plane poles, hardware-in-the-loop experiment 
 

1. Introduction 
Stability analysis approaches for a multi-inverter-

fed power system should adapt to the replacement of 
synchronous generators in traditional power systems by 
clean, inverter-based resources [1]. Unstable accidents, 
such as those induced by the coupling between grids and 
grid-connected inverters (GCIs), have been reported [2–
4]. The internal parameters, control methods, structure, 
and other information pertaining to grid-connected 
inverters at engineering sites are unknown owing to the 
technical confidentiality restrictions imposed by the 
equipment supplier. Furthermore, only the impedance 
model is made available [5]. Hence, analysing the 
stability of multi-inverter-fed power systems， 
especially in a grey-box, is a key prerequisite for 
proposing targeted stability restoration plans [6]. 

Existing mainstream stability analysis methods 
include state-space model-based eigenvalue analysis [7–
9], and the impedance model-based Nyquist stability 
criterion [10–12]. Eigenvalue analysis obtains the system 
mode via eigenvalue decomposition of the state-space 
matrix and assesses stability by examining whether these 
modes reside in the right-half-plane (RHP) of the 
complex frequency domain [7]. This method can use 
vectors to solve for participation factors [8] and 
determine parameter-adjustment schemes [9]. While the 

principles of eigenvalue analysis are well-defined and the 
analysis process is complete, constructing the state-space 
matrix of multi-inverter-fed power systems can be 
challenging owing to poor modification flexibility [10]. 
The impedance-based stability criterion, which is one of 
the advantages of the impedance model, is easy to verify 
and modify. It overcomes the limitations of the state-
space model used for eigenvalue analysis. Reference [11] 
conducted the stability analysis of a single-inverter grid 
connection by dividing the load and source subsystems, 
utilising the impedance ratios of the two subsystems and 
the Nyquist curve. Reference [12] proposed an apparent 
impedance, extending the criterion presented in [11] to 
multi-inverter-fed power systems. The impedance-based 
stability criteria are flexible and widely applicable; 
however, stability analysis requires accurate 
determination of the number of RHP poles while the 
Nyquist curve inflects at (-1, j0) [13]. 

The impedance-frequency (IF) method, which 
arises owing to the advantages of impedance-based 
stability criteria [14–18], equivalently converts the 
Nyquist curve into real- and imaginary-frequency curves 
to analyse the stability of multi-inverter-fed power 
systems intuitively and conveniently. Considering the 
absence of RHP poles in aggregated impedance, the 
stability analysis principle of the IF method can be 
summarised as follows: We determine the frequency at 
which the imaginary part of the IF curve is zero. If the 

mailto:*ljw_ncepu@163.com
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impedance corresponding to the value of the real part 
frequency curve at this frequency is greater than -1, then 
the Nyquist curve does not surround (-1, j0) and the 
system is stable; otherwise, the Nyquist curve surrounds 
(-1, j0) and the system is unstable. Reference [15] was 
the first to propose an RLC-based IF method. References 
[16] and [17] use the IF method to reshape quantitative 
damping and explore frequency coupling. Reference [18] 
considers the differences in the orders of magnitudes of 
the parameters and introduces elastic coefficients to 
improve the IF method. The developments in the 
impedance-based stability criteria led to the IF method. 
However, this method has the following limitations while 
analysing the stability of multi-inverter-fed power 
systems at engineering sites: 

1) The grid-connected inverter is restricted by the 
technical confidentiality imposed by the equipment 
supplier. Because the internal information is unknown, 
the impedance model cannot be established directly. 

2) Prior to applying the IF method, the default 
aggregated impedance has zero RHP poles. Thus, it can 
only determine whether the Nyquist curve surrounds (-1, 
j0). 

3) The data used for drawing the IF curve must be 
solved for every frequency. The method has limited 
applicability owing to its long computational time for 
wideband and high-order systems. 

To solve the above problems for accurate, intuitive, 
fast, and convenient stability analysis of multi-inverter-
fed power systems at engineering sites, this study 
proposes a grey-box analysis method using Bode 
diagrams. The contributions of this study are as follows: 

1) Considering the confidentiality of proprietary 
data concerning grid-connected inverters at engineering 
sites, the grey-box impedance fitting of the grid-
connected inverter was performed. 

2) Using Bode diagrams, this method can 
determine the number of RHP poles and circles around 
the Nyquist curve of the aggregated impedance of each 
subsystem, ensuring accurate and intuitive stability 
analysis. 

3) Based on the extensive deployment scenarios of 
Bode diagrams, the proposed method reduces the barriers 
for engineering and technical personnel, shortens the 
time required for wideband and high-order system 
analysis, and ensures a fast and convenient stability 
analysis. 

The remainder of the paper is organised as follows: 
Section 2 introduces the process of grey-box impedance 
fitting in for a single grid-connected inverter and 
impedance aggregation for a multi-inverter-fed power 
system. Section 3 discusses the principles of the proposed 
method and impedance-based stability criteria and 
determines the number of RHP poles and Nyquist circles. 
Section 4 validates the proposed method using case 
establishment, analysis, and hardware-in-loop (HIL) 
real-time simulation experiments. Section 5 reveals the 
advantages of the proposed method by comparing it to the 
IF method. Section 6 concludes the study. 

2. Grey-box impedance fitting and aggregation 
 

2.1. Grey-box impedance fitting for a grid-
connected inverter 

 
Figure 1 shows the topology of an LCL grid-

connected inverter [19]. A control block diagram and its 
equivalent admittance transfer function are presented in 
the Appendix. This grid-connected inverter is based on 
the proportional integral (PI) control with d-q-axis 
decoupling in a rotating coordinate system. This 
regulates the grid-connected current and suppresses the 
LCL filter resonance via active damping feedback. In Fig. 
1, Udc denotes the DC-side voltage; the LCL filter 
comprises inductance L1 on the grid-connected inverter 
side and L2 on the grid side and a filtering capacitor C; Zg 
and Ug are the equivalent impedance and voltage of the 
power grid, respectively; IC, I, and U represent the branch 
current of the filtering capacitor and grid-connected 
inverter and voltage at the grid-connected inverter grid-
connection point, respectively; PWM and PLL represent 
pulse width modulation and phase-locked loop, 
respectively. 
 

 
Fig. 1. Topology of an LCL grid-connected inverter 
 

The impedance transfer function can be obtained 
using the internal information of the grid-connected 
inverter. This type of impedance modelling method is 
called white-box modelling [20], and its results are 
expressed as follows: 

          (1) 

where ah (h=1, 2, …, a) and a are the coefficient and 
highest degree of the non-zero denominator polynomial, 
respectively; bh (h = 1, 2, …, b) is the coefficient of 
molecular polynomial with the highest degree b. J = 
max{a, b} denotes the order of transfer functions. 

The equivalent impedance of a single grid-
connected inverter must be obtained using a vector fitting 
(VF) algorithm [21] based on the discrete frequency 
response data. This method is called the grey-box method 
[6, 20, 22], which is implemented as follows: 

1) Acquisition of discrete frequency-response data: 
This type of data is provided by equipment suppliers or 
measured via disturbance injection [23, 24]. Figure 2 
shows the principle of this measurement. The disturbance 
injection device is connected between the grid-connected 
inverter and grid series voltage injection and parallel 
current injection modes [25]. After traversing the grid-
connected inverter, the injected disturbance generates a 
frequency response received by an analyser. The discrete 
frequency-response data were calculated using the 

L1 L2

C

PWM

PCC Zg Ug

Controller

PLL

abc/dq

I U

IC
q

Udc
Ydq

1
1 1 0

1
1 1 0

( ) ,
b b

b b
a a

a a

s s s
Z s

s s s
b b b b
a a a a

-
-

-
-

+ + + +
=

+ + + +

!

!



4 
 

following equation: 
 

 
Fig. 2. Principle of measuring the frequency response 
data 
 

                          (2) 

where Zf is the impedance of the grid-connected inverter 
at frequency f; Uf and If are the voltage and current 
components at frequency f obtained from the fast Fourier 
transform of the grid-connected inverter port voltages 
uabc and iabc, respectively. 

2) VF calculation: Based on the discrete frequency 
response data, the equivalent impedance continuous 
transfer function of the grid-connected inverter can be 
obtained using VF, as shown in Eq. (3). Reference [26] 
discusses the principle of the VF algorithm. 

 (3) 

Here, s = jw with j being the imaginary unit; ak is the real-
number pole; ck is the corresponding residue; ak1 and ak2 
are the conjugate complex poles and ck1 and ck2 are the 
corresponding conjugate complex residues; d and e are 
constant terms and first-order real-number coefficients, 
respectively. When m > n and e ≠ 0, we have N = Ms + 
2Mf + 1. When m ≤ n and e = 0, we have N = Ms + 2Mf. 

Equations (1) and (3) are interconvertible forms of 
the transfer functions.  
 

2.2. Impedance aggregation of a multi-inverter-
fed power system 

 
Figure 3 shows the simplified topology and 

equivalent circuit of the multi-inverter-fed power system 
containing m grid-connected inverters (GCIs). #i denotes 
the partitioning point of the i-th subsystem, and Zlinei is 
the equivalent impedance of the i-th grid-connected 
inverter line, where i∈[1, m]. 

A multi-inverter-fed power system can be divided 
into source and load subsystems at each grid-connected 
inverter connection point (#1–#m) or point of common 
coupling (PCC) (#m+1). The source subsystem is 
equivalent to a Norton circuit with a current source IS and 
the equivalent admittance YS connected in parallel. The 
load subsystem is equivalent to a Thevenin circuit with a 
voltage source UL and an equivalent impedance ZL 
connected in series. When grid-connected inverters are 
selected as dividing nodes, one of the inverters serves as 
the source subsystem, while the remaining components 
of the system are consolidated into a load subsystem 

using series and parallel connections. When selecting the 
PCC as a dividing node, the grid-connected inverters and 
their connecting lines are parallelly aggregated to form 
the source subsystem. Furthermore, the grid impedance 
of the system constitutes the load subsystem. Equation (4) 
evaluates the aggregated impedance of subsystems with 
different partition points. 
 

 
Fig. 3. Simplified topology and its equivalent circuit for 
a multi-inverter-fed power system 
 

(4) 

Here, ⋂ 𝐴!"
#$%,#'( =A1//…Ai-1//Ai+1…//Am, // is the parallel 

calculation operator, and YGCIi and ZGCIi are the 
equivalent admittance and impedance of the i-th grid-
connected inverter, respectively.  

3. Stability analysis using Bode diagrams 
 

3.1. Review of the principles of impedance-
based stability criteria 

 
At the partition node shown in Fig. 3, the grid-

connected current I of a single or all the inverters is 
determined as follows: 

               (5) 
where Lm = ZLYS.  

RHP poles of I are evaluated as follows: 
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           (6) 

where Z(•) and P(•) represent the numbers of RHP zeros 
and poles, respectively; N(0, j0)(•) and N(–1, j0)(•) are the 
total number of turns of the Nyquist curve around the 
points (0, j0) and (-1, j0), respectively. For N > 0 and N 
< 0, the curve revolves clockwise and counterclockwise, 
respectively. 

The impedance-based stability criterion states that 
a stable grid-connected current I for a single inverter has 
zero RHP poles. Equation (6) indicates that the number 
of RHP poles of I is jointly determined using those of the 
subsystem aggregation impedance ZL and admittance Ys 
and the number of turns of the Nyquist curve of Lm around 
(-1, j0). 

Although the IF method is intuitive and convenient, 
it assumes that the aggregated impedance of a multi-
inverter-fed power system has zero RHP poles. However, 
this assumption is not always satisfied. Therefore, the 
application of this method at engineering sites is likely to 
cause errors. To address this problem, this study 
investigates the equivalent conversion of the IF method 
based on the impedance-based stability criterion. Based 
on Eq. (6), the stability analysis of the multi-inverter-fed 
power system was performed using Bode diagrams. The 
following sections discuss the principles of this method. 
 

3.2. Determination of the number of RHP poles  
 

The Bode diagrams of ZL and Ys were plotted based 
on the impedance fitting and aggregation results. 
According to Reference [27], each amplitude peak in the 
impedance or admittance Bode diagrams corresponds to 
a pole. If the phase angle corresponding to the peak 
frequency exceeds the range of [-90º, 90º], the pole is 
located at RHP. Consequently, the values of P(ZL) and 
P(YS) can be determined. 

Because most software packages directly plot the 
Bode diagram for positive frequencies, the default 
frequency is set to be greater than zero, and negative 
frequencies are neglected. This simplification does not 
affect the validity of the principal explanation or the final 
analysis results. Based on the properties of conjugate 
complex pole pairs, the amplitude peak with phase angles 
exceeding the range of [-90º, 90º] and not exceeding 180º 
or -180º in the Bode diagram should be considered pole 
pairs with a count of two. 
 

3.3. Determination of the number of Nyquist 
circles 

 
The Nyquist curve of the transfer function Lm 

corresponds to the Bode diagram as follows: 
1) The unit circle on the Nyquist plane of Lm 

corresponds to the 0-dB line on the Bode diagram, with 
the exterior and interior of the circle corresponding to 
G(w) > 0 dB and G(w) < 0 dB, respectively.  

2) The negative real axis on the Nyquist plane of 

Lm corresponds to the phase angle of -180° on the Bode 
diagram.  

The Nyquist curve of Lm revolves around the point 
(-1, j0) in the anticlockwise direction for one cycle and 
intersects the negative real axis from the top to the bottom. 
Consequently, the transfer function phase angle increases 
with frequency, flipping the phase-angle frequency curve 
by 180° in the corresponding Bode diagram. If the 
Nyquist curve of Lm revolves around (-1, j0) in the 
clockwise direction for one cycle, it must intersect the 
negative real axis from the bottom to the top. 
Consequently, the transfer function phase angle decreases 
with frequency, folding the phase frequency curve at -180° 
in the corresponding Bode diagram.  

The Bode diagram of Lm is drawn using the 
impedance fitting and product calculation results. The 
amplitude and phase angle of Lm at frequency fi were 
recorded as Ma(fi) and Ph(fi), respectively. The following 
definitions describe the relationship between the Nyquist 
curve and Bode diagram: 

1) Key frequency point(s). These are the 
frequency points fi that satisfy Ma(fi) = 0 in the amplitude 
diagram. 

2) Even statistical region. When the total number 
of key frequency points is even, the interval between the 
regions is defined by the corresponding frequencies of 
each pair of adjacent key frequency points. In this region, 
Ma(fi) > 0. 

3) Odd statistical region. When the total number 
of key frequency points is odd, an interval is created 
between the minimum key frequency point and imaginary 
axis. The remaining key frequency points sequentially 
form several even statistical regions. A single key 
frequency point corresponds to a single odd statistical 
region and zero even statistical regions. 

4) Positive crossing. In the phase angle diagram, 
the phase angle increases with frequency and crosses the 
180º line before flipping downwards. The flipping point 
is the positive-crossing frequency point. 

5) Negative crossing. In the phase angle diagram, 
the phase angle decreases gradually and crosses the -180º 
line before folding upwards. The turning point is the 
negative-crossing frequency point. 

Figure 4 illustrates the customisation of this study 
based on the aforementioned definitions.  
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Fig. 4. Customised schematic description 
 

N+ and N− were respectively recorded as the 
number of positive and negative crossing frequency 
points within the statistical region comprising odd and 
even regions. Beyond the statistical region, we have N+ = 
N− = 0. At the frequency origin f0 = 0, we have N0 = -1 
for an odd statistical region when the phase angle of the 
neighbouring frequency point fd = f0 + d  (d is a very small 
positive integer) on the right-hand side of f0 is within [0º, 
180º]. If the phase angle is within [-180º, 0º], then N0 = 
1. Furthermore, N0 = 0 in the absence of odd statistical 
regions.  

When w varies from -∞ to ∞, the number of circles 
around the point (-1, j0) in the Nyquist curve of Lm can 
be equivalently determined based on the Bode diagram of 
Lm as follows:  

          (7) 
Let n = P(ZL) + P(YS) and N = N(–1, j0) (Lm). When 

n−N = 0, the grid-connected current I of the inverter has 
zero RHP poles, and the system remains stable based on 
Eq. (6). When n−N ≠ 0, I contains RHP poles, which 
cause system instability. 

4. Case analysis and validation 
 

4.1. Basic parameters of the system 
 
A multi-inverter-fed power system was 

constructed based on the topology in Fig. 2 [27]. The 
equivalent resistance and inductance of the line were 10 
µ Ω /km and 10 µH/km, respectively. The system 
comprised three (m = 3) LCL grid-connected inverters 
based on the same control parameters shown in Table 1 
and method shown in Fig. 1. The lengths of the lines 
connecting the three grid-connected inverters to the PCC 
bus were 1, 2, and 3 km. 
 
Table 1. Parameters of an LCL grid-connected inverter 

Parameters Values 
DC side voltage Udc/V 1150 

Grid-connected voltage Ug/V 575 
Grid fundamental frequency f1/Hz 50 

Switching frequency fr/kHz 10 
Inverter side inductance L1/mH 0.5 

Filter capacitor C/μF 50 
Grid side inductance L2/mH 0.2 

Proportional coefficient of PLL kppll 0.7 
Integration coefficient of PLL kipll 3.2 

Proportional coefficient of PI controller kp 1.2 
Integrated coefficient of PI controller ki 65 

Active damping coefficient kc 0.6 
 

Based on the stability analysis in the case study 
section of [27], two sets of unstable and stable cases were 
established to verify the accuracy of the method. Case 1: 
The system is unstable, and the length of the grid-side 
line is 6 km; Case 2: The system is stable, and the length 
of the grid-side line is 1 km.  
 

4.2. Case analysis 
 

First, the grey box was fitted to the admittance of 
a single grid-connected inverter. The frequency band to 
be analysed was in the range of 100–5000 Hz, and the 
admittance discrete response data of the grid-connected 
inverter within the analysed frequency band were 
obtained via series voltage injection. VF was used for the 
grey-box fitting of admittance. Figure 5 shows the 
discrete admittance data points and fitting curve Bode 
diagram. 
 

 
Fig. 5. Bode diagram of admittance discrete data and 
fitting curve for single grid-connected inverter.  
 

The discrete frequency response data coincide 
with the grey box fitting results, indicating that the 
admittance of a single grid-connected inverter can be 
accurately obtained from the grey box, which is 
consistent with the findings of [27]. Furthermore, the 
admittance Bode diagram of a single grid-connected 
inverter shows a peak point with a corresponding phase 
angle of -27.2º. Hence, a single grid-connected inverter 
has a complex frequency-domain left-half-plane pole 
with zero RHP poles. This is consistent with the result 
that a single grid-connected inverter can maintain 
stability when connected to an ideal grid. 

Subsequently, the number of RHP poles in the load 
of each partition node or source subsystem was calculated 
for the two cases. The impedance of the load subsystem 
was plotted at four partition points, as shown in Fig. 6(a) 
(Case 1) and Fig. 6(b) (Case 2). When the grid-connected 
inverters (#1/#2/#3) were used as partitioning points, the 
source subsystem transformed into a single grid-
connected inverter in either case. Figure 5 shows the 
admittance Bode diagram. When PCC (#4) was used as a 
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partitioning point, the source subsystem comprised three 
grid-connected inverters with parallel connecting lines in 
either case. The length of the grid-side line was different 
in both cases. Figure 6(c) shows the admittance Bode 
diagram. 
 

 
a 

 
b 

 
c 

Fig. 6. Equivalent impedance or admittance of the 
subsystems. Equivalent impedance of the load subsystem 
in (a) Case 1 and (b) Case 2. (c) Equivalent admittance 
Y4S of the source subsystem when dividing the nodes using 
PCC. 
 

1) RHP pole counting for the load subsystem: In 
Case 1 of Fig. 6(a), the equivalent impedances (Z1L, Z2L, 
and Z3L) of the load subsystem were within the range of 
[-90º, 90º] when the grid-connection points (#1/#2/#3) 
were selected for each inverter. Additionally, the 
corresponding phase angles of the peak frequency points 
in the Bode diagram were not equal to 180º or -180º. 
Therefore, Z1L, Z2L, and Z3L contained an RHP conjugate 
pole pair, i.e., P(Z1L) = P(Z2L) = P(Z3L) = 2. 

In Case 2 of Fig. 6(b), the phase angles 
corresponding to the peak frequency points of Z1L, Z2L, 
and Z3L Bode plots were within the range of [-90º, 90º]. 
Hence, Z1L, Z2L, and Z3L had zero RHP poles, i.e., P(Z1L) 
= P(Z2L) = P(Z3L) = 0. 

The equivalent impedance Z4L of the load 
subsystem corresponded to the grid impedance when the 
PCC (#4) was selected as the partitioning node in either 
case. Additionally, the phase angle corresponding to the 
peak frequency point of the impedance Bode diagram 
amplitude was within the range of [-90º, 90º]. Hence, Z4L 
had zero RHP poles and maintained passivity such that 
P(Z4L) = 0 in both cases.  

2) RHP pole counting for source subsystem: The 
source subsystem was a single grid-connected inverter 
when the grid-connected points (#1, #2, and #3) were 
selected for each inverter in either case. The analysis in 
Fig. 5 indicates that the single grid-connected inverter 
has zero RHP poles, i.e., P(Y1S) = P(Y2S) = P(Y3S) = P(Yinv) 
= 0. 

When PCC (#4) was selected as the partitioning 
point, the source subsystem comprised three grid-
connected inverters and their parallel connecting lines. In 
both cases, Y4S remained constant, whereas the length of 
the grid-side line varied. Figure 6(c) shows that the phase 
angle corresponding to the peak frequency point of the 
Y4S Bode plot amplitude is within the range of [-90º, 90º]. 
Hence, Y4S had zero RHP poles, i.e., P(Y4S) = 0 in both 
cases. 

The number of circles in the Nyquist curve of Lm 
around (-1, j0) were equivalently counted using the Bode 
diagram. Figures 7 and 8 show the Bode diagrams of Lm 
for each partition node in Cases 1 and 2, respectively. 
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c 
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Fig. 7. Bode diagrams of Lm for each division node in 
Case 1. (a) #1. (b) #2. (c) #3. (d) #4.  
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d 

Fig. 8. Bode diagrams of Lm  for each division node in 
Case 2. (a) #1. (b) #2. (c) #3. (d) #4. 
 

Figs. 7(a)–(c) show that in Case 1, the Bode 
diagram of Lm has four key frequency points and one 
positive intersection for the partitioning nodes #1, #2, 
and #3, with two even and zero odd statistical regions (N0 
= 0) owing to the even number of key frequency points. 
Because the intersection does not lie within any statistical 
region, we have N- = N+ = 0. Figure 7 (d) shows that the 
Bode diagram of Lm has two key frequency points 
corresponding to the positive and negative intersections 
for the partition node #4, with one even and zero odd 
statistical region (N0 = 0) owing to the even number of 
key frequency points. In contrast to #1, #2, and #3, the 
positive and negative intersections are in the exterior and 
interior of the statistical area, respectively. Consequently, 
N- = 1 and N+ = 0. 

Figs. 8 (a)–(c) show that in Case 2, the Bode 
diagram of Lm has four key frequency points 
corresponding to one positive and one negative 
intersection for the partition nodes #1, #2, and #3, with 
two even and zero odd statistical regions (N0 = 0) owing 
to the even number of key frequency points. Neither the 
positive nor the negative intersections are within any 
statistical region; hence, N- = N+ = 0. The Bode diagram 
of Lm has only two key frequency points for the partition 
node #4; therefore, there are one even and zero odd 
statistical regions (N0 = 0). 

Tables 2(a) and (b) represent the stability analysis 
data for Cases 1 and 2, respectively. Equation (6) was 
used to calculate the number of RHP poles for the grid-
connected current of each partition node, yielding the 
stability analysis results shown in Table 2. 
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Table 2. Stability analysis data and results 

(a) Case 1 
node P(ZiL) P(YiS) N(-1, j0)(Lm) P(I) Conclusion 

#1 2 0 0 2 Unstable 
#2 2 0 0 2 Unstable 
#3 2 0 0 2 Unstable 
#4 0 0 2 2 Unstable 

(b) Case 2 
node P(ZiL) P(YiS) N(-1, j0)(Lm) P(I) Conclusion 

#1 0 0 0 0 Stable 
#2 0 0 0 0 Stable 
#3 0 0 0 0 Stable 
#4 0 0 0 0 Stable 

 
The results and stability analysis conclusions 

shown in Table 2 are consistent with [27], thereby 
validating the proposed method. 

Table 2 shows that the three inverters have 
different lengths of the grid-connected lines; however, 
the system stability analysis data and results for #1, #2, 
and #3 are similar. Therefore, #1 and #4 were selected as 
the partitioning nodes to demonstrate the validity and 
advantages of the proposed method. 
 

4.3. HIL real-time simulation verification 
 

We selected #1 and #4 as typical partition nodes 
and used an HIL real-time simulation platform, shown in 
Fig. 9, to perform grid connection experiments on the 
given system. 
 

 
Fig. 9. HIL real-time simulation platform 
 

The computer processor of the experimental 
platform was a 2.5 GHz Intel Core i5. The grid-connected 
inverter of each node was controlled using an OP5600 
real-time digital simulator. RT-LAB software was used to 
construct the multi-inverter-fed power system and 
perform disturbance injection. MATLAB 2021a was used 
to calculate VF and acquire the corresponding transfer 
function. 

The duration of the entire experiment was 1 min, 
comprising two stages of 30 s each. The first stage was 
the Case 1 system, wherein three inverters were 
connected and the grid-side line was 6 km long. The 
second stage was the Case 2 system wherein three 
inverters were connected and the grid-side line was 1 km 
long. Figure 10 shows the two sets of typical waveforms 
selected for illustration and the grid-connected current of 
a single inverter at point #1. Figure 11 shows the total 
grid-connected currents of the three inverters. 
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b 

Fig. 10. Grid-connected current waveform of a single 
inverter. (a) Case 1 and (b) Case 2. 
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Fig. 11. Total grid-connected current waveform at #4. 
(a) Case 1 and (b) Case 2 
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connected current of a single inverter and total grid-
connected current of inverters diverge for Case 1, 
corresponding to the unstable multi-inverter-fed power 
system. Figures 10(b) and 11(b) show that the grid-
connected current of a single inverter and total grid-
connected current of the inverters are restored to a 
uniform sinusoidal waveform for Case 2, corresponding 
to the stable multi-inverter-fed power system.  

The comparison of the results shown in Figs. 10 
and 11 with the experimental results in [27] indicates that 
our experimental outcomes are consistent with those in 
[27], thus validating our experiments. By comparing the 
stability analysis results obtained using the method 
presented in Section 4.2, the proposed multi-inverter-fed 
power system is unstable in Case 1 and stable in Case 2, 
which is consistent with the experimental results. 
Therefore, the proposed method is valid. 

5. Method comparison and discussion 
This section describes the limitations of the IF 

method to compare and validate the advantages of the 
proposed method. Case 1 is selected as a typical system, 
and its stability is analysed using the IF method. 
MATLAB 2021a was used for the analyses and drawing 
the Bode diagram on the same computer. 

Nodes #1 and #4 were considered typical nodes, 
and the IF method was used to analyse the system in Case 
1, as described in Section 4.1. Figures 12(a) and (b) show 
the IF curves of Lm of the system. 
 

 
a 

 
b 

Fig. 12. IF curve of Lm at (a) #1 and (b) #4 for Case 1 
 

From Fig. 12(a), the frequency at the intersection 

of the imaginary part frequency curve and zero value line 
was found to be 1647 Hz. At this frequency, the value of 
the real part frequency curve is 1.43, which is greater than 
-1. According to the stability analysis principle of the IF 
method, the Nyquist curve does not surround (-1, j0) in 
the absence of RHP poles in the aggregated impedance. 
Therefore, the grid-connected current of the first inverter 
remains stable. However, Fig. 10 (a) indicates that the 
HIL real-time simulation experiment for the system in 
Case 1 resulted in an unstable grid-connected current of 
the first inverter, contradicting the analysis of the IF 
method. Based on Table 2(a), the erroneous stability 
analysis of the IF method can be attributed to the two 
RHP poles in the aggregated impedance of the load 
subsystem, and the conditions under which the IF method 
is applicable are no longer satisfied. 

Figure 12(b) shows that the frequency at the 
intersection of the imaginary part frequency curve and 
zero value line is 1712 Hz. The value of the real part 
frequency curve at this frequency is -3.83, which is less 
than -1. According to the stability analysis principle of 
the IF method, the Nyquist curve surrounds (-1, j0), and 
the total current of the three inverters connected to the 
grid is unstable in the absence of RHP poles in the 
aggregated impedance. This is consistent with the 
instability phenomenon observed in Fig. 11(a). However, 
Figures 12(a) and (b) indicates that the IF method can 
determine whether the Nyquist curve surrounds (-1, j0), 
it cannot accurately determine the actual number of 
circles around the curve. Therefore, the risk of incorrect 
stability analysis increases. 

When the same computer was used to calculate and 
analyse the system in Case 1, the proposed method 
required 0.424 s for computation, whereas the IF method 
required 28.623 s. The proposed method has a shorter 
calculation duration owing to its implementation of Bode 
diagrams for calculation and analysis. Owing to the built-
in Bode diagram drawing program in MATLAB, the 
proposed method has few technical barriers, rendering it 
more suitable for practical engineering applications 
compared to the IF method. 

The above comparison indicates that the 
aggregated impedance RHP poles and number of Nyquist 
circles should be considered during the stability analysis 
of multi-inverter-fed power systems. The proposed 
method is based on impedance-based stability criteria, 
inheriting the advantages of the IF method. Compared to 
the IF method, the proposed method can perform stability 
analysis more accurately, intuitively, rapidly, and 
conveniently. 

6. Conclusion 
The stability analysis of a multi-inverter-fed 

power system should be accurate, intuitive, fast, and 
convenient. To this end, we proposed a grey-box analysis 
method for the stability of a multi-inverter-fed power 
system based on Bode diagrams. The case analysis, HIL 
real-time simulation verification, and comparison 
discussion yield the following conclusions: 

1) The stability analysis of a multi-inverter-fed 
power system must consider the engineering applications 
of internal information confidentiality in grid-connected 
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inverters. The impedance of each grid-connected inverter 
can be fitted to a grey box based on the discrete frequency 
response data combined with the VF algorithm. 

2) The stability analysis of a multi-inverter-fed 
power system requires the simultaneous calculation of 
the number of RHP poles with aggregated impedance and 
that of Nyquist curve circles with the impedance ratio. 
The proposed method uses Bode diagrams to directly 
determine these quantities. This method is more accurate 
and intuitive than the IF method. 

3) The proposed stability analysis method requires 
only an impedance grey box model and Bode diagrams, 
which is advantageous in minimising the calculation time 
and application barriers for engineering technicians. This 
method is faster and more convenient than the IF method. 

Future studies will explore the underlying reasons 
for system instability and determine targeted solutions 
using the proposed method. 
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8. Appendix 
Figure A1 shows the single-LCL grid-connected 

inverter, which adopts the dq-axis decoupling control. 
The d- and q-axis control links and control parameters are 
identical, whereas the control variables have coordinate 
axes and numerical differences. Figure A1 shows a 
control block diagram based on the d-axis, where Gi = kp 
+ ki/s and Gdel = e−1.5sTs. The subscript ref represents the 
reference value. 
 

 
Fig. A1. Control block diagram of the grid-connected 
inverter 

Based on the control characteristics and control 
block diagram, the equivalent admittance YGCI for a 
single grid-connected inverter under the dq axis is 
derived as follows: 

                        (A1) 

where Ydq = Yqd = 0 

 

The control block diagram and equivalent 
admittance expression provided here should only be used 
as a reference for readers to reproduce the cases 
discussed in this study. The relevant information for the 
actual analysis of the cases is unknown, and the 
equivalent admittance expression is obtained using the 
grey-box fitting method introduced in Section 2. 
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