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Abstract

This paper solves the problem of block sparse vector recovery using the block $\ell 1-\alpha\ell q$- minimization model. Based

on the block restricted isometry property (B-RIP) condition, we obtain exact block sparse vector recovery result. We also

obtain the theoretical bound for the block $\ell 1-\alpha\ell q$- minimization model when measurements are depraved by the

noises.
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Abstract

This paper solves the problem of block sparse
vector recovery using the block `1 − α`q- mini-
mization model. Based on the block restricted
isometry property (B-RIP) condition, we obtain
exact block sparse vector recovery result. We
also obtain the theoretical bound for the block
`1−α`q- minimization model when measurements
are depraved by the noises.
Keywords: `1 − `2-minimization, Compressed
Sensing, Block Sparse vector, RIP condition

1 Introduction
Compressed sensing is a sparse signal recovery technique.
It restores high-dimensional signals from low-dimensional
measurements. Mathematically, it can be expressed as

min ‖x‖0 subject to Ax = y,

where x ∈ Rn is the unknown signal to be recovered,
A ∈m×n (m < n) is the measurement matrix, y ∈ Rm

is the measurement value and ‖x‖0 counts the number of
nonzero elements in the vector x. The above model is
called `0-minimization model, which is NP-hard [1]. For-
tunately, people have found that when x is a sparse sig-
nal, the `1-minimization model can effectively solve the
`0-minimization model. The `1-minimization model is as
follows:

min ‖x‖1 subject to Ax = y,

where ‖x‖1 =
∑n
i=1 |xi|. The existing literature suggests

that when the measurement matrix satisfies certain prop-
erties, such as null space property [1], restricted isome-
try property(RIP), coherence [2], the solution of the `1-
minimization model is that of `0-minimization model. We
now provide the definition of RIP:

Definition 1 The sth restricted isometry constant δs =
δs(A) of a matrix A ∈ Rm×n is the smallest δ > 0 such
that

(1− δ‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22
for all s-sparse vectors x ∈ Rn.

Although the `1-minimization model can effectively solve
the `0-minimization model, they are not completely e-
quivalent [3]. Therefore, in order to better solve the `0-
minimization model, other models have emerged one after
another. Among these models, the `p-minimization model
is a well-known one. It can be expressed as

min ‖x‖pp subject to Ax = y,
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where ‖x‖p = (
∑n
i=1 |xi|

p)
1
p , 0 < p < 1. [9] utilized the null

space property of `p-minimization model to obtain a nec-
essary and sufficient condition for `p-minimization model
to recover sparse signals. [8], based on the RIP condition,
obtained a sharp upper bound for `p-minimization model
to recover sparse signals.

Another well-known alternative to the `1-minimization
model is the `1−`2-minimization model. It can be expressed
as

min ‖x‖1 − ‖x‖2 subject to Ax = y,

where ‖x‖2 =
√∑n

i=1 |xi|2. [4] provides a necessary and
sufficient condition for the `1 − `2-minimization to recover
sparse signals from the perspective of null space. Based
on the RIP condition, [5] proposed sufficient conditions for
the `1 − `2-minimization model to recover sparse signal-
s. In addition, both theoretically [7] and experimental-
ly [5] show that it can recover sparse signals better than
`1-minimization model.

There have been many theoretical results for the recov-
ery of sparse signals. However, in real life, we will also
encounter sparse signals with special structures, such as
block sparse signal. Block signal divides unknown signals
x into l block, i.e.

x = [x1, · · · , xd1︸ ︷︷ ︸
x[1]

, xd1+1, · · · , xd1+d2︸ ︷︷ ︸
x[2]

, · · · , xN−dl+1, · · · , xN︸ ︷︷ ︸
x[l]

]T .

If ‖x‖2,0 :=
∑l
i=1 ι(‖x[i]‖2 > 0) ≤ k, where ι(x) denotes

an indicator function that ι(x) = 1 or 0 according as x > 0
or otherwise, We call this x as k block sparse vector. In
addition, we define supp([x]) = {i : i ∈ [l], ‖x[i]‖2 6= 0}.
`2/`1-minimization model is a model for processing block

sparse signals, which is a variant of the `1-minimization
model. its mathematical model can be expressed as

min ‖x‖2,I subject to Ax = y,

where ‖x‖2,I =
∑l
i=1 ‖x[i]‖2, I = {d1, d2, · · · dl}. Define

‖x‖2,2 =
√∑l

i=1 ‖x[i]‖22, then like the traditional RIP con-

dition, k-block sparse vectors also have block RIP condi-
tions:

Definition 2 Give a measurement matrix A with size m×
n, where m < n, one says that the measurement matrix A
obeys the block RIP over I = {d1, d2, · · · , dl} with constants
δk|I if for every vector x ∈ Rn wiht k bolck sparse over I
such that

(1− δk|I)‖x‖22,2 ≤ ‖Ax‖22,2 ≤ (1 + δk|I)‖x‖22,2

holds. We say the smallest constant δk|I that meets the
above inequality as the block RIC corresponding with the
matrix A.

According to the block RIP condition, [6] provides a
sharp sufficient condition so that k block sparse signals can
be recovered by `2/`1-minimization model.

For the recovery problem of block sparse vectors, there
are also variations of the traditional `1 − `2-minimization
model, i.e. block `1 − `2-minimization model:

min ‖x‖2,1 − ‖x‖2,2 s.t. Ax = y.

1



[10] provides sufficient conditions for the block `1 − `2-
minimization model to recover block sparse vectors based
on the block RIP condition, and designs an algorithms for
the block `1 − `2-minimization model based on the differ-
ence of convex function algorithm. Experimental results
show that this model outperforms other models in recover-
ing block sparse vectors.

Combining the `p-minimization model with the block
`1−`2-minimization model, this paper proposes a new mod-
el to solve the problem of block sparse vector recovery. We
call this new model block `1 − α`q-minimization model:

min ‖x‖2,1 − α‖x‖2,q s.t. Ax = y (1)

where 1 < p ≤ 2, 0 ≤ α ≤ 1, ‖x‖2,q = (
∑l
i=1 ‖x[i]‖q2)

1
q . Its

noise model as following:

min ‖x‖2,1 − α‖x‖2,q s.t. ‖Ax− y‖2 ≤ ε (2)

where ε is a very small constant.
The main contributions of this paper are: (i) We pro-

pose a block RIP condition that fully guarantees that the
block `1 − α`q-minimization model can accurately recov-
er all block sparse vectors; (ii) We have demonstrated that
this condition can also ensure that the noisy block `1−α`q-
minimization model can stably recover all block s-sparse
vectors.

2 Main

In this section, we give out the main conclusions of this
paper.

Lemma 1 Let x ∈ Rn, 1 < p ≤ 2, 0 ≤ α ≤ 1, then

(i) (l − αl
1
q ) min

i∈[l]
‖x[i]‖2 ≤ ‖x‖2,1 − α‖x‖2,q ≤ (l

1− 1
q −

α)‖x‖2,q.
(ii) If ‖x‖2,0 = s, then (s − αs

1
q ) min

i∈[l]
‖x[i]‖2 ≤ ‖x‖2,1 −

α‖x‖2,q ≤ (s
1− 1

q − α)‖x‖2,q

Proof By Holder’s inequality and the norm inequality, we

have ‖x‖2,1 ≤ l
1− 1

q ‖x‖2,q. Thus the right hand side of (i)
is established.

Now we want to show the left hand side of (i) is also true.
For any z ∈ Rl with zi ≥ 0, setting f(z) = ‖z‖1 − α‖z‖q =∑l
i=1 zi − α(

∑l
i=1 z

q
i )

1
q , we can find that

5zif(zi) = 1− αzq−1
i (

l∑
k=1

zqk)
1
q
−1 ≥ 0,

where zq−1
i (

∑l
k=1 z

q
k)

1
q
−1

= ( zi
‖z‖q )q−1 ≤ 1. Hence, f(z) is

a monotonic increasing function with respect to zi. Conse-
quently

f(z) ≥ f(min
i∈[l]

zi, . . .min
i∈[l]

zi)

Thus (l − αl
1
q ) min

i∈[l]
‖x[i]‖2 ≤ ‖x‖2,1 − α‖x‖2,q.

(ii) Taking x = xsupp([x]), according to (i), (ii) is obvious.

Theorem 1 For t > 0, let x be any vector with block spar-
sity of s satisfying

a(t, s) =
dtse

1
2 − αdtse

1
q
− 1

2

s
1
2 + αs

1
q
− 1

2

> 1, (3)

and let y = Ax. Suppose A satisfies the condition

δdtse|I + a(t, s)δdtse+s|I < a(t, s)− 1. (4)

then x is the unique solution to (1).

Proof Let x be any feasible solution satisfying the con-
straint Ax = y yet with a smaller objective value, i.e.,

‖x‖2,1 − α‖x‖2,q < ‖x‖2,1 − α‖x‖2,q (5)

Set x = x+ h with h ∈ kerA and we will show that h = 0.
Suppose supp([x]) = S, and write h = hS + hS. It follows
from (5) that

‖x+hS+hS‖2,1−α‖x+hS+hS‖2,q < ‖x‖2,1−α‖x‖2,q (6)

Note that

‖x+ hS + hS‖2,1 − α‖x+ hS + hS‖2,q
= ‖x+ hS‖2,1 + ‖hS‖2,1 − α‖x+ hS + hS‖2,q
≥ ‖x+ hS‖2,1 + ‖hS‖2,1 − α‖x‖2,q − α‖hS‖2,q − α‖hS‖2,q
≥ ‖x‖2,1 − ‖hS‖2,1 + ‖hS‖2,1
− α‖x‖2,q − α‖hS‖2,q − α‖hS‖2,q.

(7)
Combining (6) and (7), we obtain

‖hS‖2,1 + α‖hS‖2,q ≥ ‖hS‖2,1 − α‖hS‖2,q (8)

Arrange the block indices in S in order of decreasing ‖h[i]‖2
of hS and divide hS into block subsets of size dtse. Then

S = S1 ∪ S2 ∪ · · · ∪ Sγ , where each Si contains dtke block
indices probably except Sγ . Denoting S0 = S∪S1 and using
the block RIP of A, we have

0 = ‖Ah‖2,2 = ‖AhS0 +

γ∑
i=2

AhSi‖2,2

≥ ‖AhS0‖2,2 − ‖
γ∑
i=2

AhSi‖2‖2,2

≥
√

1− δdtse + s|I‖hS0‖2,2 −
√

1 + δdtse|I
γ∑
i=2

‖hSi‖2,2

(9)
On the other hand, for any r ∈ Si, i ≥ 2,

‖h[r]‖2 ≤ min
t∈Si−1

‖h[t]‖2 ≤
‖hSi−1‖2,1 − α‖hSi−1‖2,q

dtse − αdtse
1
q

,

where the second inequality use Lemma 1 of (ii). This fur-
ther more yields that

‖hSi‖2,2 ≤
√
dtse
‖hSi−1‖2,1 − α‖hSi−1‖2,q

dtse − αdtse
1
q

=
‖hSi−1‖2,1 − α‖hSi−1‖2,q√

dtse − αdtse
1
q
− 1

2

and
γ∑
i=2

‖hSi‖2,2 ≤
γ−1∑
i=1

‖hSi‖2,1 − α‖hSi‖2,q√
dtse − αdtse

1
q
− 1

2

≤
∑γ
i=1 ‖hSi‖2,1 −

∑γ
i=1 α‖hSi‖2,q√

dtse − αdtse
1
q
− 1

2

(10)

Note that

γ∑
i=1

‖hSi‖2,1 = ‖hS‖2,1,
γ∑
i=1

‖hSi‖2,q ≥ ‖hS‖2,q (11)

it follows from (10) and (11), that

γ∑
i=2

‖hSi‖2,2 ≤
‖hS‖2,1 − α‖hS‖2,q√
dtse − αdtse

1
q
− 1

2

. (12)
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Combining (8) and (12), we get

γ∑
i=2

‖hSi‖2,2 ≤
‖hS‖2,1 − α‖hS‖2,q√
dtse − αdtse

1
q
− 1

2

≤ ‖hS‖2,1 + α‖hS‖2,q√
dtse − αdtse

1
q
− 1

2

≤ (
√
s+ αs

1
q
− 1

2 )‖hS‖2,2√
dtse − αdtse

1
q
− 1

2

=
‖hS‖2,2√
a(t, s)

(13)

(9) and (13) yields that

0 ≥
√

1− δs+dtse|I‖hS0‖2,2 −
√

1 + δdtse|I√
a(t, s)

‖hS‖2,2

≥
√

1− δs+dtse|I‖hS0‖2,2 −
√

1 + δdtse|I√
a(t, s)

‖hS0‖2,2.
(14)

Since (4) implies
√

1− δs+dtse|I −
√

1+δdtse|I√
a(t,s)

> 0, then we

have ‖hS0‖2,2 = 0, and hence, we have h = 0. �

Theorem 2 Under the assumptions of Theorem 1 except
that y = Ax + e, where e ∈ Rm is any perturbation with
‖e‖2 ≤ ε, we have that the solution x to (2) subject to ‖x−
x‖2 ≤ Cε for some constant C > 0 depengding on δs+dtse|I
and δdtse|I .

Proof Setting x = x + h, supp([x]) = S, similar to the
proof of Theorem 1, we have

γ∑
i=2

‖hSi‖2,2 ≤
‖hS‖2,2√
a(s, k)

, (15)

and

‖Ah‖2,2 ≥ (
√

1− δk+dtke|I −
√

1 + δdtke|I√
a(t, s)

)‖hS0‖2,2 (16)

therefor

‖h‖2,2 =

√√√√‖hS0‖22,2 +

l∑
i=2

‖hSi‖22,2

≤

√
‖hS0‖22,2 +

‖hS‖22,2
a(t, s)

≤

√
1 +

1

a(t, s)
‖hS0‖2,2.

(17)

In addition, we have

‖Ah‖2,2 = ‖Ax− y − (Ax− y)‖2,2
≤ ‖Ax− y‖2,2 + ‖Ax− y‖2,2
= ‖Ax− y‖2 + ‖Ax− y‖2 ≤ 2ε.

(18)

it follows from (16) and (18)

‖hS0‖2,2 ≤ 2(
√

1− δs+dtse|I −
√

1 + δdtse|I√
a(t, s)

)−1ε. (19)

(17) and (19) yield that

‖x− x‖2 = ‖h‖2 = ‖h‖2,2

≤ 2

√
1 +

1

a(t, s)
(
√

1− δk+dtke|I −
√

1 + δdtke|I√
a(t, s)

)−1ε := Cε.

�

Remark 1 It is worth noting that if α monotonically de-
creases, then a(t, s) becomes larger. Therefore, the smaller
α, the easier it is to achieve condition (3), but condition (4)
may not necessarily be also easier to achieve.

Corollary 1 If α = 1 in the `1−α`q-minimization model,
the block `1−α`q-minimization model has a unique solution
x with block sparsity s if the vector x satisfying

a(t, s) =
dtse

1
2 − dtse

1
q
− 1

2

s
1
2 + s

1
q
− 1

2

> 1, (20)

and matrix A satisfies the condition

δdtse|I + a(t, s)δdtse+s|I < a(t, s)− 1. (21)

Corollary 2 Under the condition (20), (21) and if α =
1 in the minimization model (2) then the model (2) obeys
‖x − x‖2 ≤ Cε for some constant C > 0 depengding on
δs+dtse|I and δdtse|I .

3 Conclusion
From this paper, we find that based on some condition of
block RIP, the block `1 − a`q-minimization model can ex-
actly recover block s-sparse signals in noiseless cases and
stably recover block s-sparse signals in the noise cases.
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