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Abstract

The current study explores an emerging cardiac metric, heart rate fragmentation (HRF), as a novel biomarker for allostatic load

(AL). HRF may better address the limitations of existing cardiac biomarkers (e.g., confounds and interpretation consistency) in

applied research settings, with nonclinical samples. The study’s objectives were: 1) can HRF represent response to psychological

stress and 2) can resting HRF be used as a measure of predicting subclinical mental health symptoms. One hundred and fifty-six

(n = 156; 75% female) undergraduate students were fitted with a chest band to monitor cardiovascular activity, and completed

online demographic and psychosocial surveys in which they were grouped as healthy or displaying probable mental health

symptoms (pMH; n = 94, 60.25%) based on respective inventory thresholds for depression, anxiety, and posttraumatic stress

disorder. Cardiovascular activity was measured capturing the three R’s of cardiac vagal control: a resting baseline, a reactive

acute stressor task, and a paced breathing recovery. Results supported the first hypothesis, in that that HRF significantly

differentiated between each RRR condition (p < 0.001). While healthy and pMH individuals did not significantly differ within

individual conditions, exploratory analyses revealed healthy individuals displayed significantly larger change in HRF reactivity

between conditions (p’s < 0.001) in comparison to pMH, which displayed a more blunted pattern. Overall, this study establishes

associations between HRF and mental health, and serves as a promising new biomarker that may identify AL in samples that

may be otherwise considered “healthy”, while addressing the limitations of prior biomarkers in non-clinical studies.
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Abstract 

The current study explores an emerging cardiac metric, heart rate fragmentation (HRF), as a 

novel biomarker for allostatic load (AL). HRF may better address the limitations of existing 

cardiac biomarkers (e.g., confounds and interpretation consistency) in applied research settings, 

with nonclinical samples.  The study’s objectives were: 1) can HRF represent response to 

psychological stress and 2) can resting HRF be used as a measure of predicting subclinical 

mental health symptoms. One hundred and fifty-six (n = 156; 75% female) undergraduate 

students were fitted with a chest band to monitor cardiovascular activity, and completed online 

demographic and psychosocial surveys in which they were grouped as healthy or displaying 

probable mental health symptoms (pMH; n = 94, 60.25%) based on respective inventory 

thresholds for depression, anxiety, and posttraumatic stress disorder. Cardiovascular activity was 

measured capturing the three R’s of cardiac vagal control: a resting baseline, a reactive acute 

stressor task, and a paced breathing recovery. Results supported the first hypothesis, in that that 

HRF significantly differentiated between each RRR condition (p < 0.001). While healthy and 

pMH individuals did not significantly differ within individual conditions, exploratory analyses 

revealed healthy individuals displayed significantly larger change in HRF reactivity between 

conditions (p's < 0.001) in comparison to pMH, which displayed a more blunted pattern. Overall, 

this study establishes associations between HRF and mental health, and serves as a promising 

new biomarker that may identify AL in samples that may be otherwise considered “healthy”, 

while addressing the limitations of prior biomarkers in non-clinical studies. 
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1 Introduction 

According to the allostatic load (AL) model of stress, repeated physiological overactivation of 

the stress response creates ‘wear and tear’ on the body, resulting in system-wide dysregulation 

and an inability to adaptively respond to new challenges (McEwen & Stellar, 1993). Over time, 

elevated allostatic load leads to health disorders and diseases (Juster, McEwen, & Lupien, 2010). 

For example, physical issues such as cardiometabolic diseases are common (e.g., hypertension, 

coronary heart disease, diabetes), as are impaired immune responses, slower healing, and 

severity of viral illness (e.g., H1N1, SARS, and COVID-19) (O’Connor, Thayer & Vedhara, 

2020; Glaser et al., 1994, 2000, 2005; Dantzer, 2009; Marsland et al., 2017; Tisoncik et al., 

2012; Vasileva & Badawi, 2019; Ye et al., 2020). The rewiring of neuroendocrine and autonomic 

nervous system (ANS) function associated with AL are also associated with mental health 

symptoms (e.g., anxiety, depression, posttraumatic stress injury or disorder-PTSD). Mental 

health symptoms are associated with dysregulations in circulating cortisol that is linked to higher 

levels of inflammation. In turn, inflammatory states are associated with the exacerbation of 

mental health symptoms, burnout, and lower cognitive control (Valkanova et al., 2013; Rief et 

al., 2001; Toker et al., 2005; Shields et al., 2015).  

The AL model recently celebrated its 30th anniversary. Over the decades, the literature has 

evolved along with scientific discoveries that support the exploration of new biomarkers for 

calculating AL in research and clinical settings in order to better detect health risk and prevent 

adverse health trajectories across the lifespan. Importantly, recent work calls for a shift in focus 

to include examining AL among non-clinical samples in field settings with more accurate and 

valid biomarkers (Juster & Misiak, 2023).  The early detection of allostatic load paves the way 
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for prevention and early intervention efforts to reduce adverse health symptoms and the repeated 

reliance on clinical care. 

Figure 1. The allostatic load model of stress. 

Adapted from McEwen’s 1998 allostatic load model. 

1.1 Allostatic load model of stress and cardiovascular activity 

Broadly, dysregulated cardiovascular reactivity is often associated with several biopsychosocial 

health risks, including obesity, addiction, depression symptoms, and reduced cognitive ability 

(Carroll et al., 2017). As demonstrated by the literature on AL, stress, health, and autonomic 

nervous system (ANS) efficacy are often indexed by heart rate variability (HRV) (Laborde et al., 

2017; Thayer et al., 2012). Dysregulated resting HRV values are significantly associated with 

cardiovascular risk and PTSI symptoms (e.g., anxiety, depression, and PTSD) as measured by 

indicators such as physiological hyperarousal and elevated heart rate (Billman, 2013; Shaffer & 

Ginsberg 2017; Williams et al., 2017; Violanti et al., 2007; Thayer & Friedman, 2004; Menning, 

Seifert, & Maercker, 2008; Liu et al., 2016).  
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1.2 Pitfalls of heart rate variability measures 

Biomarkers are advantageous for use in psychological research, as they add a layer of objective 

measures to subjective observations, providing insights for understanding mechanisms of disease 

and possible strategies for intervention and research. When identifying diagnostic biomarkers as 

effective for predicting disease, it is necessary for the marker to be both sensitive (correctly 

identify individuals with disease–few false negatives) and specific (correctly identify negative 

individuals, few false positives) (Swift et al., 2020). There are three main confounding factors of 

HRV measures discussed in this study: context of use and interpretation, age, and respiration. 

Many HRV metrics are high in sensitivity and specificity when measured in clinical settings, but 

confounding factors reduce HRV’s predictive capabilities beyond extremely constrained 

contexts, even between experimental studies (Laborde et al., 2017). When seeking accurate HRV 

measures, considerations such as recording method, sampling frequency, the removal of artifacts, 

and the context in which HRV data is collected is crucial for interpretation. Specifically, 

individual factors such as body position, movement, recent physical activity, and other factors 

significantly impact ANS regulation and associated HRV measurements (Shaffer & Ginsberg, 

2017). If many factors impact HRV measures, increasing its sensitivity, it ultimately limits 

HRV’s specificity and predictive value beyond the environment, population, and context it is 

measured in. 

Several standard measures of HRV display paradoxical relationships with age. For example, 

despite the deterioration of cardiac parasympathetic function that occurs with aging, HRV 

observably improves in the elderly starting around age 75 (Shaffer & Ginsberg 2017; Hayano et 

al., 2020; Arakaki et al., 2023). Such paradoxical relationships suggest that HRV does not 

accurately represent vagal tone or ANS function across individuals and thus the metrics may 
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overestimate its accuracy as a proxy of ANS activation and modulation (Heathers & Goodwin, 

2017; Hayano & Yuda, 2019).  

Respiration is a particularly frequent confounding factor in HRV measurement. Research has 

found that respiration impacts HRV outcomes, with specific implications for SDNN (standard 

deviation of N to N intervals), RMSSD (root mean square successive differences), and RSA 

(respiratory sinus arrythmia), respectively (Shaffer & Ginsberg, 2017). SDNN and RMSSD are 

respectively long and short-term time-domain-based HRV measures to index vagal tone. SDNN 

is considered the gold standard for 24-hour medical recordings, but impractical for application in 

naturalistic occupational environments. RMSSD does not reflect increases in HRV during deep 

breathing, making it a poor indicator of parasympathetic reactivity (Ali et al., 2023). Another 

popular HRV measure respiratory sinus arrythmia (RSA) does account for respiration, as 

healthier RSA functioning involves coupling between breathing and heartrate. However, RSA is 

still impacted by the other aforementioned factors (Hayano & Yuda, 2019). However, RSA does 

not necessarily represent vagally driven HRV modulation. Not only are RSA and HR regulated 

by different vagal motor neurons, respiratory parameters’ effects on RSA act independently of 

cardiac vagal activity; “healthy” sinus rhythms (gradual HR changes) that are vagally driven can 

still occur when HR and respiration are not coupled (Hayano et al., 1994, 2019). While sinus 

rhythm regulation decreases with aging and organic heart disease, high-risk groups can also 

display paradoxical increases in HRV. Furthermore, respiratory sinus arrhythmias are difficult to 

identify from electrocardiogram (ECG) recordings alone (Costa et al., 2017), requiring an added 

layer of interpretation that can be difficult for transferability from clinical to naturalistic settings.  

Despite a growing body of literature critiquing the use of HRV to index ANS activity (Costa et 

al., 2017; Hayano & Yuda, 2019; Hayano et al., 2020; Ali et al., 2023), the number of 
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publications using HRV to represent psychological constructs (e.g., cognition, neurological 

health and stress)  has sharply increased in the last 2 decades (Arakaki et al., 2023); thus 

increasing the need for the exploration of more accurate biomarkers in field settings. One 

proposed approach to identifying novel cardiac biomarkers is to shift from focusing solely on 

linear time-domain metrics, to instead assessing dynamic HR pattern signatures. From this, an 

emerging metric of short-term cardiovascular function, called heart rate fragmentation, has been 

developed by Costa and colleagues (Costa et al., 2017). 

1.3 Heart rate fragmentation 

Heart rate fragmentation (HRF) is defined as increased density of HR acceleration sign changes, 

with higher fluctuations or fragmentation indicating the breakdown of regulatory control 

networks involved in heart rate dynamics (Costa et al., 2017). HRF is considered to be less 

impacted by the limitations of HRV metrics reviewed above. HRF relies on the framework 

model that healthy, adaptive HR control requires hierarchal contribution between the ANS (PNS) 

and electrophysiologic cardiovascular components. Higher integrity of these networks allows for 

more gradual (fluent) changes in HR, whereas dysfunction and breakdown of physiological 

coupling results in more erratic (fragmented) sinus rhythms. Breakdown of system components 

of cardiovascular control networks result in high frequency fluctuations in HR that compete or 

exceed the vagal system’s shortest term modulatory response. This breakdown of physiologic 

coupling can be visually identified in RR or NN recordings as abrupt changes in HR acceleration 

signs (see Figure 2).  

  



HRF: Early AL detection among healthy adults     Chan & Andersen, submitted 2023 

Figure 2. Fluent and fragmented RR patterns. 

 

Examples of fluent (top) and fragmented (bottom) RR recording samples from the current study. 

In more extreme examples, high fragmentation can result in acceleration changes can happen at 

every beat, resulting in a “sawtooth” pattern. These patterns may act as identifiable dynamic 

signatures, that may be further emphasized by converting them into symbolic representations, 

which deemphasize the magnitude of the time domain (Costa et al., 2017). Thus, HRF can be 

applied as a mathematical representation of AL while addressing various limitations of other 

cardiac biomarkers, like movement and respiration artifacts. 

Unlike HRV metrics, higher HRF frequency is significantly associated with coronary artery 

disease and adverse cardiovascular event incidents (Costa et al., 2017, 2018; Omoto et al., 2021), 

type 2 diabetes (Galdino et al., 2023), and higher mortality (Lensen et al., 2020). Higher resting 

HRF is negatively associated with cognitive performance on the Cognitive Abilities Screening 

Instrument (CASI), processing speed (digit symbol coding), and working memory (digit span) 

(Costa et al., 2021). However, while HRF has been increasingly associated with the 

identification of physiological stress outcomes among clinical samples, the application of HRF 

measurement in psychological research on stress and mental health remains a gap in the literature 

(see Table 1). 
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Table 1. Current themes in heart rate fragmentation research. 

Citation 

Sample 

Main Finding(s) 

Costa et al., 2017 

Cardiovascular disease 

(CAD) (n = 271) and 

healthy patients (n = 202) 

• HRF increases with age in healthy and patients with CAD 

• HRF is higher in CAD patients than healthy patients 

• Older healthy patients have significantly more soft inflections, 

whereas older CAD patients have more hard inflection points 

• HRF outperforms short-term HRV indices (e.g., pNNx, 

RMSSD, SDSD, HF), and nonlinear measures (sample 

entropy, detrended fluctuation analysis short term exponent) 

distinguishing healthy and CAD patients 

Costa et al., 2018 

Multiethnic study of 

atherosclerosis (MESA) 

Cohort (n = 1963) 

• Increased HRF was significantly associated with increased 

adverse cardiovascular events (CVE) 

• Traditional HRV (e.g., total spectral power, LF/HF ratio) and 

fractal indices were not associated with CVE or death 

Hayano & Yuda, 2019 

Literature Review 
• Critically reviewed HRF as a phenomenon which confounds 

other HRV metrics, although the exact mechanisms for HRF 

are unclear 

• Suggests contribution sinoatrial degeneration or 

disorganization of the sinus node 

Hayano et al., 2020 

ALLSTAR Holster ECG 

Database (3917 24-h RR 

data) 

• 24-h HRF is observed in childhood (0–20), increases after 75-

years, but largely impacts individual HF differences at age 

60–90 

Lensen et al., 2020 

Cardiology clinic patients  

(n = 2893) 

• Increased HRF along with other risk factors are independently 

associated with poorer survival and 2-year mortality 

Costa et al., 2021 

MESA cohort (n = 1897) 
• Increased HRF during sleep was associated with decreased 

cognitive performance (cognitive abilities screening 

instrument) and processing speed (digit symbol encoding) 

da Silva et al., 2021 

Wistar rats* (n = 18) 
• PIP and w3 HRF increased while w1 decreased after 

pharmacological autonomic blockade. Blockade decreased wH 

and increased wS.  

• Suggests cardiac sympathetic and parasympathetic influences 

similarly decrease HRF, while parasympathetic control 

increases hard inflection points, pointing towards cardiac 

autonomic control in HRF 

Omoto et al., 2021 

Myocardial Infarction 

(MI) (n = 18) and sham 

operation (n = 20) rats* 

• MI operation increases HRF and cardiac function at both 4- 

and 12-weeks following operation 
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Galdino et al., 2023 

Type 2 diabetes mellitus 

(T2DM)* (n = 82) and 

healthy* patients (n = 82) 

• T2DM Patients had higher PIP, wS wM and w3, and lower wH 

and w1 than healthy participants 

• Words grouped by inflection type (i.e., soft, mixed, hard) are 

more closely related to HRV measures (RMSSD and HF 

indices) 

Arakaki et al., 2023 

Literature Review 
• The concept of HRF discussed primarily in respect to Costa 

and colleagues’ findings, future studies needed to clarify the 

role of HRF versus contributions to HRV 

(*)  =  all male sample, PNNx = , RMSSD = root mean square of successive differences, SDSD 

= standard deviation of successive differences, HF = high frequency spectrum, LF/HF = low 

frequency to high frequency ratio, PIP = percentage of inflection points, wS, wM, wH = soft, 

mixed, hard inflection points respectively, w1,w2, w3 = 1, 2, 3 grouped inflection points 

respectively 

 

1.4 The Present Study 

The current study explores an emerging cardiac metric heart rate fragmentation (HRF) as a novel 

biomarker for allostatic load (AL) that better addresses the limitations of existing cardiac 

biomarkers (e.g., confounds and interpretation consistency) in an applied research setting, with a 

nonclinical sample.  The study’s objectives were: 1) can HRF represent response to 

psychological stress and 2) can resting HRF be used as a measure of predicting subclinical 

mental health symptoms. Building upon prior literature, the specific hypotheses were: 

1) Based recommendations to assess the “three R’s” of cardiac vagal control: Resting, 

reactivity, and recovery to assess different levels of adaptability to stress (Laborde et al., 

2018), we predict that acute psychological stress will be associated with an increase in 

the frequency of HRF in comparison to rest and recovery states,. 

2) Individuals with mental health symptoms will exhibit higher HRF overall in comparison 

to individuals with mild or no mental health symptoms, in alignment with the AL model. 

3) Exploratory analyses will assess HRF reactivity to stress in healthy versus individuals 

with probable mental health symptoms (pMH).  
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2 Method 

2.1 Participants 

A total of one hundred and fifty-six (n = 156) undergraduate psychology students were recruited 

from the University of Toronto. All participants provided informed consent in accordance with 

study procedures approved by the University of Toronto Research Ethics Board. Exclusion 

criteria were minors (under age 18), clinically diagnosed mental health, cardiovascular, or 

immune conditions. Refer to Table 2 for complete demographic data.  

Table 2. Demographic and descriptive summary (n = 156). 

 N (% of 156) M(SD) 

Age  20.18 (2.59) 

Sex Male 36 (23.08%) 

 Female 118 (75.64%) 

 Other/Unspecified 2 (1.28%) 

Race Asian (East) 35 (22.44%) 

 Asian (South) 38 (24.36%) 

 Black/African American 13 (8.33%) 

 White/Caucasian 32 (20.51%) 

 Hispanic 3 (1.92%) 

 Indigenous 1 (0.64%) 

 Other/Unspecified 11 (7.05%) 

 Multiracial 23 (14.74%) 

Cardiovascular 

Measures  

Baseline HRF %  20.00% (16.30%) 

Stress HRF %  33.61% (17.32%) 

Recovery HRF %  8.09% (7.72%) 

Psychosocial 

Measures 

PCL-5  31.08(17.03) 

DASS21-D  7.38(5.54) 

DASS21-A  6.84(4.87) 

≥ threshold score  PTSD 69 (44.23%)  

Depression 66 (42.30%)  

Anxiety 74 (47.43%)  

pMH 94 (60.25%)  

M = mean, SD = standard deviation, participants who indicated more than one racial 

background were categorized as multiracial. 
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2.2 Procedure 

All participants completed the experiment in-person on a computer located in the laboratory 

testing space. Following providing informed consent, participants were fitted with an HR chest 

band to monitor cardiovascular activity. Participants completed a series of online self-reported 

demographic and psychosocial surveys. Following the psychosocial survey, participants were 

given the opportunity to resolve any physical discomfort (e.g., use the bathroom, drink some 

water) before the cardiovascular measures began. All condition start times were recorded.  

Consistent with literature recommendations for HRV experimental structure that encompasses 

the three R’s of cardiac vagal control (i.e., rest, reactivity, recovery) (Laborde et al., 2017, 2018; 

Juster et al., 2010, 2023), cardiovascular recordings were extracted across three conditions:  

• Baseline: participants watched a 7-minute neutral nature video to collect “resting” 

cardiovascular activity, in which they were simply instructed to breathe at a 

comfortable pace (i.e., spontaneous breathing).  

• Stress: A Face-Word version of an emotional Stroop task (Ovaysikia et al., 2011; 

Haas et al., 2006) was presented to the participants as an acute stressor. The Stroop 

task has been shown to significantly elicit sympathetic arousal (Ovaysikia et al., 

2011; Haas et al., 2006). Participants were presented with male and female faces with 

happy, neutral, angry, or fearful facial expressions. Facial expressions were 

superimposed with the emotional word at a 90-degree angle over facial image that 

were either congruent (facial expression and word described same emotion) or 

incongruent (facial expression and word described a different emotion). Participants 

were instructed to press buttons to report the emotion displayed to them as quickly as 

possible. Prior to each block, participants were presented with written instructions on 
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the screen to either report the facial expression, or the written word. Each trial 

consisted of a 1 second fixation cross, followed by the stimuli image for 2 seconds in 

which the participant must respond within, followed by the next trial (Refer to Figure 

3). Four condition blocks were congruent-face, congruent-word, incongruent-face, 

incongruent-word, with 16 randomized trials per block. Conditions instructions were 

alternated for participants to report either the facial expression or superimposed word. 

The 4 blocks take a maximum of 192 seconds (3.2 minutes), with the entire task 

(including instructions) taking approximately 5 minutes to complete. See Figure 3b 

for paradigm example paradigm. 

• Recovery: Based on the vagal control model of “Resting, Reactivity, and Recovery”, 

participants were instructed to engage in a standard recovery activity (paced 

breathing) to measure their ability to recover (i.e., a predicted reduction in HRF) from 

stress when given the opportunity to do so (i.e., following the acute stressor task). 

Following the baseline but prior to the stressor task, participants went through a series 

of breathing-pace videos, to identify a recovery breathing pace that was 

“comfortable” for them. They were instructed to stop breathing with a pace if it was 

uncomfortable (e.g., if they felt like they were hyperventilating- choose a slower 

pace; if they are not getting enough air - to choose a faster pace). The breathing paces 

presented to participants ranged from 4.8 to 8.0 breaths per minute at increasing 

increments of 0.4 seconds, for a total of 9 possible paces to choose from. Paced 

breathing has been identified as a technique that facilitates recovery following stress 

(Lehrer et al., 2020; Andersen, Arpaia & Gustafsberg, 2021). Following the stressor 

task, participants completed a 10-minute recovery breathing recording in which they 



HRF: Early AL detection among healthy adults     Chan & Andersen, submitted 2023 

followed a video in which a “breathing triangle” changed in size increased (inhaled) 

and decreased (exhale) according to the recovery breathing pace they earlier 

identified as most comfortable (see Figure 3c). 

Figure 3a. Study procedure. 

Experiment timeline. Prior to the questionnaire participants provided informed consent and were 

fitted with HR chest bands. 

 

Figure 3b. Paradigm and examples of stimulus of each condition type within the face-word 

emotional Stroop.  

 

i) congruent and incongruent stimuli examples and ii) procedure example of two trials within the 

condition. The stimuli here are not exact depiction of those used in experiment.  

 

 

 

Questionnaire

•Self-Reported 
PTSD, Depression, 
Anxiety, Stress 
symptoms

Condition 1: 
Baseline

•"Comfortable" 
Breathing while 
watching a neutral 
nature video

Condition 2: 
Stress

•Emotional Stroop 
Task 
(16 trials x 4 
blocks)

Condition 3: 
Recovery

•Paced Breathing 
selected by 
participant 
(4.8 – 8.0s)
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Figure 3c. Paced breathing interface during recovery condition. 

 
Participants were given the above interface to follow breathing paces from 4.8-8.0 seconds, in 

which the triangle increased and decreased in size based on their chosen pace. 

  

2.3 Measures 

2.3.1 Psychosocial measures 

Posttraumatic Stress Disorder (PTSD) – The PTSD checklist for DSM-5 (PCL-5) is a 20-item 

self-report questionnaire that assesses the 20 DSM-5 symptoms of PTSD. Participants respond 

on a 5-point scale (“Not at all” [0], to “Extremely” [4]), on the degree to which they have 

experienced the present items in the past month. A total score of 31 or greater is considered 

indicative of probable PTSD across samples (Weathers et al., 2013). The PCL-5 has high internal 

consistency (Cronbach’s α = 0.96), as well as convergent validity, correlating with PGQ 

depression and generalized anxiety disorder scales, and panic somatization disability and 

functional impairment, in Veterans recruited through VA Healthcare system (n = 468, MAge = 53, 

12% female) (Bovin et al., 2015). 

Depression and Anxiety − Participants completed the Depression, Anxiety and Stress Scale-21 

(DASS-21), a 21-item self-report questionnaire, a shortened version of the larger 42-item 

measure (DASS-42) of Lovibond & Lovibond (1995)’s depression, anxiety, and stress. 

Participants respond on a 4-point scale (“Did not apply to me at all” [0] to “Applied to me very 

much or most of the time” [3]), on the degree to which they have experienced the present items 

in the last week. Total scores of each subscale have recommended cut-off thresholds for 
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symptom severity levels of “Normal”, “Mild”, “Moderate”, “Severe” and “Extremely Severe”. In 

a large (n = 1794) nonclinical sample, the DASS-21 subscales revealed very similar scores as the 

full DASS-42, and can be validly used to measures of depression, anxiety, and stress as a more 

general dimension of psychological distress or negative affectivity. The DASS-21 displays high 

internal consistency for individual subscales of depression (Cronbach’s α = 0.88), anxiety 

(Cronbach’s α = 0.90), stress (Cronbach’s α = 0.93), and overall as a total scale (Cronbach’s α = 

0.93) (Henry & Crawford, 2011). 

2.3.2 Cardiovascular measures 

The current study made use of commercially available ambulatory heart rate monitors that were 

advertised to be able to collect medical grade cardiac measures (e.g., RR intervals) for use in 

naturalistic settings (Zephyr Biomodule Bioharness 3, Zephyr Performance Systems, Annapolis, 

MD, USA). Participants were fitted with heart rate (HR) monitors to log cardiac metrics 

throughout the experiment. Sampling frequency was 1 kilohertz (kHz). cardiac measures were 

completed in accordance with recommendations from Laborde, Mosely, & Thayer (2017) of 

“Heart Rate Variability and Cardiac Vagal Tone in Psychophysiological Research – 

Recommendations for Experiment Planning, Data Analysis, and Data Reporting”. This includes: 

• Instructions to the participant prior to the experiment to maintain a normal sleep routine 

and no intense physical training or alcohol 24 hours prior to the experiment, and no meal 

or caffeinated drinks within 2 hours before the experiment. 

• Confirmation of comfort prior to recording, and the opportunity to resolve any discomfort 

prior to cardiovascular recordings (e.g., go to the washroom, relieve themselves, drink 

water). 
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• Maintaining a seated body position with the chest extended (but not strained), knees at 90 

degrees, feet flat on the floor, and hands on the thighs with palms facing upward – similar 

to what is recommended for blood-pressure recording. 

Heart Rate Fragmentation (HRF) – HRF was symbolically mapped from RR data with MatLab 

programming we designed in accordance with Costa et al., 2017’s method. The symbolic 

mapping sequence between RR intervals (ΔRR) were as follows: heart rate decelerations and 

accelerations were mapped “1” and “-1” respectively, and “0” was used to represent intervals 

that did not change. The series of symbols were then segmented in rolling groups of 4 

consecutive ΔRRs to form RR words. Once words were grouped in lengths of four, they were 

categorized based on the number and type of acceleration inflection points within the word. 

Transitions from symbol “1” to “-1” or vice versa were considered “hard” inflection points, 

transitions that included “0” acceleration points were considered “soft”, and mixed includes a 

combination of both hard and soft inflection points. Refer to Figure 4 for stepwise example of 

forming HRF “words” from RR samples. 

A total of 81word combinations are possible. Overall, symbolic mapping further emphasizes RR 

acceleration signs and focuses on dynamical pattern signatures while deemphasizing the 

magnitude of those changes. For the purpose of this study, fragmentation was operationalized as 

the percentage of words that consisted of 2 (𝑤2
𝐻) or 3 (𝑤3

𝐻) hard inflection points, reflecting the 

most extreme fragmentation patterns, in which the HR acceleration sign changes almost every 

beat. 
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Figure 4. Example word development from RR intervals to symbolic mapping and 

schematic representation. 

 
Process Example 

𝑹𝑹 𝒊𝒏𝒕𝒆𝒓𝒗𝒂𝒍𝒔 (𝒔) =  𝑹𝑹𝟏, … , 𝑹𝑹𝒊 0.634, 0.621, 0.617, 0.64, 0.642, 0.64, 0.633, 

0.609, 0.618, 0.612, 0.606, 0.589, 0.583, 0.598, 

0.609, 0.628, 0.618, 0.62, 0.648, 0.641, 0.639, 

0.614, 0.622, 0.628, 0.628, 0.617, 0.603, 0.608, 

0.605, 0.601, 0.586, 0.607, 0.621, 0.621, 0.637, 

0.653, 0.628, 0.635, 0.641, 0.64, 0.638, 0.623, 

0.627, 0.638, 0.635, 0.629, 0.61, 0.618 

𝚫𝐑𝐑′𝐬 = (𝑹𝑹𝟐 − 𝑹𝑹𝟏), … , (𝑹𝑹𝒊+𝟏 − 𝑹𝑹𝒊) -0.013, -0.004, 0.023, 0.002, -0.002, -0.007,  

-0.024, 0.009, -0.006, -0.006, -0.017, -0.006, 

0.015, 0.011, 0.019, -0.01, 0.002, 0.028,  

-0.007, -0.002, -0.025, 0.008, 0.006, 0,  

-0.011, -0.014, 0.005, -0.003, -0.004, -0.015, 

0.021, 0.014, 0, 0.016, 0.016, -0.025, 0.007, 

0.006, -.001, -0.002, -0.015, 0.004, 0.011,  

-0.003, -0.006, -0.019, 0.008 

Symbolic Mapping of ΔRR “letters” where: 

𝑫𝒆𝒄𝒆𝒍𝒆𝒓𝒂𝒕𝒊𝒐𝒏 =  𝟓𝐦𝐬 ≤  𝚫𝐑𝐑 = 𝟏 
𝑵𝒐 𝒄𝒉𝒂𝒏𝒈𝒆 =  −𝟓𝐦𝐬 < 𝚫𝐑𝐑 < 𝟓𝐦𝐬 = 𝟎 
𝑨𝒄𝒄𝒆𝒍𝒆𝒓𝒂𝒕𝒊𝒐𝒏 =  𝚫𝐑𝐑 ≤  −𝟓𝐦𝐬 =  −𝟏 

-1, 0, 1, 0, 0, -1, -1, 1, -1, -1, -1, -1, 1, 1, 1, -1, 0, 

1, -1, 0, -1, 1, 1, 0, 1, -1, 1, 0, 0, -1, 1, 1, 0, 1, 1,  

-1, 1, 1, 0, 0, -1, 0, 1, 0, -1, -1, 0 

Grouping letter symbols into rolling 4-letter 

“words” by number and type of inflection 

points 

 

Word categorization: 

𝑹𝑹 𝑾𝒐𝒓𝒅 =  𝒘𝒋
𝒕 

where:  

t = the type of inflection points in the word  

H = only hard 

S = only soft 

M = soft and hard 

j = the number of inflection points 

First 10 “words” and their pattern category 

-1 0 1 0 𝑤3
𝑆 

0 1 0 0 𝑤2
𝑆 

1 0 0 -1 𝑤2
𝑆 

0 0 -1 -1 𝑤1
𝑆 

0 -1 -1 1 𝑤3
𝑆 

-1 -1 1 -1 𝑤2
𝐻 

-1 1 -1 -1 𝑤2
𝐻 

1 -1 -1 -1 𝑤1
𝐻 

-1 -1 -1 -1 𝑤0 

-1 -1 -1 1 𝑤1
𝐻 

     
 

0.58

0.6

0.62

0.64

0.66
R

R
 in

te
rv

al
s 

(s
)
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Schematic representations of words 

 

“/” = HR acceleration 

“\” = HR deceleration 

“−” = no change 

 

Examples from Costa et al., 2017, Figure 2 (p. 5) 

 

2.4 Data Analyses 

Participants were grouped as either having a probable mental health (pMH) disorder, or healthy. 

pMH was operationalized as scoring at or above the threshold for “moderate” or higher levels of 

symptoms (according to the relevant scale scoring cut-offs) on at least one of the self-reported 

psychosocial inventories administered online (e.g., depression, anxiety, posttraumatic stress 

disorder-PTSD for at least one of the psychosocial inventories within the psychosocial 

questionnaire, as measured by self-report inventories (Weathers et al., 2013; Henry & Crawford, 

2011). Individuals scoring “mild” or lower levels of symptoms for all measured psychosocial 

inventories were grouped as non pMH (i.e., healthy). Of the combined sample collected, 60.65% 

of participants met criteria to be categorized in the pMH group. 

RR intervals during each condition (Baseline, Stress, Recovery) were extracted and pre-

processed through Kubios HRV Standard. Due to experimental control of laboratory settings 

mitigating artifact risk, automatic artifact correction was applied, due to its pre-established 

reliability for effectively detecting and reducing artifact impact (Lipponen & Tarvainen, 2019). 

Artifacts were corrected using a low (0.35s) threshold level. RR recordings with ≥5% beat 

correction were excluded from analyses. The average beat correction percentage of the 

remaining data overall was 0.28% (SD = 0.62%) and ≤ 0.33% (SD ≤ 0.73%) in each condition. 

Refer to supplementary Table S1 for complete artifact correction summary of each condition. 
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Analyses and figures were completed in SPSS Statistic 25 (IBM, Armonk, New York) and R (R 

Core Team, 2021), with an alpha (α) of 0.05. A mixed model analysis was used to test the 

primary hypotheses. Fragmentation (HRF) was modeled as a function of probable mental health, 

the experimental condition, and the interaction between these variables. Fixed effects were 

mental health severity (pMH or healthy), condition (Baseline, Stress, Recovery) and the 

interaction of these variables (mental health severity × condition). Eta-squared (η2) for within 

study effect sizes (Lakens, 2013). Exploratory analyses to compare HRF reactivity (the change in 

fragmentation percentage between conditions = ΔHRF) between pMH and healthy individuals 

were completed using multiple Wilcoxon rank sum tests, with a Bonferroni-corrected alpha 

(αbonf). Hedges’ g correction was used to estimate effect size for smaller sample sizes (Lakens, 

2013). 

3 Results 

3.1 Primary Analyses  

We found support for the first hypothesis; HRF significantly related to the task condition (i.e., 

baseline, stress, recovery) (F(2,74.13) = 58.90, p < 0.001). HRF increased and decreased with the 

presentation and termination of stress, respectively. Hypothesis two was not supported. 

Specifically HRF was not related to probable mental health symptoms (F(1, 81.31) = 0.001, p > 

0.05), or the interaction between condition and group (F(2, 13) = 0.88, p > 0.05).  

3.1.1 Post-Hoc Analyses  

Bonferroni-corrected pairwise comparisons revealed that baseline, stress, and recovery 

conditions significantly differed from each other (Figure 5a), The stress condition had the highest 



HRF: Early AL detection among healthy adults     Chan & Andersen, submitted 2023 

amount of fragmentation (M = 34.05, SE = 2.45, CI95 [29.10, 39.00]), followed by the baseline 

condition (M = 19.39, SE = 1.41, CI95 [16.59, 22.19]), with the recovery condition having the 

least amount of fragmentation (M = 8.03, SE = 1.00, CI95 [6.03, 10.07]). The percentage of HRF 

increased from baseline when presented with stress and was significantly lower than baseline or 

stress conditions during the paced breathing condition; the same dynamic relationship is 

maintained in pMH and healthy subsamples (Figure 5b). All comparisons had medium to large 

effect size, suggesting up to 47% of the total variance was accounted for by task (see Table 3a 

for all pairwise comparison values and 3b for all effect sizes). 

Figure 5. Heart rate fragmentation across conditions.  

  

Heart rate fragmentation percentage across conditions of a) the combined sample and b) 

separated by healthy versus probable mental health (pMH) subsamples. (**) p < 0.01, (***) p < 

0.001. 
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Table 3a. Estimates and pairwise comparisons statistical values. 

  Estimates a 

M(SE), [CI95] 

Pairwise Comparisons a  

ΔM(C1-C2)(SE)sig, [CI95], 
 

   Condition2 

 Condition1  Stress Recovery 

Combined Baseline 19.39(1.41),  

[16.59, 22.19] 

-14.66(2.83)***,  

[-21.60, -7.72] 

11.37(1.73)***, 

[7.18, 15.55] 

Stress 34.05(2.45),  

[29.10, 39.00] 

 

– 

26.02(2.64)***, 

[19.49, 32.56] 

Recovery 8.03(1.00),  

[6.03, 10.04] 

 

– 

 

– 

Healthy Baseline 17.67(2.28),  

[13.11, 22.24] 

-18.26(4.75)**,  

[-30.19, -6.33] 

9.90(2.73)**, 

[3.20, 16.49] 

Stress 35.94(4.17),  

[27.29, 44.58] 

 

– 

28.16(4.44)***, 

[16.85, 39.47] 

Recovery 7.78(1.52),  

[4.63, 10.92] 

 

– 

 

– 

pMH Baseline 21.11(1.68),  

[17.78, 24.45] 

-11.06(3.06)**,  

[-18.56, -3.55] 

12.83(2.22)***, 

[7.70, 17.97] 

Stress 32.17(2.56),  

[26.98, 37.35] 

 

– 

23.89(2.86)***, 

[16.81, 30.97] 

 Recovery 8.28(1.29),  

[5.67, 10.89] 

 

– 

 

– 

pMH = probable mental health, M = mean, SE = standard error, CI95 = confidence interval 

(95%), C1 = condition 1, C2 = comparison condition 2, a = based on estimated marginal means, 

η2 = eta-squared, sig = significance, (*) p < 0.05, (**) p < 0.01, (***), p < 0.001, Bonferroni-

adjusted. 

 

 

Table 3b. Pairwise comparison effect sizes. 

 Task Comparisons Sample Effect Statistic Value 

Baseline Baseline – Stress Combined η2 0.13 

  pMH η2 0.18 

  Healthy η2 0.11 

 Stress – Recovery Combined η2 0.44 

  pMH η2 0.47 

  Healthy η2 0.47 

 Baseline – Recovery Combined η2 0.15 

  pMH η2 0.11 

  Healthy η2 0.21 

Change (Δ) in 

HRF Reactivity 

Baseline – Stress pMH vs Healthy g 0.33 

Stress – Recovery pMH vs Healthy g 0.32 

Baseline – Recovery pMH vs Healthy g 0.02 

η2 = eta-squared, g = Hedges’ g. 
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3.2 Exploratory Analyses 

Nonparametric Wilcoxon rank sum tests were completed to compare healthy and pMH groups 

change in fragmentation between conditions. With a Bonferroni-corrected alpha (αbonf = 0.05/3 = 

0.017) for multiple testing, pMH individuals displayed significantly different HRF changes 

between conditions in comparison to the healthy sample. Healthy individuals had significantly 

larger changes in fragmentation in response to each condition (wbaseline→stress = 3545, p < 0.001; 

wstress→recovery = 0, < 0.001; wbaseline→recovery = 337, p < 0.001) in comparison to pMH, with small 

effect Hedges’ g (gbaseline→stress = 0.33, gstress→recovery = 0.32, gbaseline→recovery = 0.02). As displayed in 

Figure 6, healthy individuals display larger fluctuations in HRF between conditions compared to 

pMH, in which HRF is more stable. 

Figure 6. Change (Δ) in HRF between conditions. 

 
pMH = probable mental health, Δ = change/difference score. (***) p < 0.001. 
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4 Discussion 

The present study builds on prior research by 1) establishing HRF’s capability to differentiate the 

three R’s of cardiac vagal control (i.e., resting baseline, stress reactivity, and recovery), and 2) 

finding associations between mental health and HRF outcomes. Both findings have implications 

for AL theory. 

4.1 Psychological baseline stress and fragmentation 

The primary hypothesis was supported; HRF changed with the presentation and recovery from 

an acute stressor, with mild psychological stress sufficient to engage body’s regulatory control 

networks resulting in increased HRF severity, and successfully adapting and recovering with a 

lower level of HRF once the stress was terminated. Furthermore, the finding aligns with a large 

body of research demonstrating physiological responses to mild stress (and the task used in this 

study: i.e., Stroop task) (Ovaysikia et al., 2011; Haas et al., 2006) and the AL model (McEwen 

1998a; McEwen, 2002; Lovallo, 2016). Furthermore, the findings support the capability of HRF 

to represent each independent state within the AL model (resting, reactivity, and recovery). The 

significant differences between conditions in study supports recommendations to consider all 

states within the AL model; whereas focusing on a single state may result in an inaccurate 

interpretation of experimental findings (a problem noted in existing field literature). The results 

from this study also support potential use of HRF as a “field-ready” biomarker to assess an 

individual’s biological capability to mount a stress response and recover from the stress. HRF 

changes were sensitive enough to be measured using commercial wearable devices and displayed 

direct links between allostatic load from everyday stressors, which may identify potentially 

adverse health trajectories (severe fragmentation) even in a “healthy” sample. 
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The second hypothesis was not supported; healthy and pMH groups’ HRF did not significantly 

differ from each other across conditions (Baseline, Stress, Recovery). The results suggest that 

HRF magnitude alone may not be as indicative of mental health as it is for cardiovascular 

diseases, as observed in cardiovascular measures in non-clinical young-adult samples. One factor 

that may have contributed toward this was the average age in the sample. Costa et al., (2017) 

found a positive relationship between age and HRF, however their sample consisted of only 

participants older than age 25, the majority of which were between the ages of 33–67. Further, a 

large cross-sectional study found that hard fragmentation increased after birth up to age 20, 

decreased to a plateau before increasing again after age 75; for ‘𝑤3
𝐻’ category words (in which 

changes from acceleration to deceleration happen every beat) specifically, increases do not occur 

until after age 40 (Hayano et al., 2020). In this study we may be measuring a period of HRF 

fluctuation that is sensitive, but less specific in comparison to other age timepoints. Furthermore, 

there is evidence from large cross sectional age studies of instability in stress-related variables 

during adolescence and peaking in young adulthood of healthy individuals. Baseline cortisol 

shows a rapid increase with the onset of puberty that peaks in the early 20s (Miller et al., 2016). 

Differential HRV measures also show different rates of change across the lifespan; while SDNN 

linearly change with age, RMSSD and pNN50 have a rapid, quadratic rate of change that slows 

from the second (age 20–29) to third decade of life, before stabilizing in the sixth decade of life 

(Umentani et al., 1998). Based on the age-related differences, and the average age of the sample 

(~20 years), it may be possible that baseline stress levels at this point of time are less related to 

vagal tone and instead biological changes that happen with physical development, which may be 

obscuring any differences associated with pMH.  
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The current study examined HRF in the context of a non-clinical sample and thus the results 

cannot be generalized to clinical samples. Of note, the outcomes show the presence of a high 

number of adverse mental health symptoms in a sample of supposedly ‘healthy’ young 

individuals who did not self-report a diagnosed mental health condition. Specifically, 60% of the 

sample surpassed threshold for moderate or greater symptoms, reflecting a concerning trend for 

the mental health of university undergraduates.  The current study presents promising 

preliminary uses for HRF in detecting increased mental health risk with implications for early 

intervention or prevention of adverse health risk trajectories. 

4.2 Psychological stress reactivity and fragmentation in healthy versus pMH individuals 

While base HRF measures in each condition did not reveal significant differences between 

healthy and pMH participants, exploratory analysis found that significant HRF differences 

between healthy and pMH participants when comparing change scores between conditions. 

Healthy individuals displayed larger HRF fluctuations in response to stress in comparison to 

pMH individuals. These findings have significant implications for prevention and onset of health 

risk trajectories; while subclinical mental health symptoms may not change the magnitude of 

baseline HRF, but it might reduce flexibility and response to stressors, and less likely to change 

out of unhealthy patterns at even a very early age as demonstrated in the current sample with an 

average age of 20 years-old. Within the AL model, this reduced flexibility may contribute 

towards ineffective recovery from stress, increasing allostatic load, and subsequent adverse 

health. 

Furthermore, the results from this study support growing research perspectives on stress 

reactivity in which deviations beyond the normal range of a biological stress response can have 
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negative consequences for health. Previous research has found both exaggerated and blunted 

stress reactivity to psychological stress (Juster, McEwen, & Lupien, 2010; Carroll et al., 2017). 

In relationship to mental health symptoms, blunted cardiovascular reactivity (e.g., blood 

pressure, heart rate) is also previously associated with anxiety symptoms (Souza et al., 2015), 

depression scores even controlling for baseline cardiovascular activity (de Rooij et al., 2010; 

Carroll et al., 2007), and worsening depressive addiction, and bulimia (Carroll et al., 2017; 

Lovallo et al., 2000, 2006; Brenner & Beauchaine, 2011; Ginty et al., 2014). 

The lack of flexibility in stress response reactivity aligns with the AL model, in which mental 

health symptoms result in ongoing perseverative cognitions, resulting in individuals continuing 

to respond as if they are still facing a stressor, rather than recovering appropriately when the 

stressor has terminated (Laborde et al., 2018; Ottaviani, 2018).  

4.3 Limitations 

While previous research and use of the Stroop task within our own projects provided task 

completion estimates of 5 minutes, participants within this study on average took a much shorter 

amount of time to complete the Stroop test than the expected (average 1.5 minutes). While 

typical HRV measure standards typically require 5 minute-length samples, research has proposed 

the use of ultra short-term HRV for periods of 10–60 seconds, and 60–240 seconds particularly 

for use in mobile settings (Salahuddin et al., 2007; Baek et al., 2015; Esco & Flatt, 2014). 

Further testing is required to determine if less than 5 minutes can truly capture HRF. 

We made every effort to use the best ‘medical grade’ ambulatory equipment to measure 

cardiovascular outcomes. Despite our efforts, commercially available ambulatory equipment still 

presented some technical challenges in recording (resulting in 10.2% of data excluded – see 
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supplementary table S1). Other psychophysiological research using the same equipment (Zephyr 

Bioharness 3) report up to 35% data loss from improper affixation by participants, intermittent 

device connectivity and excessive noise (Anderson & Farb, 2018). Notably from the current 

study, the chest bands compatible to the Zephyr Bioharness 3 are not body inclusive, resulting in 

poor fit and inconsistent electrode contact on average to smaller body frames. However, in 

anticipation we followed literature recommendations for HR recording, increasing experimental 

control to mitigate potential issues; in combination with the industry standard for HR processing 

(Kubios), the total RR sample extracts excluded due to ≥5% artifact concentration was 10.20% 

(30/294 samples), with only 0.28% average correction (See supplementary Table S1). 

4.4 Future Directions 

The interest in HRV biomarkers has grown exponentially, regardless of myriad measurement 

confounds (Arakaki et al., 2023; Mosley & Laborde, 2022; Stephenson et al., 2021; Quintana & 

Heathers, 2014). Future directions include comparing HRV and HRF metrics in the same sample 

to test the predictive power of each measure to differentiate conditions and adverse outcomes 

reliably over time and across study paradigm.  

5 Conclusions 

The current study builds upon prior research to integrate an emerging cardiovascular measure 

into the current knowledge of psychological stress and health. At the time of writing this, there 

was currently no published research associating HRF with mental health variables. The current 

study observed the significant effect that subclinical levels of mental health can have on 

cardiovascular reactivity. Furthermore, this program of research serves as an example of the 

importance of considering the feasibility and utility of different cardiac metrics used in research 
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based on both the hypotheses and the setting (i.e., field versus laboratory); particularly, as 

different measures of the same tasks can present very different narrative interpretations. HRF 

also has implications for identifying health risk and measuring response to interventions and 

prevention efforts such as paced breathing and biofeedback. 
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