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Abstract

Many studies suggest that aside from environmental variables, such as topography and climate, species-specific ecological

traits are relevant to explain the geographic distribution of intraspecific genetic lineages. Here, we investigated whether and

to what extent incorporating such traits systematically improves the accuracy of random forest models in predicting genetic

differentiation among pairs of localities. We leveraged available ecological datasets for birds and tested the inclusion of two

categories of ecological traits: dispersal-related traits (i.e., morphology and foraging ecology) and demographic traits (such as

species survival rate and generation length). We estimated genetic differentiation from published mitochondrial DNA sequences

for 31 species of birds (1,801 total genetic samples, 526 localities) in the Atlantic Forest of South America. Aside from the

aforementioned ecological traits, we included geographic, topographic and climatic distances between localities as environmental

predictors. We then created models using all available data to evaluate model uncertainty both across space and across the

different categories of predictors. Finally, we investigated model uncertainty in predicting genetic differentiation individually

for each species (a common challenge in conservation biology). Our results show that while environmental conditions are the

most important predictors of genetic differentiation, model accuracy largely increases with the addition of ecological traits.

Additionally, the inclusion of dispersal traits improves model accuracy to a larger extent than the inclusion of demographic

traits. Similar results are observed in models for individual species, although model accuracy is highly variable. We conclude

that ecological traits improve predictive models of genetic differentiation, refining our ability to predict phylogeographic patterns

from existing data. Additionally, demographic traits may not be as informative as previously hypothesized. Finally, prediction

of genetic differentiation for species with conservation concerns may require further careful assessment of the environmental

and ecological variations within the species range.

1. Introduction

Documenting and predicting spatial patterns of biodiversity at different scales remains the major goal of
biogeography and a crucial step in proposing appropriate conservation policies (Cadotte and Tucker 2018,
Burbano-Girón et al. 2022). Efforts to map and conserve intraspecific genetic diversity, in particular, are
relevant whenever one’s goal is to preserve evolutionary history (Tucker et al. 2019), maintain population
connectivity (Schoville et al. 2018, Bracco et al. 2019) and ensure adaptation potential in the face of future
environmental changes (Hoelzel et al. 2019). Identifying regions of lineage turnover within the spatial range
of species is therefore important when delimiting conservation areas that account for cryptic genetic diversity
(Crandall et al. 2000, D’Amen et al. 2013). However, performing such task for multiple species at a time
requires extensive field work, time and resources - especially in megadiverse communities such as those in
highly threatened tropical systems. Approaches that predict the distribution of genetic diversity, without the
need of additional intensive fieldwork, are therefore desirable and may contribute novel insights to inform
conservation (Manel and Holderegger 2013, Pollock et al. 2020, Green et al. 2022). For instance, predictive
models of intraspecific genetic differentiation can be useful in conservation biology by summarizing genetic
patterns within multiple co-distributed species in a region and by providing a map of genetic barriers within
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a community. Moreover, if these models are both reliable and transferable across a group of species, one
may be able to use them to predict the location of genetic breaks in species for which environmental and
ecological information are available, but genetic data are scarce or inexistent. This would be the case of
models built from community-level environmental, ecological, and genetic data, yet devoted to species-
specific predictions for target, endangered, or data-deficient taxa for which molecular data are not widely
available. With phylogeographic surveys increasing in numbers across the world (Hickerson et al. 2010), and
community-level datasets becoming more common, these exercises are now possible.

Contributing toward this goal, evolutionary biologists have been generating models that predict levels of
genetic diversity and connectivity between populations from environmental information, especially topogra-
phic and climatic gradients across space and time (van Strien et al. 2014, Brown et al. 2016, Esṕındola et al.
2016). This is based on widespread observations that both climate and geography are highly correlated with
the spatial distribution of genetic diversity (Carstens and Richards 2007, Carnaval et al. 2014, Cabanne et al.
2016). Not surprisingly, it has been shown that levels of genetic differentiation within a species are also im-
pacted by ecological traits, especially those characteristics thought to correlate with dispersal capacity, such
as morphological attributes (e.g., body size; Pabijan et al. 2012), reproductive strategies (Paz et al. 2015),
habitat occupancy (Burney and Brumfield 2009) and foraging ecology (Miller et al. 2021). These elements
of the ecology of species may be especially important for conservation genetics by helping us understand
whether, how and why the patterns of genetic differentiation within one specific taxon may differ from the
more common (or general) pattern detected in the overall community (Fortuna et al. 2009, Porto et al. 2013).

Less explored, however, are the roles of demographic traits such as fecundity, mortality and generation length,
especially at large spatial scales. Such traits have been hypothesized to indirectly affect dispersal capacity
through their effect on the number of individuals in a population, the number of offspring per generation, the
local extinction rate and the frequency of reproductive cycles, all of which can influence the probability of
dispersal events (Perry et al. 2005, Stevens et al. 2013, Castorani et al. 2017, Bonte and Dahirel 2017, Weil et
al. 2022). For instance, dispersal distances were shown to be correlated with fast life-history strategies (i.e.,
high fecundity and low survival rates) in plants (Beckman et al. 2018). Additionally, it has been hypothesized
that species with shorter generation length have more dispersal opportunities per time unit, which has been
supported in butterflies (Stevens et al. 2012). However, tests of these relationships using genetic data are still
sparse, mostly because demographic traits are costly to estimate for many taxa. Additionally, the question
remains regarding to what extent these demographic traits are correlated with morphological and foraging
ecology traits (e.g., body size), and therefore whether they would be informative in predictive models of
genetic differentiation.

Here, we create a machine learning model that draws from landscape genetics and predictive phylogeogra-
phy (Esṕındola et al. 2016, Pelletier and Carstens 2018, Sullivan et al. 2019) to predict the magnitude of
genetic differentiation among populations, using environmental descriptors and both dispersal-related and
demographic traits within multiple co-distributed bird taxa in the Atlantic forest of Brazil. Machine learning
techniques have been showing great promise in population genetics as a tool to leverage available data to
understand and predict geographic patterns (Schrider and Kern 2018). We used such approach to combine
published mtDNA data with available ecological datasets and evaluate model accuracy in predicting regions
that concentrate high levels of genetic differentiation, representing phylogeographic breaks in this ecosys-
tem. We specifically ask: 1) can this machine learning approach be used to accurately predict both global
(assembly-wide) and species-specific genetic differentiation? 2) does the inclusion of species-specific ecological
traits improve model accuracy? 3) what is the relative importance of dispersal traits and demographic traits
in aiding model prediction? The first question aims to evaluate whether a machine learning approach can
summarize existing information and learn enough about the spatial correlates of genetic breaks to predict
which areas may function as barriers to gene flow in a focal region or for a focal species. The second question
addresses whether features of the abiotic environment alone are enough to explain these correlations and
to what extent data on ecological traits can help predictive approaches. Finally, the third question helps
address the aforementioned knowledge gap about the correlation of demographic traits and dispersal.
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2. Methods

2.1 Study system and available genetic data

We created models using available genetic, environmental and trait data for 31 species of birds from the
Atlantic Forest of South America, a biogeographic region with an accumulating number of phylogeographic
studies over the past decades (Peres et al. 2020). We summarized and retrieved all intra-specific mitochondrial
DNA (mtDNA) data made available across 20 published studies to date (Table S1 in Supporting File 1).
While not representing the entire genome, we decided to use mtDNA loci for the purpose of this study since
they 1) have been largely used in phylogeographic studies over the past two decades (Hickerson et al. 2010),
especially in the Atlantic Forest (Peres et al. 2020); 2) represent a good approximation of intraspecific genetic
differentiation due to higher mutation rates and smaller effective population size (Avise et al. 2016). From
each available study, we listed all mtDNA loci sequenced across all individuals, as well as their associated
georeferenced locality and GenBank accession number. When the accession number was missing from the
original manuscript, we performed a search of the GenBank database using the species name, locus, museum
voucher and specimen ID as keywords, through the NCBI API function entrez search implemented in the
R package rentrez (Winter 2017). For sequences not found through this automated search, we performed
a manual search on the NCBI website. Sequences were downloaded using theentrez fetch function of the
rentrez R package. Mitochondrial DNA loci included in this analyses are Cytochrome b (CytB), NADH
dehydrogenase 2 (ND2) and the D-loop (or control) region. All sequence data were aligned per species and
locus, using the Muscle algorithm (Edgar 2004) in the muscle R package.

Sequences with missing coordinates were georeferenced using Google Maps API within the R package tidy-
geocoder(Kahle and Wickham 2013). We performed each search using all provided information about the
locality in each manuscript, which in most cases included a locality name, state and country. We then plotted
all localities per species in geographic space to visualize possible errors, and manually corrected erroneous
localities. Although this approach may not retrieve the exact location where specimens were collected, the
accuracy of the geocoding tool is sufficient to guide our measurements of genetic differences given the spatial
scale of the data (Singh 2017).

2.2 Response and predictor variables

To summarize intraspecific genetic differentiation, we calculated the average number of nucleotide differences
(DXY; Nei 1987) between pairs of localities for each locus alignment, in each species. DXY was calculated
with the R package PopGenome(Pfeifer et al. 2014). Pairwise values of DXY were then used as the response
variable in our models. Since different loci will yield different ranges of DXY values due to different mutation
rates, the information about the locus used to calculate this metric was included in our models as a control
variable.

Environmental predictors were employed as distances between every pair of localities for which sequences were
available. Specifically, we measured distance as the landscape resistance between the two localities in each
pair: this estimates the effective resistance of the landscape to organism movement by calculating the relative
probability of individuals to move from any one point in space to adjacent points, based on characteristics of
the environment (McRae 2006). For that, all movement probabilities across a specific region were summarized
in resistance matrices, and a resistance distance between two localities was then calculated as the average
probability of individuals to move from one locality to another. We created resistance matrices for the
Atlantic Forest based on topographic variation and 19 bioclimatic variables retrieved from the WorldClim
database (Fick and Hijmans 2017) at a 2.5 arc-min resolution. Additionally, we created a resistance matrix to
be a proxy of plain geographic distance by assuming equal probability of individuals moving in all directions
in space (i.e., no effect of topography or environment variation). Resistance matrices were created using the
function transition and resistance distances were calculated using the function costDistance , both from the
R package gdistance (van Etten 2017).

To test the importance of ecological traits in the predictive models, we summarized phenotypic characteristics
shown to be related to dispersal capacity (hereinafter referred to as dispersal traits) and reproductive rates
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known to influence population dynamic (hereinafter referred to as demographic traits). Dispersal traits
included three morphological measurements (body size, wing length and tarsus length), two descriptors of
foraging ecology (foraging stratum and diet) and a measure of propensity to disperse through open areas
(forest sensitivity). Foraging stratum and diet were transformed into ordinal variables to incorporate a
gradient of ecological variation: values ranged from low to high to indicate a gradient from understorey
towards exclusively canopy birds, and from diets consisting of one item (arthropods) to more generalized
diets (i.e., arthropods along with other items). Diet based on nectar (observed only for Thalurania glaucopis )
was quantified as the highest value to indicate an entirely different diet resource. Demographic traits included
annual adult survival, age at first reproductive event, maximum longevity and generation length. Body size,
foraging stratum and diet were obtained from the Handbook of Birds of the World (Billerman et al. 2022),
whereas wing length and tarsus length were obtained from the AVONET database (Tobias et al. 2022). Forest
sensitivity was obtained from (Stotz et al. 1996). Finally, demographic traits were obtained from (Bird et al.
2020). The values of all ecological traits of each species included in this study are summarized in Table 1.

2.3 Model fitting and evaluation

We created models using the Random Forest technique (Breiman 2001), a machine learning approach parti-
cularly efficient in investigating relationships when many predictor variables are present (Schrider and Kern
2018). This approach is well suited to predict values of genetic differentiation since 1) it has been shown to
perform well in regression analyses to predict continuous data (which is the case of our response variable;
Boehmke and Greenwell 2019, Barrow et al. 2021), and 2) it has been successfully used in previous stu-
dies predicting genetic breaks (Sullivan et al. 2019). We implemented the random forest algorithm in the R
package ranger(Wright and Ziegler 2015). The set of parameters best suited for our dataset was estimated
using the tune package (Kuhn 2023), which implements cross-validations to explore different combinations
of parameters. We performed such exploration by combining different values for the following parameters:
number of trees (varying from 1 to 2000), number of variables per tree (from 1 to 22) and minimum node
size (from 2 to 40). To choose the best parameter values for our models, we calculated the root mean squared
error for each parameter combination.

To test the efficiency of a random forest model in predicting pairwise DXY values, we first created a global
model by pooling together all pairwise locality data from all species. The goal of this model was to verify if
one is able to predict levels of DXY across the entire region and highlight regions of possible lineage turnover
in space. To evaluate model uncertainty, we created 100 replicates of this global model. In each replicate, we
retained 70% of the data points as a training dataset, and evaluated the model by performing predictions
of the 30% data points left out as testing dataset. To avoid over-fitting, we performed what we called a
”species cross-validation”, i.e. we forced each species to be either entirely included or entirely excluded from
the training dataset, forcing the model to always be evaluated on a set of species that was not present in the
training dataset. We estimated variable importance using the impurity metric, which measures the change
in prediction accuracy when a predictor variable is removed from a decision tree (Wright and Ziegler 2015).
Since predictor variables may be correlated to different extents, we also calculated the Spearman correlation
coefficient among all predictor variables and used that information to discuss their relative importance.

To test the transferability of the model and evaluate whether we can extrapolate correlations detected in a
group of well-studied species to taxa with little or no available genetic data, we additionally created species-
specific models to predict values of DXY in each species. These models were created by leaving out the
genetic data of one target species at a time and training our model on the remaining data. This approach
differs from the one described above in that species-specific models directly evaluate how a model trained
on all available data performs when predicting intraspecific genetic breaks within a single species instead of
globally throughout the Atlantic Forest. We created one species-specific model for each combination of locus
and species in our dataset (n = 37; Table 2).

Both approaches described above (global and species-specific models) were implemented with four different
sets of predictor variables: 1) environmental data only ; 2) environmental data along with dispersal trait
data; 3) environmental data along with demographic trait data; and 4) all available predictor variables (i.e.,
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environmental data along with both types of ecological trait data). We compared the predictive power of
these different sets of predictors by correlating observed and predicted values of DXY and reporting the R2

square of such correlations. For both global and species-specific models, we tested if the distributions of
R2 values across replicates (in global models) or species (in species-specific models) differed among models
using different sets of predictors, by using a Kruskal-Wallis test. Additionally, we calculated the difference in
R2between models that included versus models that did not include ecological traits, and used a Wilcoxon
Test to evaluate which set of traits (i.e., dispersal or demographic traits) led to a larger increase in R2.

2.4 Visualizing the location of modeled genetic barriers in space

To visualize observed and predicted values of genetic differentiation in space, we mapped DXY values from
each pair of locality to the geographic point located at the center of the shortest path connecting those two
sites (hereafter referred to as midpoint). Because we expect that high values of DXY will occur whenever two
localities are on opposite sides of a barrier to gene flow, the use of a color legend facilitates the identification
of genetic breaks in space. For global models, we calculated and mapped for each midpoint the mean and
standard deviation of the predicted values of DXY, as well as the average difference between predicted
and observed, across the total number of replicates (n of replicates = 100). For species-specific models, we
plotted the observed and predicted value of DXY for each species. To visualize values continuously over the
landscape, we performed an inverse distance weighted (IDW) interpolation of DXY values using the function
idw from the package gstat(Gräler et al. 2016). Interpolated maps were created for observed values as well
as values predicted by models using each different set of predictors. To focus on the relative levels of genetic
differentiation across space, rather than the absolute values, we re-scaled the predicted values of DXY in
our interpolation based on the maximum and minimum values of observed DXY. Additionally, in order to
visualize genetic differentiation from different loci in the same map, we re-scaled values across loci to the
same range. These re-scaling procedures allow us to remove the effect of different locus when visualizing
genetic differentiation in geographic space, as well as emphasize the relative differences in model prediction
across the area.

3. Results

The final dataset consisted of 1,801 individual sequences across 526 localities (Figure 1A). A total of 6,350
pairwise values of DXY were derived from this dataset. DXYvalues ranged from 0 to 56.33 (mean = 9.685;
median = 4.5, see Figure S1 in Supporting File 1 for the range of DXY values per locus for each species).
When the observed DXY values are plotted in space (Figure 1B), it becomes evident that genetic breaks
(represented by midpoints between localities with relatively high values of DXY) accumulate around three
regions of the Atlantic Forest: 1) lowland valleys within the Serra do Mar mountain range and Paráıba do
Sul river, in the southern range of the forest; 2) the Doce river and nearby regions; 3) northern regions near
the São Francisco river.

Global models including only environmental predictors performed worse on average than models that included
both environmental predictors and ecological traits (Figure 2A). Models based solely on environmental
predictors had mean R2 = 0.14 (ranging from 0.0007 to 0.45), whereas those included environmental and
dispersal data had mean R2 = 0.53 (ranging from 0.04 to 0.81) and those that included environment and
demographic data had mean R2= 0.43 (ranging from 0.003 to 0.77). Finally, models including environmental
data and both types of ecological traits (i.e., dispersal and demographic traits) had mean R2 = 0.54 (ranging
from 0.06 to 0.81). A Kruskal-Wallis test suggests that the distribution of R2 differs among all four sets of
predictors (X2 = 170.81, p -value < 0.01) and Wilcoxon tests suggest that all models that including traits
have consistently higher predictive accuracy than models based solely on environmental data (p -value <
0.001 for each set of predictors including ecological traits). In addition, the inclusion of dispersal traits led
to a higher increase in R2 values (when compared to models based solely on environmental data) than the
inclusion of demographic traits (Figure 2B).

Correlation indexes across predictor variables revealed that geographic, topographic and bioclimatic resi-
stance distances were highly correlated (Table S2). Additionally, body size was highly correlated with wing
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length (ρ = 0.873) and adult survival (ρ = 0.872). Environmental distances, represented mainly by tempera-
ture seasonality and precipitation of coldest quarter, consistently had the highest impact in model accuracy
(Figure 3). Morphological traits, represented mainly by wing length, were equally important whenever they
were included. Adult survival and longevity were important ecological traits in models based solely on en-
vironmental data and demographic traits, but were surpassed by environmental data and dispersal traits
whenever those were also present. Finally, the mtDNA locus used to calculate DXYvalues was always present
among the five most important variables across all models.

Species-specific predictions show a larger variation in R2 within each set of predictors (values ranging from
0.0001 to 0.9; Figure 4). However, models including ecological traits tend to have higher mean R2 (Table 2;
Figure 5A). A Kruskal-Wallis test moderately supports that the distribution of R2 differs among all four sets
of predictors (X2 = 9.53, p -value = 0.02). Similar to global models, Wilcoxon tests of R2 values for species-
specific models suggest that all models including traits have consistently higher predictive accuracy than
models based solely on environmental data (p -value < 0.001 for each set of predictors including ecological
traits). When considering only the model with highest predictive power for each combination of species and
locus, it becomes clear that models including only environmental data tend to have low predictive power (R2

< 0.17) even when they are the best model across the four sets of predictors (Figure 5B). An exception to this
pattern is the Cytb dataset for speciesSclerurus scansor , where the model based solely on environmental
data simultaneously was the best model and showed high accuracy (R2 = 0.71; Figure 4). Finally, similar
to global models, the inclusion of dispersal traits led to a higher increase in R2 values (when compared to
models based solely on environmental data) than the inclusion of demographic traits (Figure S2).

Maps of the interpolated values of predicted DXY reveal that, although models generally agree with maps of
observed values (Figure 6A), model uncertainty is higher in the northern Atlantic Forest (hereinafter, north-
ern AF), especially in models based solely on environmental data (Figure 6B). Additionally, models tend to
overpredict genetic differentiation in northern AF (i.e., above the Doce River) and underpredict differentia-
tion in the southern Atlantic Forest (hereinafter, southern AF; Figure 6C). Both over and underprediciton
decreases when ecological traits are added.

4. Discussion

By incorporating data from multiple species in a supervised machine learning framework, we were able
to explore different correlates of the spatial distribution of genetic differentiation as well as our ability to
predict patterns across space. Model predictive accuracy showed large variation but was highly dependent
on the set of predictors utilized: models including species-specific ecological traits led to consistently higher
accuracy (Fig. 2). This result is in line with previous studies suggesting that species ecological characteristics
interact with the abiotic environment in driving observed patterns (Burney and Brumfield 2009, Pabijan et
al. 2012, Paz et al. 2015, Sullivan et al. 2019, Miller et al. 2021). Importantly, even though model
accuracy increases when ecological traits are included, environmental predictors are still the most important
variables in our models, particularly differences in temperature seasonality (bio4) and precipitation during
cold periods (bio19; Fig. 3), which is highly correlated with additional variables describing temperature
ranges and extremes of lower precipitation (Table S2). This suggests that genetic differentiation increases
when the geographic cells along the path connecting two localities are similar in values of temperature range
and precipitation extremes. This important environmental effect is not surprising since the biogeographic
literature largely supports the abiotic environment as a major driver of spatial patterns on several scales
(Davies et al. 2007, Stein et al. 2014, Voskamp et al. 2017, French et al. 2023). However, the increase
in prediction accuracy (Fig. 2) clearly shows that the abiotic environment alone cannot account for all
the observed intraspecific genetic variation. This is expected to be especially true on spatial scales where
environmental variation is large, as in the present study (Peres et al. 2020). In these cases, the combination
of abiotic predictors with species-specific traits helps decrease the amount of unexplained observed genetic
variation.

We additionally found that different categories of ecological traits have varying predictive power. Dispersal
traits, especially morphological measurements, were more informative than demographic traits in our pre-
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dictive models (Fig. 2 and 3D). This makes sense considering the large support in the bird literature to
the close relationship between body size and wing length with dispersal ability (e.g., Dawideit et al. 2009,
Claramunt et al. 2012). Demographic traits also improve model accuracy, but to a lesser extent (Fig. 2), and
we believe three aspects may explain their weaker effect on genetic differentiation: the spatial scale of our
study, possible correlations with other predictors and their effect on changes in standing genetic variation
rather than spatial differentiation. First, at the regional scale encompassed by our dataset, the effect of envi-
ronmental differences (Manel and Holderegger 2013) and long range dispersal dictated mainly by morphology
(Claramunt et al. 2012, Sheard et al. 2020, Claramunt 2021) may prevail over the effect of demographic
traits, which can be more pronounced in local scales (Castorani et al. 2017, Drake et al. 2022), especially in
regions with high environmental heterogeneity. Second, we find that survival was highly correlated to body
size in our dataset (Table S2), and was also among the best predictors when morphological traits were not
included (Fig. 3). This suggests that some of the biological importance of survival as a correlate of genetic
differentiation may be accounted by body size, especially in models where both traits are included (Fig.
3D). We highlight that (Sullivan et al. 2019) found clutch size, a demographic trait, to be an important
predictor of intraspecific divergence, but this trait is also thought to be correlated with body size models
(Tuomi 1980, Ford and Seigel 1989, McGinley 1989, Sibly and Brown 2007, Werner and Griebeler 2011) and
models where that trait was shown to be important did not include body size (Sullivan et al. 2019). In such
cases, where dispersal and demographic traits are correlated, the relative contribution of the two categories
is hard to disentangle. Finally, demographic traits may be more important to explain changes in effective
population size, through their effect on demographic rates such as growth and recruitment rates (Saether et
al. 2013, Waples 2016). Therefore, they may contribute mainly to the relative amount of genetic variation
present in different populations (i.e, standing genetic variation) and contribute only indirectly to the relative
differences in landscape connectivity across species.

Mapping model uncertainty (i.e., variance and error in predicted values) further allows us to discuss the
relative importance of different drivers of genetic differentiation. Aside from the predictive variance inherent
to the modeling procedure (Boehmke and Greenwell 2019) and to the stochasticity of the evolutionary
process (Lenormand et al. 2009), we assume additional variance stems from the proportion of genetic
variation that is not explained by predictors in our model. First, we observe that variance and error is
higher when predictor traits are absent (Fig. 6), further emphasizing their relevance to predict genetic
differentiation. Additionally, even in maps incorporating all of our predictors, variance and error is higher in
the northern Atlantic Forest. We suggest two possible reasons for this result, the first being the absence of
predictors that reflect past environmental conditions. Mitochondrial DNA genetic variation is expected to
reflect relatively recent spatial and temporal changes in populations (Avise 2009), and it has been suggested
that the distribution of genetic diversity in the northern region of the Atlantic Forest is better explained by
past climate dynamics (Carnaval et al. 2014). In the framework we follow here, where genetic differentiation
is calculated across pairs of localities, we believe incorporating past climatic conditions to explain current
environmental differences is problematic because of the uncertainty in the past distribution of the species,
which is expected to have suffered significant changes in the last 100 thousand years (Hofreiter and Stewart
2009, Baker et al. 2020). The past environmental distance between two present localities is not a good proxy
of the effect of historical climate because individuals in each locality do not necessarily represent the genetic
diversity observed in that locality in the past.

A second and equally plausible reason for higher uncertainty in northern AF is the fact that most sampled
localities are distributed in the southern AF (Fig. 1A). In fact, southern AF (south of latitude 19 ºS)
encompasses 83% of the data points in our dataset. This means that even though we observe both low and
high values of genetic differentiation across the entire region, most of the variation in our response variable is
concentrated in the southern AF. This raises the question of whether the relationship between environmental
and genetic data in southern AF (which dominate the training of our data) can be extrapolated to the
northern AF. If that is a safe extrapolation, we could conclude that variance and predictive error in northern
AF stems from undocumented phylogeographic structure. However, we believe that case is unlikely since
spatial autocorrelation suggests these two regions will tend to have different environmental characteristics
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(Keitt et al. 2002, Carnaval et al. 2014). We therefore believe that uncertainty in northern AF would mostly
stem from lack of representation of that environment in our models. The same rationale can be applied to
the variation in ecological traits across species: most species in our dataset are distributed entirely in the
southern AF (Table 1). This means ecological differences across species might not be high in northern AF
data points and therefore do not contribute to increasing model accuracy. Overall, these results point to the
need for uniform geographic representation of genetic variation when implementing predictive models.

The high variation observed in predictive accuracy of species-specific models further emphasizes the relevance
of evaluating the ability of the model to extrapolate learned relationships. In species-specific models, accuracy
is dependent on how much of the environmental variation in the species range is present in the set of species
in which the model was trained. We observed low accuracy prediction when there is little overlap of the
species range with the ranges from species in the training dataset. That is the case, for instance, for Cacicus
chrysopterus and Synallaxis cinerea , which occur in the southern extreme of the Atlantic Forest and in the
Diamantina mountains, respectively, locations where few other species are sampled. Finally, we also observe
low predictive accuracy in species where range outside of training combines with sparse geographic sampling
(e.g.,Phylloscartes ventralis and Poecilotriccus fumifrons ) or in small ranged species that have fewer points
to be predicted (such asSynallaxis cinerea ). Models based solely on environment still perform worse than
those that include traits (Fig. 5B). Combined, these results suggest that the use of predictive models to
infer distribution of genetic diversity in unsampled species require careful evaluation of how represented the
species is within the training variation, and that information on morphological traits might still be relevant
to increase prediction accuracy.

Our results highlight the relevance of balancing the goals of explanation and prediction in predictive bio-
geography: by exploring models with different sets of predictors, we show that environmental variation best
explains genetic differentiation but is not enough to perform accurate predictions. Additionally, we show how
mapping predictions and the related uncertainty allows for further investigation of model accuracy over space
and gives directions to improve prediction. Finally, the goal of predicting is readily applicable to conservation
biology. Policies aiming to create a network of preserved areas can use machine learning algorithms to predict
areas of turnover and feed this information into approaches like systematic conservation planning (Margules
and Pressey 2000, Nielsen et al. 2023). We suggest that, at least for birds, morphological traits should be
included given their relevance for model accuracy. When the aim is to make predictions on a focal species
based on all available data for a community, it is necessary to: 1) make sure the available data has good
genetic sampling covering the area our focal species exist in; 2) include dispersal traits whenever possible to
give more realistic predictions. Even though demographic traits did not lead to the highest observed increase
in accuracy, they may also be included especially in species for which population connectivity is thought to
be more correlated to life history strategies such as strong philopatry or unique social structures (Drake et
al. 2022). As our results show, the use of machine learning approaches in predictive biogeography gains from
incorporating extra predictor information but careful evaluation is needed to assess what type of information
leads to the highest increase in prediction accuracy.
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6. Figure captions

Figure 1. A) Map of all localities utilized in this study (black dots) along with the distribution of the Atlantic
Forest (gray polygon). Blue lines represent three major rivers in the Atlantic Forest, from north to south:
the Sao Francisco River, the Doce River and the Paraiba do Sul river. B) Interpolated observed (empirical)
DXY values across all midpoints used for the global model. The black arrow indicates the region of the Serra
do Mar valley.

Figure 2. A) Values of R2 for global models across different sets of predictors. B) Difference in values of R2

between global models for each set of predictors that include ecological traits in comparison to models using
only environmental predictors.

Figure 3. Distribution of importance values for each predictor variable across 100 replicates of global models.
A) Models including environmental predictors only; B) models including environmental and dispersal pre-
dictors; C) models including environmental and demographic predictors. D) models including all predictors.

Figure 4. Values of R2 for species-specific models, for each combination of species and locus utilized and
each set of predictors. Dashed lines indicate the location in the graph where R2 = 0 (red line) and R2 = 0.5
(orange line). For each species and locus combination, four points are plotted across the x-axis, representing
the four different sets of predictors.

Figure 5. A) Values of R2 for species-specific models across all four sets of predictors and all combinations
of species and locus. B) Values of R2 for models with highest R2 across the four sets of predictors within
each combination of species and locus.

Figure 6. Interpolated predicted values of DXY in the Atlantic Forest across 100 replicates of the global
model. A) Mean of predicted DXY; B) standard deviation of predicted DXY; C) Difference between the
predicted and observed values of DXY.

7. Table captions
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Table 1. Ecological traits information utilized for each species in this study.

Table 2. Values of R2 for species-specific models across all sets of predictors. Sample size and the best set
of predictors for each model is included.

Hosted file

Table_1.xlsx available at https://authorea.com/users/673058/articles/671897-investigating-

the-relative-role-of-dispersal-and-demographic-traits-in-predictive-phylogeography

Hosted file

Table_2.xlsx available at https://authorea.com/users/673058/articles/671897-investigating-

the-relative-role-of-dispersal-and-demographic-traits-in-predictive-phylogeography
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