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Abstract

Clinical neuroimaging data is naturally hierarchical. Different magnetic resonance imaging
(MRI) sequences within a series, different slices covering the head, and different regions
within each slice all confer different information. In this work we present a hierarchical
attention network for abnormality detection using MRI scans obtained in a clinical hos-
pital setting. The proposed network is suitable for non-volumetric data (i.e. stacks of
high-resolution MRI slices), and can be trained from binary examination-level labels. We
show that this hierarchical approach leads to improved classification, while providing inter-
pretability through either coarse inter- and intra-slice abnormality localisation, or giving
importance scores for different slices and sequences, making our model suitable for use as
an automated triaging system in radiology departments.

1. Introduction

Deep learning-based computer vision systems hold promise for automatically triaging pa-
tients in hospital radiology departments. In the UK, for example, with a 4.6% increase
in brain magnetic resonance imaging (MRI) scans performed in the last 12 months alone
(NHS, 2019), and with an increase in the time taken to report out-patient MRI scans every
year since 2012, an automated triage mechanism to identify abnormalities at the time of
imaging, and thereby allow prioritised scan reporting, is urgently needed. Such a mech-
anism would potentially allow early intervention to improve short- and long-term clinical
outcomes. Assuming that a first generation system will operate by assisting real-time ra-
diologist review, any prospective model must provide a quickly visualizable justification
for its decision. Interpretability would also be essential to engender radiologist confidence
and support clinical trials of second generation autonomous systems (Booth et al., 2020).
Ideally, this visualization would take the form of abnormal tissue segmentation, with the
model outputting pixel-level probabilities in addition to accurate scan classification (i.e.
normal vs. abnormal). However, training such a model by supervised learning requires
large numbers of manually segmented images which are often not readily available. One
approach to circumvent this bottleneck is to directly apply in clinical settings those mod-
els trained on curated open-access data collections that do have segmentation labels, such
as the Brain Tumour Segmentation Challenge (BRATS) (Menze et al., 2015), or Ischemic
Stroke Lesion Segmentation Challenge (ISLES) (Winzeck et al., 2018) datasets. However,
these off-the-shelf models, being trained on standardized and often heavily pre-processed
(i.e. skull stripped, spatially co-registered, isotropic) volumetric images, often suffer from
domain shift; in other words they fail to generalise to less homogeneous datasets such as
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the wide range of MRI scans generated at hospitals.

An alternative approach is to develop a model trained on these less homogeneous hospital
datasets using simple classification information (i.e. normal vs. abnormal scan) in order to
coarsely localise, rather than segment an abnormality (Wood et al., 2020a), (Wood et al.,
2021). Localisation of this kind, although not suitable for precision applications such as
computer guided surgery and planning, is ideal for triage systems where the priority is to
quickly identify and present the location of an abnormality for radiologist review (Din et al.,
2023), (Agarwal et al., 2023), (Wood et al., 2022b).

In this work we present a hierarchical attention model for automated abnormality detection
from weak supervision labels. We characterise weak as being at the series-level. An MRI
series is the entire set of MRI scans, incorporating multiple sequences (such as T1-weighted,
T2-weighted, diffusion-weighted sequences), obtained during a patient’s scanning session.
Built around nested long short-term memory (LSTM) units and convolutional neural net-
works (CNNs), the proposed network is suitable for non-volumetric data (i.e. stacks of
high-resolution MRI slices), and can be trained on minimally processed images extracted
from hospital picture and archiving systems (PACS) and labelled using a recently devel-
oped radiological report language model (ALARM) (Wood et al., 2020b). We show that this
hierarchical approach leads to improved classification, while coarsely localising the inter-
and intra-slice abnormality. The proposed approach is general, and would allow integration
of other information relating to a study e.g. data from different imaging modalities (e.g.
computed tomography (CT) or positron emission tomography (PET)) or even non-imaging
data such as patient clinical history, all of which are highly desirable in a clinical setting
(Booth et al., 2020). We have demonstrated this integration by incorporating multiple MRI
sequences, and have shown that such a strategy outperforms sum-pooling models and re-
current networks without attention, while providing importance scores for each sequence
and slice.

2. Related work

Weakly supervised abnormality detection has attracted considerable interest in recent years.
To date, most approaches have been based around class activation mapping (CAM) (Zhou
et al., 2015), whereby candidate regions of interest generated using fully convolutional net-
works are processed to generate pixel-level segmentation maps (Feng et al., 2017), (Wei
et al., 2017), (Izadyyazdanabadi et al., 2018), (Wu et al., 2019). One limitation of this
approach is the requirement of slice- rather than series-level labels, meaning that all slices
from each sequence used in a training set need to be manually labelled for the presence or
absence of an abnormality or lesion. This makes the construction of large labelled datasets
considerably more time-consuming and expensive. A further shortcoming is the implicit
treatment of slices as being independent of each other, thereby failing to leverage inter-slice
spatial dependencies for abnormality detection.

Our work builds on that of (Poudel et al., 2016) and (Cai et al., 2018), treating variable-
length stacks of MRI slices as correlated information and processing these data using re-
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current convolutional networks. Crucially, we relax the requirement for pixel-level labels by
incorporating a hierarchical attention mechanism — first introduced for language modelling
(Yang et al., 2016) — to exploit the natural hierarchies present in neuroimaging data. In
this way, our model is similar to (Zhang et al., 2017), (Yan et al., 2019), (Cole et al., 2020),
and (Wood et al., 2019) who used visual attention to provide a form of model interpretabil-
ity for medical image analysis. To our knowledge, however, this is the first demonstration
of using hierarchical attention for weakly-supervised neurological abnormality detection.

3. Methods

3.1. Data

The UK National Health Research Authority and Research Ethics Committee approved
this study. All 126,556 adult (> 18 years old) MRI head scans performed at KCH hospital
between 2008 and 2019, were used in this study. MRI scans were obtained on Signa 1.5
T HDX General Electric Healthcare; or AERA 1.5T, Siemens, Erlangen, Germany. Us-
ing the ALARM radiology report classifier described in (Wood et al., 2020b) and (Wood
et al., 2022a), all examinations were assigned a binary label, corresponding to the pres-
ence or absence of an abnormality predicted on the basis of the accompanying free-text
neuroradiology report describing the study. The classification accuracy of this model is
99.4%, so this labelling procedure is considered reliable. A subset of 600 abnormal exami-
nations were then selected for inclusion using an open-source annotation tool (available at
https://github.com/tomvars/sifter", see (Wood et al., 2020b)). Because the hospital
dataset consisted of MRIs obtained at different stages of the patient pathway (including
initial diagnostic imaging, pre-surgical planning, immediate post-surgical assessment, and
chemoradiotherapy response assessment over a longer period of follow-up), the abnormal-
ities incorporated were heterogeneous, including tumours at diagnosis, resection cavities
after surgery, and post-treatment related effects at follow-up (Fig. 1). As such, this dataset
provided our model with abnormalities to train on that varied in size and MRI signal char-
acteristic. 600 series were then randomly selected from a large subset labelled as normal to
make a combined balanced dataset of 1200 examinations.
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Figure 1: Visualization of the contextualized report embeddings for normal (blue) and abnormal (red) cases
captured using an open-source ‘lasso’ tool (Wood et al., 2020b) for use in this study.
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4. Hierarchical attention network

In this work we present two hierarchical attention networks (HAN): one taking as input
intra-slice regions spanning multiple image slices, and another taking as input individual
slices spanning multiple imaging sequences.

4.1. Intra- and inter-slice HAN

Our intra- and inter-slice HAN (hereafter patch-HAN) was designed for abnormality detec-
tion using a collection of slices from a single MRI sequence (Fig. 2). The model treated
each scan as being hierarchically composed of a number of slices, Ngjc., with each slice
itself composed of a number of local regions (patches). The number of patches, Npatch, was
a model hyper-parameter, with lots of small patches improving abnormality localisation,
but increasing the computational cost. A CNN looped through all patches in a given slice,
processing each sequentially before passing its output to a bidirectional LSTM unit which
built up an internal representation of what it had seen in that slice. The LSTM had Npatch
outputs per slice, and these were passed to an attention network to calculate the importance
of each patch. The resulting weighted sum of patches become the representation for that
slice. Following (Yang et al., 2016) the attention weights were computed as follows:

i = tanh(Wy,hi + by)
exp(uguw)
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where s; is the representation for the i’th slice, and «;; is the weighting of the t’th patch
representation in slice i, h;;. The new parameters to learn were therefore a context vector
Uy, & matrix Wy, and a bias by, for each attention module. This procedure was repeated for
all slices, with a second bidirectional LSTM taking these slice representations, outputting
Nglice hidden states (the number of slices) which were sent to another attention module
to compute the importance of each slice. Finally, a weighted combination of slices (i.e a
weighted combination of a weighted combination of local patches) was sent to a single layer
classifier which was trained by minimizing the binary cross-entropy at the level of series
labels (i.e all slices in a series have the same label; 1 for abnormal, and 0 for normal).

4.2. Inter-slice and sequence HAN

Our inter-slice and sequence HAN (hereafter sequence-HAN) was designed for abnormality
detection using a collection of image slices from multiple MRI sequences. Like the intra-
and inter-slice network, it built up a hierarchical data representation for abnormality clas-
sification, but this time at the series level. This was achieved by first building up individual
sequence representations using separate LSTM units, CNNs, and slice-level attention mod-
ules. A sequence-level attention module then weighed the importance of each sequence
representation, and the resulting series-level representation was again sent to a single layer
classifier (Fig. 3).



NEURO-HAND

classifier

Tn:Zw i, i1

Inter-slice HAN unit

[ —

Tﬂ - ‘Zl.,([ﬁ._m]

—_
e —F "« &
[omtsm] |57 " P I C

T | RESNET CNN | |u|wm ow | IkI\NHU\V | I RESNET CNN | + ]

T
- Z
¥ N

f f f

poch 12

. Intra-slice HAN unit .
— — [E] A
+
2

slice 23

slice i

Figure 2: Patch-HAN. The network builds up an image representation as a weighted combination of slice
representations, with the sequence representations built from weighted combinations of patch representations.
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Figure 3: Sequence-HAN. The betwork builds up a series representation as a weighted combination of
sequence representations, where each sequence representation is constructed from a weighted combination
of slice representations.

5. Experiments

In this work we presented two proof-of-principle experiments to demonstrate the general
utility of treating clinical neuroimaging data hierarchically — one using sequence-HAN to
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Model accuracy (%) sensitivity (%) specificity (%)

Multi-sequence

Sequence-HAN 95.5 94 97
no attention 92.5 91 94
sum-pool slices and sequences 89.5 88 91

Single sequence

patch-HAN 98.5 98 99
no attention 91.5 90 93
sum-pool patches and slices 87.5 85 90

Table 1: Performance of patch- and sequence-HAN on the abnormality classification task, along with that
of the baseline architectures. Best performance in bold.

determine the most informative sequence(s) for this dataset, and a second using patch-
HAN to perform more granular abnormality detection using this sequence. For the first
experiment we included axial T2-weighted images of size (512 x 512) x 23 slices, axial
diffusion-weighted images (DWI) of size (256 x 256) x 7 slices, and axial localizer images of
size (256 x 256) x 7 slices, as these images were common to nearly all clinical examinations.
We split this dataset into training/validation/test sets of sizes 800, 200, 200, respectively,
where each instance contains a stack of slices for each of the three sequences. Because this
is real-world hospital data, multiple series for patients are common and images from these
separate visits are likely to be highly correlated. To avoid this form of data leakage we
preformed the split at the level of patients so that no patient that appeared in the training
set appeared in the validation or test set. The images were then minimally pre-processed,
with each pixel normalized to the slice mean, with unit variance. No skull-stripping or
co-registration was performed reducing the complexity of the process and computational
burden. For all experiments, the attention context vectors, matrices, and biases were ini-
tialized from a zero-centred normal distribution with variance o = 0.05. In all experiments
the CNNs were 18-layer ResNet networks, warm started using values pre-trained on Ima-
geNet (Deng et al., 2009). The networks were trained for 15 epochs (with early stopping)
using ADAM (Kingma and Ba, 2014) with initial learning rate le-4, decayed by 0.97 after
each epoch, on a single NVIDIA GTX 2080ti 11 GB GPU. Minimal hyperparameter tun-
ing (in this case learning rate and LSTM dimensionality) was performed on the validation
set, and the model with the best classification accuracy was used to determine the final
model performance on the balanced independent test set, For the results that we present,
all LSTM hidden units had a dimension of 512, and the patch size for patch-HAN was 150 x
150. To benchmark patch-HAN, we train a baseline network which puts equal weighting on
each slice and patch, and a second which processed each slice and patch independently and
performed sum pooling (i.e a fully convolutional model with no recurrent network). For the
inter-sequence HAN we trained a convolutional model which performed sum-pooling over
slices and sequences, as well as a recurrent-based network which put equal weighting on
each sequence and slice.
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5.1. Results

The classification performance of sequence-HAN, along with that of the two multi-sequence
baseline architectures, appears in Table 1. Our model outperforms all simpler multi-
sequence networks, achieving a classification accuracy of 95.5%, illustrating the value of
treating different sequences and slices hierarchically. By analysing the attention weights of
our model, the most informative sequence and/or slice can be determined for a particular
study. Figure 4 shows the sequence weights for two examples from the test set, as well as the
weights of each slice for the most informative sequence (in both cases T2-weighted). These
examples were representative; in general the model put most weight on the T2-weighted se-
quence for classification, with average scores of 0.81, 0.13, and 0.06 across the whole test set
for T2-weighted, DWI, and localizer sequences respectively. Good agreement between the
slice attention weights and the spatial distribution of the abnormalities was demonstrated.
Figure 5 presents the most informative slices for each modality for two additional test set
examples - the sequence attention weights closely matched the visibility of the abnormality
on the corresponding sequence.

Example i) Example ii)

Figure 4: Sequence and slice attention scores for two test set studies. Also included are the raw images
for the most informative sequence (T2). In both cases the slice attention weights closely match the spatial
distribution of the abnormality.

Given the discriminative power of T2-weighted images for this task, we trained the patch-
HAN using only these images to additionally localise abnormalities within MRI slices; the
results also appear in Table 1. The hierarchical model outperforms all single-sequence
baseline architectures. Figure 6 displays the slice and patch attention weights for two test set
examples. In both cases, the top left plot displays the distribution of attention weights over
each slice and the top right plot shows the most informative patch for the most informative
slice. For reference the raw slices are shown as well. Again, the slice attention scores
broadly agree with the spatial distribution of the abnormality across slices. The classifier
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Figure 5: Sequence scores for two test set studies. Also included are the most informative slices for each
sequence. In both cases the sequence attention weights closely match the visibility of the abnormality on
the corresponding sequence.

seems able to classify and localise abnormalities across the entire brain volume (Fig 7), and
even gave outputs with multi-modal distributions in cases where multiple, spatially separate
abnormalities were present.

Attention weight

R -~ 204 6 8 10 12 14 16 18 20 Slice 8. patch 10
Slice number Slice 17, patch 4 Slice number Slice 8, patcl

Figure 6: Slice scores for two test set studies. Also included is the most informative patch for the most infor-
mative slice. In both cases the attention weights closely match the spatial distribution of the abnormality.

6. Discussion

The models presented in this work exploit the hierarchical nature of neuroimaging data
to accurately classify a range of glioma-related abnormalities. By doing so it was shown
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Figure 7: Highest weighted patch within the highest weighted slice for two test set examples, demonstrating
that the model can detect abnormalities throughout the brain.

that they outperform simpler models which treat separate sequences, slices, or intra-slice
regions equally. Crucially, this hierarchical approach provides an intuitive form of model
interpretability. By visualising patch-HAN’s attention weights, it is possible to localise
abnormalities both across and within individual slices, while sequence-HAN’s attention
weights provide inter-slice localisation while additionally providing importance scores for
each imaging sequence. Critically, this is achieved without the need for slice- or pixel-level
annotation during training, requiring only a series-level label which is applied to all slices.
As such, our approach lends itself to training on large-scale retrospective hospital image
collections, and is well suited for use as part of a semi-autonomous triage system. In the
future, we wish to extend the model to allow incorporation of non-imaging data such as
patient clinical history. This can be extracted from the free-text report that accompanies
images on PACS and embedded into a machine-readable representation (e.g using ALARM,
BioBERT (Lee et al., 2019). ClinicalBERT (Alsentzer et al., 2019) language models) and
introduced as an additional hierarchy. Furthermore, we plan to test the model on a range of
abnormalities where sequences other than T2-weighted images are important, for example,
acute infarct cases for which DWI and apparent diffusion coefficient (ADC) maps appear
particularly discriminatory. In the future, we also plan to combine the two models presented
here to allow simultaneous sequence, slice, and region importance scores to be determined,
However, for this work we were limited to a single 11 GB GPU which isn’t sufficient for
training this larger model.

7. Conclusion

In this work we introduced a hierarchical attention network to analyse real-world non-
volumetric clinical MRI data, demonstrating that this hierarchical treatment of neuroimag-
ing data leads to gains in model performance, while coarsely localising the abnormality
both across and within individual image slices. As such, the model is suitable for use as
part of a semi-automated triage system, where both model accuracy and interpretability
are important.
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