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Abstract

The stability of isolated communities is determined by foodweb complexity. However, it is unclear how local stability interacts

with dispersal in multitrophic metacommunities to shape biodiversity patterns. Furthermore, metacommunity dynamics in

landscapes with non-trivial and dynamic structures are less understood. We aim to evaluate the influence of local stabilizing

factors versus dispersal in determining the sensitivity of metacommunity biodiversity to increasing site availability asynchrony.

Additionally, we assess the role of foodweb and landscape complexities as modulating factors. To achieve these goals, we

developed a model based on random matrices for local communities linked by stochastic dispersal over explicit, dynamic

landscapes. Both local and regional stabilizing factors determined the sensitivity of metacommunities to landscape asynchrony.

Local factors were more influential in landscapes with fewer sites and lower modularity, and in more complex foodwebs. We

delve into the mechanisms underlying our results and discuss potential extensions of our study.
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Abstract

The stability of isolated communities is determined by foodweb complexity. However,

it is unclear how local stability interacts with dispersal in multitrophic metacommunities

to shape biodiversity patterns. Furthermore, metacommunity dynamics in landscapes with

non-trivial and dynamic structures are less understood. We aim to evaluate the influence

of local stabilizing factors versus dispersal in determining the sensitivity of metacommunity

biodiversity to increasing site availability asynchrony. Additionally, we assess the role of

regional foodweb complexity and landscape structure as modulating factors. To achieve

these goals, we developed a model based on random matrices for local communities linked

by stochastic dispersal over explicit, dynamic landscapes. Both local and regional stabilizing

factors determined the sensitivity of metacommunities to landscape asynchrony. Local

factors were more influential in landscapes with fewer sites and lower modularity, and in

more complex foodwebs. We delve into the mechanisms underlying our results and discuss

potential extensions of our study.
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INTRODUCTION

During past decades, there have been remarkable advances in the understanding of the

interrelationship between ecological stability, species diversity, and ecosystem functioning

May (1972); McCann (2000); Allesina and Tang (2012); Hooper et al. (2012); Loreau and

De Mazancourt (2013); Rohr et al. (2014). These advances have been mostly reached

considering local, closed ecological communities. However, many natural communities

are open to regional influences driven by the dispersal of individuals. The advent of the

metacommunity concept Leibold et al. (2004) enlarged the scale of analysis, incorporating

the connectedness among local communities for understanding the coordinated dynamics

of spatially-structured species assemblages that resemble more closely the structure of

real ecosystems. Thus, the dynamics of metacommunities are understood as governed

by the interplay between local processes, that take place within local communities, and

regional ones, at the level of the whole landscape Thompson et al. (2020). In this

vein, a central topic is understanding which properties of metacommunities determine

biodiversity robustness to ongoing environmental changes.

At a local level, community stability refers to the ability of a community to retain its

function and structure after suffering a disturbance. However, there exist many metrics

that capture different aspects of community stability (Kéfi et al., 2019). The arrangement

and strength of interactions among species determine the stability of communities and the

likelihood of species coexistence therein. In particular, the strength of self-limitation is

an important stabilizing mechanism that modulates coexistence (Chesson, 2000; Barabás

et al., 2017), along with density-dependent interspecific processes (Chesson, 2000). Topological

network properties, such as species richness, connectance, modularity, nestedness (Thébault

and Fontaine, 2010), and trophic coherence (Johnson et al., 2014) also shape community

stability. In a spatially-structured context, the stability of local communities should be
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more relevant for biodiversity maintenance in loosely connected metacommunities, where

regional influences are minimal (Thompson and Gonzalez, 2017). However, the likelihood

of species introductions from neighboring habitats may be influenced by the stability of

the destination community, consequently affecting the probability of species integration

into a local community after dispersal Lurgi et al. (2014); Hui et al. (2016). Therefore,

local stabilizing factors may play a crucial role in shaping the collective functioning of

linked communities. However, this particular aspect has received limited attention in

previous research (but see Mougi and Kondoh (2016); Gravel et al. (2016); Thompson

and Gonzalez (2017)).

Regional processes are governed by the movements of organisms and propagules among

local communities. These dispersal movements allow the colonization and recolonization

of available and reachable sites, thereby recovering low-density populations (Mouquet and

Loreau, 2003). As a consequence, species dispersal over the landscapes tends to foster

local species diversity, among-habitat species composition similarity (Thompson et al.,

2020), and overall metacommunity stability (Mougi and Kondoh, 2016). The dispersal

process at the metacommunity level and its consequences on biodiversity patterns may

heavily depend on landscape structure, i.e., the arrangement of links among local sites

through which dispersal can occur. For example, choke points with harsh conditions

can hamper the dispersal of species between sub-regions of the landscape. Conversely,

high connectivity among sites fosters species abundances and reduces regional extinction

probability (Arancibia and Morin, 2022). How sites are arranged into the landscape also

affects species dynamics and diversity (Holyoak, 2000; Economo and Keitt, 2010). In

addition, the relative importance of a specific archetypal metacommunity driving force

(e.g., species sorting vs. mass effect) is also influenced by landscape topology (Suzuki

and Economo, 2021). Consequently, there has been a recent push toward incorporating

explicit landscape representations in the study of metacommunity dynamics (see, for
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example, Borthagaray et al. (2014, 2018)).

Most metacommunity models up to date, indeed those that include explicit dynamics

of species abundances, assume that local habitat sites maintain their properties essentially

constant over time Leibold et al. (2004). This translates into a static structure of localities

(number and connectivity of sites) that compose a landscape, as well as a static set of

local conditions and resources within each site. However, real spatially-structured systems

deviate significantly from these idealizations, as ecosystems often undergo pronounced

changes over time in their physical structure and in local biotic and abiotic factors

(Chesson and Huntly, 1989; Erős et al., 2012; Aiken and Navarrete, 2014; Brendonck

et al., 2017). Canonical examples of dynamic landscapes (i.e. with a time-varying

structure) are found in lentic environments within semiarid and Mediterranean regions

(e.g. Olmo et al. (2022)), containing temporary habitats that switch between “active” and

“inactive” states. In these systems, alterations in local habitat availability are seasonal,

albeit partially unpredictable, that is, subjected to a frequent and stochastic disturbance

sensu Holyoak et al. (2020). In small-area landscapes, the initiation of active periods

at sites often exhibits a strong temporal correlation, as they are typically caused by

rainfall events. Conversely, in large-area landscapes, we expect a weaker synchronization

in the starting of active periods, due to the spatial variability in weather conditions.

Regardless of landscape size, the duration of active periods can greatly vary among sites

because it depends on local factors such as pond capacity and drainage. In general,

temporal fluctuations in habitat availability are rarely perfectly synchronized among all

sites within a landscape. Consequently, the ’active’ periods of two specific sites may

only partially overlap or not overlap at all. This asynchrony can have a detrimental

impact on biodiversity, particularly for active dispersers, as it hinders dispersal between

adjacent sites. Nevertheless, moderate levels of asynchrony can also yield positive effects

by enhancing rescue and spatial insurance mechanisms Wilcox et al. (2017).
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In this study, we assess the role of local stabilizing factors, LSFs, (self-limitation,

trophic coherence), versus regional stabilizing factors, RSFs, (dispersal ability) in shaping

the sensitivity of metacommunity biodiversity and biomass to increasing asynchrony in

site availability. We evaluate these effects across gradients of both regional foodweb

and landscape complexity. To efficiently simulate systems involving these elements, we

developed a model that involves a) random spatially-explicit metacommunities embedded

in dynamic landscapes containing temporary sites, b) local community dynamics, described

as Lotka-Volterra foodweb equations parameterized by linear programming, reaching

equilibria instantaneously to avoid explicit population dynamics, c) stochastic dispersal

among sites obeying a Markov process.

METHODS

We outline the key steps of our methods; for details, see Appendix S1.

Model: We represent dynamic landscapes as dynamic graphs, i.e. time-varying graphs

with node-dynamics (Harary and Gupta, 1997). Our algorithm creates connected modular

landscapes with key parameters nP (number of sites) and F (controlling the level of

modularity). A site of a randomly chosen module is designated as the mainland. At a

given time, each site p is in either of two states: “active” or “inactive.” Species can

be present in p only when the site is “active.” The mainland is always “active”, and all

species in the regional pool are present therein. All the other sites transition stochastically

between the two states. The regional pool of species –and their interactions– is modeled

as a foodweb following Klaise and Johnson (2016). Parameter T (foodweb temperature)

controls the degree of trophic coherence, a structural property that strongly determines

stability in empirical foodwebs (Johnson et al., 2014). Other key parameters are species

richness nS and foodweb connectance C.
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We assume that the dynamics of species’ biomasses at a site, is governed by Lotka-Volterra

type equations and reaches equilibrium instantaneously. For our study, a key parameter

is λ, representing the negative of the diagonal entries of the community matrix. Other

parameters are automatically computed to ensure the system is feasible and Lyapunov

stable. Dispersal is modeled as a continuous time Markov chain. The dispersal events

are coupled with the activation and deactivation events of landscape sites, and with the

local community dynamics. The effective rate of dispersal between sites p and q is the

ratio between the dispersal ability a ∈ R+ (a free parameter) and the Euclidean distance

between p and q. Dispersal of species s is possible only if p and q are active, s is present

in p but not in q, and s is either a basal species, or a consumer with at least one of its

preys present in q. After each event, the biomasses of all species present in q are set to

the equilibrium of the Lotka-Volterra system, taking extinctions into account.

Experimental design: As main predictor variables, we chose T and λ as LSFs, and

a as the RSF. Variables T and λ univocally determine local stability, while a is the

canonical metacommunity attribute at a regional level. Parameters T and λ were set to 7

evenly spaced values between 0 and 1.2, and 6 evenly spaced values between -1.0 and -1/3,

respectively. Parameter a was set to 5 logarithmically-spaced values between 30 and 3000.

The predictors’ values were chosen based on preliminary tests, that shed light on the range

of predictor values that generate noticeable variation in response variables.Regarding

landscape parameters, we used nP = 25, 50, 100 and F = 5, 10, 50, 75. For foodweb

parameters, we used C = 0.15, 0.2, 0.25 and nS = 30, 45, 60, 75. We simulated 6 years

of metacommunity dynamics and 50 replicates for each point in the parameter space.

Because in our model all sites except the mainland are reset every year, longer simulation

times are not needed. We define instantaneous species persistence at time t as the ratio

between species richness at t and the number of species in the regional pool. We calculate

time series for α (average local) and γ (regional) persistence, denoted as Pα(t) and Pγ(t)
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respectively. By computing the continuous power mean, we obtain the scalars Pα and Pγ.

Following Jost (2007), we calculate beta persistence Pβ as Pγ/Pα. We also calculate time

series for γ biomass Bγ(t) as the total metacommunity biomass (summed over all sites

and species). We define β biomass Bβ(t) as the coefficient of variation of local community

biomasses over all sites. Then we compute their power means to obtain scalars Bβ and

Bγ. There is no need to obtain Bα because it is proportional to Bγ.

We focus on assessing how landscape asynchrony A affects the response variables (Pα,

Pβ, Pγ, Bβ, and Bγ). For a given response variable x we define the sensitivity of x to an

increase in A from a low value, call it AL to a high value AH . We define

S[x] = xH − xL

AH − AL

(1)

where xL and xH are the values of X for AL and AH respectively. In our experiments, we

set AL = 0 and AH = 0.5. For brevity, we write A-sensitivities to denote the elements

of the set {S[Pα], S[Pβ], S[Pγ], S[Bβ], S[Bγ]}. We quantified the effects of LSFs versus

RSFs on the A-sensitivities. As predictor variables, we used T and λ, which regulate

local community stability, and â = log10(a), which regulates regional processes. We also

tested all possible quadratic interactions among the three main predictors. Standardized

effect sizes were obtained from the coefficients of multiple linear regressions after rescaling

the main predictors to z-scores. Also, we tested the possibility of removing some of the

predictors by comparing the corrected Akaike information criterion (AICc) values for all

linear models nested within our full model.

RESULTS

As a starting point, we analyze how LSFs (T and λ) affect species persistence and

community biomass as a result of the assembly process of a single community from the
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regional species pool. The assembly process occurs in the context of unlimited access

to the species pool, and permanent habitat availability, i.e., the site is always “active.”

Therefore, community composition is mainly governed by local processes. An analysis

of Fig. 1 reveals that both T and λ exerted marked effects on community diversity and

biomass. Species persistence P decreased with T and increased with λ (Fig. 1A). The

opposite trend was obtained for community biomass B (Fig. 1B). Figs. S2 and S3 in

Appendix S1 show the influence of foodweb complexity (nS and C) on P and B. On one

hand, nS lowered P in the sense that it shrank the region in the λ, T parameter space

where P is high. On the other hand, nS increased B. By contrast, C decreased both P
and B.

Next, we extend the experiments to metacommunities in dynamic landscapes. To gain

initial insights into the effects of landscape asynchrony A on metacommunity attributes,

we run our full model using two dispersal rates. We assessed the relative changes in P
and B while varying A from 0 to 0.5 As we see in Fig. 2, increasing A reduced both Pα

and Bγ, while it increased Pβ and Bβ. The response of Pγ was comparatively smaller and

its sign depended on dispersal ability a. In general, increasing a strengthened the effect

of A, specially for Pβ.

Effects of local and regional stabilizing factors: According to the AICc, the full model

outperformed all nested, smaller models. Fig. 3 shows the effect sizes of each predictor

on A-sensitivities of species persistence.

Dispersal ability â was a strong predictor of S[Pα], S[Pβ], and S[Pγ]. Moreover, â

determined A-sensitivities in a nonlinear way, as indicated by the effect sizes of â2 (Fig. 3).

Increasing â tended to reduce S[Pα], as indicated by the negative effect sizes. This trend

held for metacommunities governed by the three parameter sets: base condition (Fig. 3a),

complex foodwebs (Fig. 3d), and scattered/spread landscapes (Fig. 3g). For all the cases

in Fig. 3, the effect of â over S[Pβ] was parameter (foodweb and landscape) dependent and
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highly nonlinear. However, â was not the strongest predictor of S[Pβ] for denser/modular

landscapes (Fig. 3b,e). For the base case, â had a positive and mostly linear effect on S[Pγ]

(Fig. 3c). For complex foodwebs, this effect, although qualitatively the same as for the

base case, was not the dominant one (Fig. 3f). For scattered/spread landscapes, the effect

of â on S[Pγ], although relatively small, was highly nonlinear (Fig. 3i). Predictors λ and

T exerted noticeable effects on all A-sensitivities, except S[Pβ] in scattered landscapes.

The effect sizes of λ on persistence-related A-sensitivities were of similar magnitude but,

as expected, of opposite sign than those of T . The quadratic terms for λ and T were

relatively small. Strengthening local stability, either through increasing λ or decreasing

T , led to a decrease in S[Pα], and of S[Pβ] (except for scattered landscapes), while it

increased S[Pγ]. Interaction effects between â and both λ and T were of considerable

size for S[Pγ], and for S[Pβ] (base parameters and complex foodwebs). Predictor T × â

increased S[Bβ] while it decreased S[Bγ]. Predictor λ× â had the opposite effects.

Effects of landscape structure: The number of sites in the landscape nP , and the

excess factor F , exerted noticeable effects on the relative effect sizes of predictors on

A-sensitivities. In general, the absolute sizes of the effects increased with nP , except on

S[Bβ] (Figs. S4-S8). Increases in F tended to decrease the effects exerted by â and â2

on S[Pα]. Conversely, for S[Pγ], these effects sizes had a tendency to be magnified by

F . Large nP values strengthened the effects of F on persistence-related A-sensitivities.

The sensitivity S[Bβ] remained almost fully explained by â (and â2) for all the explored

parameter space. Interestingly, for S[Pγ] the importance of T and λ relative to that of â

increased for small values of nP and F .

Effects of foodweb topology: Foodweb parameters C and nS moderately influenced

the relative effect sizes of predictors on the A-sensitivities (Figs. S9-S13). For S[Pα], as

foodweb complexity (C and nS) increased, the relative importance of T and λ increased
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respect to that of â. This is consistent with our first local stability analysis (Fig. S2),

which showed that more complex communities display a smaller stability region on the

λ-T plane. Similarly, effects of λ and T on S[Pγ] increased, relative to the ones of â,

as foodwebs were more complex. Nonlinear predictors T × â and λ × â also exhibited

stronger effects for complex foodwebs. For S[Pβ], increasing the foodweb complexity

led to larger effect sizes of the main predictor variables, and those of T × â and λ × â.

The A-sensitivities S[Bβ] and S[Bγ] showed minor changes over the foodweb complexity

gradient.

DISCUSSION

Our main results show that increasing asynchrony A among site availability periods

reduces both local species persistence and biomass, while it rises among-habitat dissimilarity

with respect to these metrics. Interestingly, regional persistence increased withA, particularly

at high dispersal rates, even though regional biomass decreased. The sensitivity of

metacommunities to increased landscape asynchrony was determined by both LSFs and

RSFs. Roughly speaking, dispersal was the dominant predictor of A-sensitivities across

a wide array of conditions, although the contribution of LSFs (both through their main

effects and interactions) had a considerable influence on the A-sensitivity of regional

persistence, and among-site dissimilarity in species richness. The importance of LSFs was

particularly strong for scattered/spread landscapes and complex foodwebs. Among the

previous studies addressing the role of local versus RSFs on metacommunity stability,

Gravel et al. (2016) and Mougi and Kondoh (2016) stand out. Gravel et al. (2016)

analyze the local asymptotic stability of metacommunities, and show that the probability

of a metacommunity being stable increases with the propensity to stability of local

communities (governed by species richness, foodweb connectance, mean interaction strength,

and self-regulation strength), as well as with dispersal rate. At the same time, they showed
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that the likelihood of metacommunity stability increases with habitat complexity (number

of functionally distinct sites).

Applying a similar approach, Mougi and Kondoh (2016) found that the key determinants

of local community stability, namely species richness and food web connectance, also play

a crucial role in shaping the stability of the entire metacommunity. In essence, more stable

local communities tend to contribute to the stability of the metacommunity. Moreover,

dispersal can stabilize metacommunities composed of unstable prone (i.e. more complex)

communities, potentially reversing the negative complexity-stability relation under certain

conditions. Our findings are in line with Gravel et al. (2016) and Mougi and Kondoh

(2016) in that both local community stability and dispersal rates raise both local and

regional diversity. Note that both of the mentioned studies rely on Lyapunov stability

analysis. However, stronger Lyapunov stability does not necessarily guarantee system

robustness in the face of dynamic habitat availability, which constitutes a structural

perturbation and is the primary focus of our study. In the following paragraphs we

delve into the mechanisms explaining the responses of metacommunities to asynchrony

A in habitat availability and how foodweb and landscape complexity modulate these

responses.

We begin by noting that increasing A tends to reduce the average temporal overlap

among active sites. This inhibits dispersal, leading to lower local diversity and a larger

among-site dissimilarity in species composition. However, landscape asynchrony can have

positive effects on regional diversity due to a compensatory effect. This is because a larger

A results in a larger fraction of the year when active sites host species, promoting the

prompt colonization of newly activated sites. However, LSFs determine whether A has a

net positive or negative effect on regional biodiversity, as we will elaborate on later.
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Dispersal effects: The increase in S[Pα] with dispersal ability, â, can be explained by

examining Fig. S14. Note that the range of Pα is smaller for smaller values of â, due

to dispersal limitation. Thus, small â results in small Pα, which cannot be significantly

reduced by increasing A. This leads to a small S[Pα]. In contrast, larger â leads to higher

levels of Pα that can be decreased readily by increments in A, yielding a negative S[Pα].

These cases explain the negative effects of â on S[Pα] in Fig. 3 a, d, and g.

For dense landscapes and slow dispersal, Pγ decreased only slightly with A because

having a few species-rich communities yields a high Pγ. Intermediate values of â prevent

reductions in Pγ. For high values of â, A increases Pγ in many cases, particularly

for metacommunities exhibiting high Pγ when A = 0. This can be explained by the

compensatory effect described earlier. These cases elucidate the effects of â on S[Pγ] as

shown in Figs. 3 c, and f. A similar response has been observed in models of competitive

metacommunities and, more recently, in multitrophic metacommunities (Firkowski et al.,

2022), where a positive relationship exists between spatially uncorrelated environmental

fluctuations and stability. In the cases of scattered/spread landscapes, the effect of â on

S[Pγ] was markedly nonlinear. At low â, S[Pγ] ≈ 0 since, regardless of A, Pγ ≈ 0 due

to dispersal limitation. Increasing â alleviates dispersal limitation, rising Pγ at A = 0. A

higher A pushes down Pγ, resulting in a negative S[Pγ]. At high â, Pγ keeps at relatively

high levels, and there is a positive S[Pγ] because of the compensatory effect. The change

in the sign of S[Pγ] leads to the nonlinear effect of â in Fig. 3i.

Dispersal affects S[Pβ] nonlinearly for dense landscapes. (Figs. 3b, e), reaching a

maximum and then slightly decreasing. For both small and large values of â, S[Pβ]

is small. In the first case, most sites are unpopulated and, therefore homogeneous

regardless of A. In the second case, sites reachable from the mainland are homogeneously

populated because of fast dispersal. Increasing A reduces the number of available sites

and therefore Pβ increases moderately. In contrast, for intermediate values of â, both
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mechanisms that raise Pβ come into play. Moderate dispersal induces dissimilarity in

species composition across space. Besides, landscape asynchrony reduces the number of

available sites, leading to an even greater increase in Pβ. This yields a marked positive

S[Pβ]. The described effects of â on S[Pβ], along with the underlying mechanisms, also

apply to scattered/spread landscapes. Here, landscape asynchrony increases Pβ at high â.

The increased average distance among sites in scattered/spread landscapes lowers effective

rates of dispersal, potentially weakening its homogenizing effect.

The patterns of metacommunityA-sensitivity of biomass can be explained using similar

arguments as those stated before. Basically, dispersal ability fosters biomass abundance,

and homogenization across sites. Therefore, â has a positive effect on S[Bβ] and a negative

effect on S[Bγ] (see Fig. 2 and S7-S8 and S12-S13).

Our results align with earlier studies that emphasize the critical role of dispersal as

a driving force behind metacommunity dynamics and resultant diversity patterns. The

influential work of Mouquet and Loreau (2002, 2003), assuming a spatially implicit patch

dynamics archetype for competitive metacommunities, posited that dispersal leads to a

humped response in α-diversity, accompanied by decreasing trends in both β-diversity and

γ-diversity. Recently, Thompson et al. (2020) uadopted a more comprehensive approach

encompassing a wider range of archetypes and identified similar trends to those in Mouquet

and Loreau (2002, 2003), albeit with qualitative differences for some settings. Presently,

research examining the impacts of dispersal on multitrophic metacommunities (e.g. Ye and

Wang (2023)) yields results analogous to those observed in competitive metacommunities.

However, these theoretical predictions often diverge from empirical results (Grainger

and Gilbert, 2016). In our metacommunity assembly model, we obtained positive responses

of Pα and Pγ, and a negative response of Pβ to increases in a. When considering

landscapes subjected to perturbations, dispersal can mitigate their impact on local populations

by subsidizing populations from undisturbed sites (Altermatt et al., 2011a). However,
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in multitrophic metacommunities, the ability of dispersal to maintain local populations

differs among trophic groups (Limberger et al., 2019; Ryser et al., 2021). In our study,

we found that dispersal: a) magnifies the negative effect of A on Pα. b) magnifies the

positive effect of A on Pβ over a large region of the parameter space. c) shifts the effect

of A on Pγ from negative to positive.

Effects of local stabilizing factors: Explaining why LSFs (predictors T and λ) have

a significant effect on metacommunity sensitivity, especially on S[Pγ], is straightforward

when examining Figs. S14-S15. Note that for large values of a, regardless of A and nP ,

stable-prone foodwebs tend to produce metacommunities with high regional persistences.

We observe a similar trend for S[Pα] at A = 0. We illustrate the processes behind these

trends by analyzing metacommunity dynamics on idealized star-shaped landscapes (see

Appendix S1, Section Star experiment).

This experiment reveals that all effects of LSFs on A-sensitivities can be explained by

the interplay among the time-averaged values of three variables: the number of available

sites, the number of species per site, and the dissimilarity of species composition among

sites. Regardless of local stability-proneness, a reduction in available sites by increasing

A drives down Pα. While for stable-prone foodwebs all available sites hosted essentially

all species, for unstable-prone foodwebs, available sites hosted a small fraction of the

species pool, which leads to a decrease in Pα. In contrast to stable-prone foodwebs,

unstable-prone foodwebs induce a high among-site heterogeneity in species composition.

This, combined with the reduction in available sites, results in a decrease in Pγ. This

yields relatively high Pγ values in spite of the low Pα.

From previous considerations, for unstable-prone communities, Pα maintains low values

regardless of A resulting in a small S[Pα]. For stable-prone communities, Pα is high for

A = 0 and low for high A values. Thus, S[Pα] becomes very negative. Hence S[Pα]

decreases with local stability-proneness. Similarly, for unstable-prone communities Pγ
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decreases as A increases, resulting in a negative S[Pγ]. For stable-prone communities, Pγ

remains insensitive to changes inA. Therefore, S[Pγ] increases with local stability-proneness.

The combination of few species per site and limited available sites leads to a very small Pα

for unstable-prone communities and high values of A. Also, Pγ is relatively high, resulting

in a large Pβ. This explains the negative effects of local stability-proneness on S[Pβ]. In

the case of scattered landscapes, the effects of T and λ on S[Pβ] were negligible. This is

due to the longer routes for dispersal (i.e. longer distances between adjacent sites), which

makes dispersal rate outweigh all the other predictors.

Spatial heterogeneity in community biomass is also altered by LSFs. Specifically, Bγ

decreases withA, although local stability proneness buffers this reduction in metacommunity

biomass. LSFs do not exert any noticeable effect on S[Bβ].

Effects of landscape structure: There has been a growing acknowledgment of the

importance of landscape structure on metacommunity diversity (Economo and Keitt,

2008; Galiana et al., 2018; Borthagaray et al., 2023b,a). Moreover, environmental changes

alter landscape structure at different temporal and spatial scales (Holyoak et al., 2020).

Earlier spatially implicit metapopulation models show that species persistence is highly

sensitive to landscape dynamics (Keymer et al., 2000; Reigada et al., 2015). In a metacommunity

context, using an experimental system of only two sites, Altermatt et al. (2011a) showed

that local population densities and species persistence exhibit different responses to periodic

perturbations on local sites and that dispersal capabilities play a key role in the recovery of

species after perturbations. To understand and project the consequences of these changes

on biodiversity it is natural to resort to an approach based on spatially explicit, dynamic

landscapes. More recent advances using a neutral spatially explicit model, highlight

that temporal changes in landscape structure may shape metacommunity biodiversity,

showing that fluctuating landscape connectivity may enhance local and regional diversity,

relative to static landscapes with constant connectivity (Marco Palamara et al., 2023). In
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this study, we explore the behavior of multitrophic metacommunities in spatially explicit

dynamic landscapes.

The most notorious effects of landscape structure is related to the number of sites

and its influence on β and γ diversity, and metacommunity biomass. Landscapes with

more sites imply shorter distances between sites, resultig in faster dispersal. This leads

to a positive effect of nP on Pγ. A similar effect is observed for F on Pγ because

of the short distances between the mainland and each site in its module. Regardless

of landscape structure, asynchrony reduces the availability of dispersal routes among

sites by drastically reducing (or even canceling) the time intervals during which dispersal

between sites is possible. The effect of a on S[Pγ] is stronger on denser and more modular

landscapes. This is due to the combination of the positive effect of a, described earlier, the

positive effects of nP and F on dispersal rates, and nP increasing the probability of having

(asynchronously) activated sites present throughout the season. The relationship between

nP and F and dispersal rates also helps explain the observed patterns of variation of S[Pβ]

across landscape structure parameters. The number of sites nP strengthens the effect of a

on S[Bγ] because regardless of A, when a is very small, Bγ ≈ 0 due to dispersal limitations,

and S[Bγ] ≈ 0. For large values of a, and A = 0, we have optimal dispersal conditions,

and metacommunity biomass is proportional to nP . Also, Bγ(A = 1/2) ≪ Bγ(A = 0)

because of a low site occupancy for highly asynchronous landscape dynamics, regardless

of nP . It follows that the effect size of a grows with nP . Then, the negative effect of

landscape asynchrony on metacommunity biomass rises with a and nP .

It follows that the effect size of a increases with nP , and consequently, the negative

impact of landscape asynchrony on metacommunity biomass is amplified with higher

values of both a and nP .”

The effect of LSFs onA-sensitivities increases with both landscape density and modularity.

In denser and more modular landscapes, there are many sites near the mainland. In this
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scenario Pγ decreases with asynchrony among sites hosting unstable-prone communities,

due to a lower colonization success that leads to fewer species-rich sites. Conversely, with

stable-prone communities, colonization is more successful, leading to a higher fraction of

rich communities near the mainland. This process, added to the temporal aggregation

effect, increases Pγ with higher landscape asynchrony. However, these processes do not

occur in scattered/spread landscapes, where longer site-mainland distances strongly limit

dispersal and prevent increasing Pγ. The same mechanisms also contribute to explaining

the variation in Bγ with different landscape structures.

Effects of foodweb structure: Unlike Gravel et al. (2011), we did not find clear evidence

of a positive relation between foodweb complexity and regional species persistence. This

is not surprising, given the several differences between our model (explicit landscape

with nonrandom structure, equilibrium dynamics of species) and theirs (implicit and

fully connected landscape, patch dynamics). This issue deserves further study. Our

results indicate that the more complex foodwebs are, the larger the effects of LSFs on

A-sensitivities of Pα, Pβ, and Pγ. The negative effects of nS, and C on local community

stability proneness are similar to those of T and −λ. The high importance of LSFs

exhibited by complex foodwebs can be explained by the high values of Pβ reached when

communities are unstable-prone. The operating mechanism behind the positive effects

of LSFs on S[Pγ] was explained using the star experiment (see Appendix S1 Section

Star experiment). This effect vanishes for inherently stable foodwebs, such as those

with low nS and C, because LSFs are less critical in determining equilibrium population

sizes, extinction probability, and receptivity to immigrants. Using similar arguments we

can explain why the effect sizes of LSFs on S[Pα] and S[Pβ] increase with the foodweb

complexity.
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Final remarks: Our model is based on a random matrix approach (May, 1972; Allesina

and Tang, 2012) for local communities connected by stochastic dispersal over an explicit

random dynamic landscape. This modeling strategy differs from the more frequently used

approaches for representing multitrophic metacommunities, as reviewed in Gross et al.

(2020). Avoiding numerical integration by focusing on species equilibria, as opposed

to transient behavior, allows us to simulate multitrophic metacommunities with many

species and many sites efficiently. Our use of a continuous-time Markov chain provides a

straightforward means of representing migration events and simulating landscape dynamics

with stochastic asynchrony. Finally, our model allows for the coupling of site (de)activation

and migration events with changes in local species biomasses via recalculating equilibria

at the arrival sites. For future research, our model can be easily extended to incorporate

other relevant processes. For instance, it would be worth to introduce heterogeneity in

site quality (Thompson and Gonzalez, 2017; Ryser et al., 2021; Ye and Wang, 2023), and

dispersal gradients governed by physical (Altermatt et al., 2011b) or ecological Reigada

et al. (2015) conditions.

Previous studies (May, 1972; Allesina and Tang, 2012) provided valuable insights

into isolated community responses to small acute perturbations of species’ abundances

by analyzing the Lyapunov stability of linearized systems. However, the role of local

stability in a metacommunity context is still not well understood, especially in fluctuating

environments. Here, we integrate the roles of local community stability and of connectivity

among communities driven by dispersal, in shaping the responses of trophic metacommunities

to quasiperiodic habitat creation and destruction. We also present mechanisms that

explain how landscape and foodweb complexity determine the relative importance of

local versus regional stabilizing factors in maintaining biodiversity patterns in dynamic

landscapes. Our findings hold particular relevance in light of the high and growing

prevalence of temporary ecosystems, especially aquatic ones (Smol and Douglas, 2007;
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Fernandes et al., 2014; Datry et al., 2016; Parra et al., 2021). Human activities, both

directly and indirectly, alter the dynamics of temporary systems, potentially causing

adverse consequences for biodiversity. Our contributions add to the theory of trophic

metacommunities and the field of ecological networks on dynamic landscapes (Zeigler and

Fagan, 2014; Holyoak et al., 2020; Fortin et al., 2021), which require further development

in view of the current environmental concerns. As a promising avenue for future research,

we envision expanding our model to delve into the complex interactions between landscape

dynamics and the evolutionary and behavioral adaptations to shifts in abiotic conditions

and biotic interactions.
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Figure 1 Species persistence (A) and log10 community biomass (B), in a single local

community with colonization from a regional pool, as a function of foodweb diagonal

values (−λ) and foodweb temperature values T . Foodweb complexity parameters are

nS = 45 and C = 0.2. Each cell value shows the mean of 50 replicates.

Figure 2 Relative change of each response variable when changing landscape asynchrony

A from 0.0 to 0.5 at two values of dispersal ability a. Mean and SE over 50 replicates,

with nS = 45, C = 0.2, nP = 100, F = 50, T = 0.2, and λ = 0.47

Figure 3 Effect sizes on A-sensitivities S[Pα], S[Pβ], and S[Pγ]. Predictors are foodweb

temperature T (1), self limitation λ (2), dispersal ability â = log10 a (3), T · λ (4), T × â

(5), λ × â (6), T 2 (7), λ2 (8), and â2 (9). Parameters are nS = 45, C = 0.2, nP = 50,

F = 50 (base parameters, a-c); nS = 75, C = 0.25, nP = 50, F = 50 (complex foodwebs,

d-f); nS = 45, C = 0.2, nP = 10, F = 5 (scattered/spread landscapes, g-i)
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Figure 3
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APPENDIX S1 DETAILED METHODS AND ADDITIONAL RESULTS

S1.1 Detailed methods

Landscape generation and dynamics: We represent dynamic landscapes as dynamic

graphs, i.e. time-varying graphs with node-dynamics (Harary and Gupta, 1997). Vertices

represent sites where local communities can be assembled, edges represent a non-zero

probability of species dispersal between sites, and edge weights represent the Euclidean

distance between two adjacent sites. Our algorithm creates connected modular landscapes

by laying sites at random on a square, creating a minimum spanning tree, and then adding

edges at random to reach a desired connectance. The process uses five parameters, namely

nP , nE, nC , F , and x. They represent the number of sites, the number of edges, the

number of modules, the excess factor, and the distance exponent. The first three are

self-explanatory. We fixed nE to 2nP and nC to 5. Real parameter F ≥ 1 regulates

how tight the modules are. A value of 1 results in no discernible clustering of sites, i.e.

they are distributed uniformly at random, while a high value will produce tight modules.

Real parameter x ≥ 0 controls how the distances among sites determine the probability

of edges being added to the landscape. A value of zero indicates that distances between

sites do not affect the probability of edges being added. A larger value favors adding

shorter edges over longer ones. Thus, spatial modularity increases with both F and x.

See Figure S1 for an example. We set x = 2 for all our simulations. A site of a randomly

chosen module is designated as the mainland.
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A B C D

F = 5 F = 10 F = 50 F = 75

Fig. S1. Examples of landscapes with different degrees of spatial modularity generated by

our algorithm through varying excess factor F . We used 50 sites, 100 edges, 5 modules, and a

distance exponent of 2.

At a given time, each site p is in either of two states: “active” or “inactive.” Species

can be present in p only when the site is “active.” The mainland is always “active”,

and all species in the regional pool are present therein. All the other sites transition

stochastically between the two states. For a site p, the nominal length of the “active”

period is randomly drawn from a uniform distribution wp ∼ U(0.2, 0.3). Assuming no

overlapping “active” periods from consecutive years, the start of the “active” period for

the year k is startp,k = k + zp,k, where zp,k ∼ U(−A,+A), and parameter A > 0 is the

magnitude of asynchrony among the sites’ activation times. The end of the period will be

endp,k = startp,k + wp. To account for overlaps, we define ACTIVEp = ∪k[startp,k, endp,k]

and we say site p is “active” at time t if and only if t ∈ ACTIVEp.

Modular landscape generation algorithm

f unc t i on modular landscape (nP , nE , F , nC , x)
// Choose p o t e n t i a l l o c a t i o n s f o r s i t e s .
// Locat ions are po in t s on the r e a l (x , y ) plane .
Let L be an array o f ⌊nS · F ⌋ po in t s in a 512× 512 square randomly drawn

from a uniform d i s t r i b u t i o n .

// S e l e c t the f i r s t nC o f the se l o c a t i o n s as c l u s t e r c en t e r s
Let C = {1, 2, . . . , nC} .
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// Compute a l l pa i rw i s e d i s tance s , and the d i s t an c e s to the c l o s e s t c en t e r
Let di,j be the euc l i d ean d i s t anc e between po in t s Li and Lj

Let δi = minj∈C d(i, j)

// Randomly s e l e c t the non−cente r s i t e s and combine with cente r s , y i e l d i n g
// the f i n a l s e t o f s i t e s S .
Let V be a s e t o f nS − nC i n t e g e r s from {nC + 1, nC + 2, . . . , ⌊nS · F ⌋} chosen with

p r o b a b i l i t i e s i n v e r s e l y p ropo r t i ona l to δi
Let P = C ∪ V // These v e r t i c e s w i l l be the landscape s i t e s

// Compute a minimum spanning t r e e o f the c l i q u e o f a l l f i n a l s i t e s
Let K = (P, P × P ) // A complete graph with a l l the v e r t i c e s
Let Tree = MST (K) us ing d i s t an c e s di,j
Let ET = edges(Tree)

// Randomly choose the remaining edges
Let E be a s e t o f nE − nP + 1 , randomly chosen und i rec ted edges from P × P − ET

The p r obab i l i t y to choose (i, j) i s i n v e r s e l y p ropo r t i ona l to dxi,j

Return G = (P,E + ET ) and the weights di,j f o r a l l the edges in G
end

Local community dynamics: The regional pool of species and interactions is modeled

as a foodweb following Klaise and Johnson (2016), which extends the Preferential Prey

Model (Johnson et al., 2014). Unlike the niche or the cascade models, the algorithm

in Klaise and Johnson (2016) creates foodwebs with varying degrees of trophic coherence,

a structural property that strongly determines stability in empirical and quasi-empirical

foodwebs (Johnson et al., 2014). The algorithm creates foodweb topologies from target

values of species richness nS, number of basal species nB, number of predation links nL,

and foodweb temperature T (a surrogate for trophic coherence). We fixed the number

of basal species to 20% of the species richness. We define foodweb connectance C as

nL/(nS ·(nS−nB−1)+nB), i.e. the ratio between the number of present links nL and the

maximum possible number of edges in a foodweb with nB basal species and no cannibals.

We assume that the dynamics of xi,p, the biomass of species i at site p, is governed

by Lotka-Volterra type equations and reaches equilibrium instantaneously. The ODEs
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describing local community dynamics are:

dxi,p

dt
=

(
ri +

∑
j

Mijxj,p

)
xi,p, (S1)

where i and j range over all species in the pool. ElementsMi,j of the community matrix M

represent the effect of increasing population biomass of species j on the per unit biomass

growth rate of species i. Parameters ri’s are the intrinsic growth rates.

To define M , we first assign Mii = −λ, where the self-regulation parameter λ is a

positive real. If there are no trophic interactions between species i and j, then Mij = 0. If

j feeds on i, then Mij = −X , where X is drawn from a lognormal distribution, with mean

1 and a standard deviation of 0.25. Following Johnson et al. (2014), we set Mji = 0.4X .

To choose the values for the ri’s, we solve the linear program:

max y∗

r∗i +
∑
j

Mijx
∗
j = 0

x∗
i ≥ y∗

y∗ ≥ 0

r∗i ≤ ρ for basal species i

r∗i ≤ −µ for non-basal species i.

We set ρ = 1 to limit the intrinsic growth rate for basals. Parameter µ = 0.01 is the

smallest possible mortality rate value for non-basal species. The decision variables are

y∗, all the r∗i ’s, and all the x∗
i ’s. Maximizing y∗ means maximizing the smallest species

abundance at equilibrium. If the program is not feasible, then it is impossible to choose
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r∗i ’s in such a way that all the x∗
i ’s are positive. If this happens, the foodweb is discarded

and the process is repeated. If the program is feasible, we check that, at equilibrium (the

values obtained for the x∗
i ’s), the Jacobian matrix of Eq. (S1) has only eigenvalues with

negative real parts. If this is not the case, then the system is unstable and it is discarded

to start the process again.

Metacommunity dynamics: Dispersal is modeled as a continuous time Markov chain.

The dispersal events, i.e. individuals moving from one site to another one, are coupled

with events representing the activation and deactivation of landscape sites, and with the

local community dynamics. A dispersal event of a species s from site p to site q is only

possible if sites p and q are active, s is present in p but not in q, and s is either a basal

species or a consumer with at least one of its prey species present in q. The biomasses of

all species present in q are recomputed as the equilibrium of Eq. S1 and set to zero for all

species whose value is below an extinction threshold of 0.001. If at least one species goes

extinct, equilibrium is recalculated until no further secondary extinctions occur. The set

of species in p is not altered by dispersal events originating from p. The effective rate of

dispersal events between sites p and q is the ratio between the dispersal ability a ∈ R+

and the Euclidean distance between p and q. However, if this ratio is less than 0.1, we

set the rate to zero. Site deactivation drives all species’ biomasses in that site to zero. To

perform our simulations, we use a variant of the first-reaction method (Gillespie, 1976),

in the framework of dynamic Monte Carlo methods.

Metacommunity simulation algorithm

There are three types of events:

1. Site activation events, described as triples ⟨t, p, ‘activate’⟩, meaning at time t site p

becomes active.
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2. Site deactivation events, described as triples ⟨t, p, ‘deactivate’⟩, meaning at time t

site p becomes inactive.

3. Dispersal events, described as triples ⟨t, s, dest⟩, meaning at time t individuals of

species s move to site dest.

The algorithm begins by initializing the event queue with site activation/deactivation

events. Let S be the set of all species and let P be the set of all landscape sites. For every

site p, define the pulse train function fp(t) = 1 if t ∈ ACTIVEp and zero otherwise. Let tonp,k

be the rising time of the k-th pulse in fp. Event ⟨tonp,k, p, ‘activate’⟩ is added to the queue.

Similarly, define toffp,k as the falling time of the k-th pulse in fp and add ⟨toffp,k, p, ‘deactivate’⟩
to the queue.

Conceptually, the algorithm to simulate the metacommunity dynamics is as follows:

I n i t queue Q with s i t e a c t i v a t i o n / dea c t i va t i on events

// Set i n i t i a l s t a t e o f the systems
f o r a l l s i t e s p

// C[p] i s the s e t o f s p e c i e s pre sent at s i t e p
C[p] = S i f p i s the mainland
C[p] = {} i f p i s i n s u l a r
A[p] = ‘inactive’ // A[p] i s the s t a t e ( ‘ ac t ive ’ or ‘ i na c t i v e ’ ) o f s i t e p

end

time = 0

whi le Q ̸= {} //Main s imu la t i on loop
⟨tm, s, dest⟩ = next mig ra t i on event ( )
⟨t, p, type⟩ = e a r l i e s t (Q)
i f t < tm

i f type=‘activate’
A[p] = ‘active’

e l s e
C[p] = {}
A[p] = ‘inactive’

end
Q = Q− ⟨t, p, type⟩
time = t

e l s e
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mig ra t i on p roc e s s (s, dest)
time = tm

end
end

func t i on next mig ra t i on event ( )
C1 = {⟨s, dest, orig⟩ such that

s ̸∈ C[dest]
s ∈ C[orig]
A[dest] = ‘active’
s i s basa l or preys (s)∩C[dest] ̸= {}}

C2 = {⟨τ, s, dest, orig⟩ such that
⟨s, dest, orig⟩ ∈ C1 and
τ ∼ exp(distance(orig, dest)/a))}

⟨τ, s, dest, orig⟩ = e a r l i e s t (C2)
re turn ⟨τ + time, s, dest⟩

end

func t i on mig ra t i on p roc e s s (s, dest)
C[dest] = C[dest] ∪ {s}
repeat

s o l v e
ri +

∑
j CMijxj = 0 f o r i, j ∈ C[dest]

C[dest] = C[dest]− {s′|xs′ < 0.001}
un t i l f o r a l l k ∈ C[dest], xk ≥ 0.001

end

S1.2 Power mean

Let ρ be a real parameter, let t0 and t1 be reals and let y(t) be an integrable function in

(t0, t1). The average value of y on (t0, t1) is

(
1

t1 − t0

∫ t1

t0

y(t)ρdt

) 1
ρ

. (S2)

This reduces to the arithmetic mean when ρ = 1 and is biased toward the time series

maxima for larger values of ρ. We chose ρ = 4 to reduce the effect of zero abundances

during the “inactive” periods. However, our results were robust to changes in ρ values.

In our case, t0 = 0, and t1 is the end of the simulation.
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S1.3 Local species persistence and biomass in single communities
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Fig. S2. Species persistence P in a single local community with colonization from a regional

pool, as a function of foodweb diagonal values (opposite of intensity of self-regulation) and

foodweb temperature values (inverse of trophic coherence) for a gradient of richness nS and

connectance C of the species pool. Each cell value shows the mean of 50 replicates.
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Fig. S3. Species biomass B (in log10) in a single local community with colonization from a

regional pool, as a function of foodweb diagonal values (opposite of intensity of self-regulation)

and foodweb temperature values (inverse of trophic coherence) for a gradient of richness nS and

connectance C of the species pool. Each cell value shows the mean of 50 replicates.
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S1.4 Effects of local and regional stabilizing factors depending on landscape

structure
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Fig. S4. Effect sizes on A-sensitivities of local species persistence S[Pα] in a gradient of number

of sites nP and excess factor F . Predictors are foodweb temperature T (1), self limitation λ

(2), dispersal ability â = log10 a (3), T · λ (4), T × â (5), λ × â (6), T 2 (7), λ2 (8), and â2 (9).

Foodweb parameters are nS = 45 and C = 0.2
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Fig. S5. Effect sizes on A-sensitivities of among-site dissimilarity in species persistence S[Pβ]

in a gradient of number of sites nP and excess factor F . Predictors are foodweb temperature T

(1), self limitation λ (2), dispersal ability â = log10 a (3), T · λ (4), T × â (5), λ× â (6), T 2 (7),

λ2 (8), and â2 (9). Foodweb parameters are nS = 45 and C = 0.2
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Fig. S6. Effect sizes on A-sensitivities of regional species persistence S[Pγ ] in a gradient of

number of sites nP and excess factor F . Predictors are foodweb temperature T (1), self limitation

λ (2), dispersal ability â = log10 a (3), T · λ (4), T × â (5), λ× â (6), T 2 (7), λ2 (8), and â2 (9).

Foodweb parameters are nS = 45 and C = 0.2
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Fig. S7. Effect sizes on A-sensitivities of among-site dissimilarity in community biomass S[Bβ]

in a gradient of number of sites nP and excess factor F . Predictors are foodweb temperature T

(1), self limitation λ (2), dispersal ability â = log10 a (3), T · λ (4), T × â (5), λ× â (6), T 2 (7),

λ2 (8), and â2 (9). Foodweb parameters are nS = 45 and C = 0.2
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Fig. S8. Effect sizes on A-sensitivities of regional biomass S[Bγ ] in a gradient of number of

sites nP and excess factor F . Predictors are foodweb temperature T (1), self limitation λ (2),

dispersal ability â = log10 a (3), T ·λ (4), T× â (5), λ× â (6), T 2 (7), λ2 (8), and â2 (9). Foodweb

parameters are nS = 45 and C = 0.2
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S1.5 Effects of local and regional stabilizing factors depending on foodweb

topology
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Fig. S9. Effect sizes on A-sensitivities of local species persistence S[Pα] in a gradient of foodweb

connectance C and species richness nS in the regional pool. Predictors are foodweb temperature

T (1), self limitation λ (2), dispersal ability â = log10 a (3), T · λ (4), T × â (5), λ × â (6), T 2

(7), λ2 (8), and â2 (9). Landscape parameters are nP = 50 and F = 50
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Fig. S10. Effect sizes on A-sensitivities of among-site dissimilarity in species persistence S[Pβ]

in a gradient of foodweb connectance C and species richness nS in the regional pool. Predictors

are foodweb temperature T (1), self limitation λ (2), dispersal ability â = log10 a (3), T · λ (4),

T × â (5), λ× â (6), T 2 (7), λ2 (8), and â2 (9). Landscape parameters are nP = 50 and F = 50
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Fig. S11. Effect sizes on A-sensitivities of regional species persistence S[Pγ ] in a gradient of

foodweb connectance C and species richness nS in the regional pool. Predictors are foodweb

temperature T (1), self limitation λ (2), dispersal ability â = log10 a (3), T · λ (4), T × â (5),

λ× â (6), T 2 (7), λ2 (8), and â2 (9). Landscape parameters are nP = 50 and F = 50
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Fig. S12. Effect sizes on A-sensitivities of among-site dissimilarity in community biomass S[Bβ]

in a gradient of foodweb connectance C and species richness nS in the regional pool. Predictors

are foodweb temperature T (1), self limitation λ (2), dispersal ability â = log10 a (3), T · λ (4),

T × â (5), λ× â (6), T 2 (7), λ2 (8), and â2 (9). Landscape parameters are nP = 50 and F = 50

18



P = 50 
Exc = 50

B-gamma

Sept. 2022

0.200.15 0.25
Species richness

60

45

30

nS

75

-150

-100

-50

0

Ef
fe

ct
 s

iz
e

-150

-100

-50

0

Ef
fe

ct
 s

iz
e

-150

-100

-50

0

Ef
fe

ct
 s

iz
e

1 2 3 4 5 6 7 8 9
Predictor

-150

-100

-50

0

Ef
fe

ct
 s

iz
e

1 2 3 4 5 6 7 8 9
Predictor

1 2 3 4 5 6 7 8 9
Predictor

Foodweb connectance C

Fig. S13. Effect sizes on A-sensitivities of regional biomass S[Bγ ] in a gradient of foodweb

connectance C and species richness nS in the regional pool. Predictors are foodweb temperature

T (1), self limitation λ (2), dispersal ability â = log10 a (3), T · λ (4), T × â (5), λ × â (6), T 2

(7), λ2 (8), and â2 (9). Landscape parameters are nP = 50 and F = 50
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S1.6 Sensitivities of Pα and Pγ

These figures depict metacommunity sensitivities as the changes in the distributions of

Pα and Pγ as sites’ activation and deactivation asynchrony A increases from A = 0 to

A = 0.5. For each parameter set, we run 50 replicates. However, for each data point, its

coordinates represent the value of either Pα or Pγ for the same foodweb and landscape

but changing only A. The color of a dot represents the propensity to species persistence

of a single local community (foodweb). The actual color depends on nS, C, λ and T , and

is looked up in Fig. S2. Thus, yellow/blue dots represent high/low local persistence. Note

that stable-prone local communities tend to produce metacommunities with high regional

persistences. This is apparent by the clustering of yellow circles close to large Pγ values.

By contrast, the blue circles, representing unstable-prone local communities are scattered

over a larger Pγ range. All simulations were carried out for landscapes with nC = 5 and

F = 50, and for a timelapse of 5 years. The magnitudes of metacommunity sensitivities

are the vertical distances between each dot and the identity line. Positive sensitivities,

i.e., when the response variable increases with landscape variability, are reached when the

data points lie above the identity line, and vice versa.
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Fig. S14. Pα for A = 0 versus A = 0.5 and three levels of dispersal ability (a). Foodweb

parameters were nS = 45 and C = 0.2. The top and bottom rows correspond to scattered/spread

and dense landscapes respectively.
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Fig. S15. Pγ for A = 0 versus A = 0.5 and three levels of dispersal ability (a). Foodweb

parameters were nS = 45 and C = 0.2. The top and bottom rows correspond to scattered/spread

and dense landscapes respectively.
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Fig. S16. Pα for A = 0 versus A = 0.5 with nP = 50 and three levels of self limitation (λ).

The top and bottom rows correspond to simpler and more complex foodwebs respectively.
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Fig. S17. Pγ for A = 0 versus A = 0.5 with nP = 50 and three levels of self limitation (λ).

The top and bottom rows correspond to simpler and more complex foodwebs respectively.
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S1.7 Star experiment

This experiment simulated both stable-prone and unstable-prone local communities, on

10-point star landscapes. We used landscapes in which either all points or only three

points can become active, mimicking low and high A values respectively. With higher A

values, each temporal snapshot of the landscape graph turns sparser, thus implying fewer

routes for dispersal among patches, which we approximate by allowing only three sites to

be “active.”
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Fig. S18. Time series of α (blue lines) and γ (red lines) diversity (species persistence) over a

single simulated year, of multitrophic metacommunities on an idealized landscape of a 10-point

star topology. The central site is the mainland. The time average of β diversity is shown within

each plot. Parameters values are a = 3000, nS = 45, C = 0.2. Plots a) and c) show the

dynamics of stable communities (T = 0, λ = 0.33). Plots b) and d) show the dynamics of

unstable communities (T = 1, λ = 0.33). In plots a) and b) all points (sites) are available for

dispersal, representing highly synchronous landscapes. In plots c) and d) only 3 out of 10 points

are available for dispersal, representing highly asynchronous landscapes.
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For stable-prone local communities, all colonization attempts are successful and do

not cause secondary extinctions. Thus, for sufficiently large values of a, we can assume

that all active sites contain the full set of species. In this scenario, both Pα and Pγ are

maximal, while Pβ is minimal. Increasing A (from Fig. S18a to c) reduces Pα simply by

reducing the number of active sites. Conversely, if local communities are unstable-prone,

two relevant competing processes take place. The first one includes successful colonization

events that do not cause secondary extinctions. This process increases Pα due to the direct

introduction of a new species in the recipient community. In the second one, colonization

attempts result in secondary extinctions, leading to reductions in Pα. The temporal

alternation between these two processes causes the oscillations depicted in Figs. S18b

and d and prevents Pα and Pγ from always reaching their maximum possible values.

For A = 0, Pα attains low values because local instability hampers successful colonization

events without secondary species extinctions. However, we do not observe a corresponding

reduction in Pγ, which shows there is a high among-site dissimilarity (Pβ). Increasing

A (from Fig. S18b to d) reduces Pα because of reduction in active sites. However, the

reduction in Pγ is relatively small because of the large values of Pβ. This small experiment

captures the interplay between the LSFs and landscape asynchrony and how it shapes the

biodiversity patterns observed in the full model.
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