
P
os
te
d
on

6
O
ct

20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
69
65
95
57
.7
99
90
93
2/
v
1
—

T
h
is

a
p
re
p
ri
n
t
a
n
d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

TL-GNN: Android Malware Detection Using Transfer Learning

Ali Raza1, Zahid Hussain Qaisar1, Naeem Aslam1, Muhammad Faheem2, Muhammad
Waqar Ashraf3, and Muhammad Naman Chaudhry1

1NFC Institute of Engineering & Technology
2Vaasan Yliopisto Teknillinen tiedekunta
3Bahauddin Zakariya University

October 6, 2023

Abstract

Malware growth has accelerated due to the widespread use of Android applications. Android smartphone attacks have increased

due to the widespread use of these devices. While deep learning models offer high efficiency and accuracy, training them on

large and complex data sets is computationally expensive. Hence, a method that effectively detects new malware variants at a

low computational cost is required. A transfer learning method to detect Android malware is proposed in this research. Because

of transferring known features from a source model that has been trained to a target model, the transfer learning approach

reduces the need for new training data and minimizes the need for huge amounts of computational power. We performed many

experiments on 1.2 million Android application samples for performance evaluation. In addition, we evaluated how well our

framework performed in comparison to traditional deep learning and standard machine learning models. In comparison to

state-of-the-art Android malware detection methods, the proposed framework offers improved classification accuracy of 98.87%,

a precision of 99.55%, recall of 97.30%, f1 measure of 99.42%, and a quicker detection rate of 5.14 ms by utilizing the transfer

learning strategy.

1

OR I G I N A L A RT I C L E
Jou rna l Se c t i on

TL-GNN: Android Malware Detection UsingTransfer Learning
Ali Raza1† | Zahid Hussain Qaisar1 | Naeem Aslam1 |
Muhammad Faheem2* | MuhammadWaqar Ashraf3 |
Muhammad Naman Chaudhry1
1Department of Computer Science, NFC
Institute of Engineering and Technology,
Multan 60000, Pakistan.
2School of Technology and Innovations,
University of Vaasa, 65200, Finland.
3Department of Computer Engineering,
Bahauddin Zakariya University, Multan
60800, Pakistan.
Correspondence
Muhammad Faheem, School of Technology
and Innovations, University of Vaasa,
65200, Finland.
Email: muhammad.faheem@uwasa.fi
Present address†Department of Computer Science, NFC
Institute of Engineering and Technology,
Multan 60000, Pakistan.
Funding information
This research work was supported by the
University of Vaasa and the Academy of
Finland.

Malware growth has accelerated due to the widespread
use of Android applications. Android smartphone attacks
have increased due to the widespread use of these devices.
While deep learning models offer high efficiency and accu-
racy, training themon large and complex data sets is compu-
tationally expensive. Hence, a method that effectively de-
tects new malware variants at a low computational cost is
required. A transfer learningmethod to detect Androidmal-
ware is proposed in this research. Because of transferring
known features from a source model that has been trained
to a target model, the transfer learning approach reduces
the need for new training data and minimizes the need
for huge amounts of computational power. We performed
many experiments on 1.2 million Android application sam-
ples for performance evaluation. In addition, we evaluated
how well our framework performed in comparison to tra-
ditional deep learning and standard machine learning mod-
els. In comparison to state-of-the-art Android malware de-
tection methods, the proposed framework offers improved
classification accuracy of 98.87%, a precision of 99.55%, re-
call of 97.30%, f1 measure of 99.42%, and a quicker detec-
tion rate of 5.14 ms by utilizing the transfer learning strat-
egy.
K E YWORD S
Android malware detection; Malware classifier; Deep learning;
Transfer learning: Graph neural network

1

2 Ali Raza et al.

1 | INTRODUCTION
With the release of the first Android smartphone
in September 2008, the new open-source operating
system-based smartphones quickly gained popularity
[1]. With an 84 percent market share of smartphones
worldwide, the most widely used mobile operating sys-
tem in the world is Android[[2][3]]. In 2022, around
12 new upgraded versions of Android will be released.
Security attacks are becoming more common due to
this level of adoption and the open-source nature of
Android applications[4], which significantly compromise
the integrity of such applications. According to statistics,
there are more than 50 million instances of potentially
unwanted applications (PUAs) and malware for Android,
as shown in Figure 1.
There are already over three million apps available on
Google Play. Unfortunately, these applications contain
a significant amount of harmful malware[[5],[6]]. Attack-
ers attempt to obtain people’s money by stealing and
monitoring their data and personal information[[7],[8]].
Due to the open-source nature of Android-based ap-
plications, hackers are able to easily upload malicious
code programs to Google Play, including Trojan horses,
adware, file infestations, riskware, backdoors, spyware,
and ransomware [[9],[10]]. It is crucial to develop effi-
cient malware detection techniques due to the present
spread and rising complexity of malware in order to ad-
dress this important issue[11].
There is complexity and uncertainty with traditional mal-
ware detection techniques[12]. The extensive use of
deep learning andmachine learning techniques in recent
years[13] has significantly increased the accuracy of
malware detection mechanisms, which has contributed
to the development of Android malware detection utiliz-
ing these techniques[[14],[15]].
An extensive amount of research has been done on
methods for deep learning-based Android malware de-
tection in response to the rapid growth of Android
malware[16]. Using various types of deep and machine
learning models, [[17],[18]] researchers have put forth
a number of methodologies and produced a number of
research results.

Unfortunately, deep learning-based malware detection
methods need a lot of labeled data points in order to ac-
curately identify malicious threats[[19] [20]]. The size
of the data set needed to identify new malware threats
is typically small, and finding new data sets takes more
time [[21],[22]]. It takes a lot of time and resources
to train deep learning models from scratch for a new
data set in order to identify a new malware threat[23].
Using the deep transfer learning technique is one effi-
cient method of overcoming the issues of model retrain-
ing and high computational complexity [[24],[25]]. The
main approach adopted in our research to reduce com-
putational complexity is to transfer well-known feature
sets from a trained GNN model to a destination model
with less training data [[26],[27], [28]].
In the modern world, antivirus software is no longer ap-
propriate; instead, the Google Play Store runs a security
check to stop the upload of harmful applications[[29]
[30]]. Yet, despite the security check, the Play Store still
has a large number of harmful applications[[31],[32]]. To
counter these workarounds, numerous machine learn-
ing and deep learning techniques were developed. Most
of the proposed deep learning methods require a sig-
nificant amount of training time[33]. The proposed ap-
proach reduces the amount of time needed for training.

• Obfuscation techniqueswere used bymalware devel-
opers to make it more challenging to detect their mal-
ware using conventional dynamic and static analysis
approaches.

• There are countless malware zero-days that are easy
to prevent signature-based systems from detecting.

• Malware analysts are required to evaluate a signif-
icant amount of data, which takes time and might
cause analysis fatigue. Malware analysis requires
highly specialized knowledge.

• Research on classifying and identifying Android mal-
ware has not used transfer learning.

Protecting users from threats like ransomware, botnets,
and spyware is the main objective, and deep transfer
learning is being used to differentiate between benign
and malicious applications.

Ali Raza et al. 3

0

10,000,000

20,000,000

30,000,000

40,000,000

50,000,000

60,000,000

2015 2016 2017 2018 2019 2020 2021 2022 2023

Android Malware

Android PUA

TOTAL AMOUNT OF MALWARE AND PUA UNDER ANDROID

F IGURE 1 Number of Malware Per Year. (Source: av-atlas.org)

The objectives and goals of the research are two-fold:

• Employing a range of techniques to effectively iden-
tify malware from samples of both benign and mali-
cious applications.

• To evaluate the results of various approaches and al-
gorithms and offer recommendations for the most ef-
fective malware detection approach.

The following are the main goals of using transfer learn-
ing at the initial stage:
Model development time: The time needed to develop
and train a new model decreases significantly because
the last few data set-specific layers are required to be
trained.
Knowledge utilization : It is feasible to train a new target
task using knowledge of the source model. Thus, there
is no need to start from scratch while training the new
target model.
Over-fitting problems: When conventional deep and
machine learning approaches are developed on only a

small data set, over-fitting problems arise. The problem
is solved through transfer learning by fine-tuning the
model layers.
Computation cost: Using complex and hybrid data sets
for training deep learning models requires a lot of com-
putational power. The transfer learning approach can be
used to reduce this high computational cost.
The following are the significant contributions of our
work:

• We discuss the basic principles of transfer learning
and deep learning that were used in developing the
proposed approach.

• We propose TL-GNN, a new automatic malware de-
tection approach for Android that precisely detects
the malware and its type using a graph neural net-
work.

• To avoid data bias, we evaluate TL-GNN on a wide
range of public datasets. The results of the experi-
ments show that TL-GNN has higher accuracy than
other approaches.

4 Ali Raza et al.

• The training of theGNNmodel is accelerated through
transfer learning. Transfer learning was used to trans-
fer the model to the classification phase.

2 | LITERATURE REVIEW
In this part of the paper, we discuss earlier frameworks
or techniques for detecting malware. As we develop
the model for malware detection, we also talk about the
gaps in the literature that currently exist and howwe can
overcome them.
Zaki et al. [34] used a hybrid approach to analyze the be-
havior of mobile malware. A broad model of mobile mal-
ware behavior that the authors provided can help iden-
tify the key components for detecting Android malware
in an Android application.
Su et al. [35] proposed a deep learning-based malware
detection approach for the Android platform. They uti-
lized static analysis approaches and reported detection
accuracy of above 97%; however, continuously emerg-
ing attacks were not included in the analysis.
Wang et al. [36] evaluated the transferability of adver-
sarial examples produced on a structured and sparse
dataset as well as the resistance of malware detection
classifiers trained using adversarial methods to adver-
sarial examples. The decision tree, random forest, SVM,
CNN,[37] and RNN machine learning classifiers can all
be tricked by adversarial examples generated by DNN,
according to the authors. They also point out how adver-
sarial training can increaseDNN’s robustness in terms of
resisting adversarial attacks.
Singh et al. [38] proposed a system based on machine
learning to analyze Android applications. The authors
exploited the APK files to gather manual features and
extracted grayscale photos from a Drebin data set file.
The image processing-based algorithms are used to ex-
tract image files. The system can classify Android appli-
cations, and the authors were effective in achieving an
accuracy of 93%, although overfitting issues can arise if
an algorithm needs to be trained on a huge amount of
data.
Pektacs [26] uses the API call graph to show all possible

runtime execution paths used by malware. The API call
graphs that have been converted into a low-dimensional
numeric vector feature set can nowbe incorporated into
deep neural networks. The F-measure, accuracy, recall,
and precision metrics for the malware classification are
each 98.86%, 98.65%, 98.47%, and 98.8%, respectively.
Zhihua et al. [1] put out a novel method for classifying
and identifying malware and its variations using CNN-
based deep learning classifiers. The BAT algorithm was
also introduced in the paper for the goal of dataset equi-
librium. Image data augmentation is also used during
the training process to improve the model’s effective-
ness and accuracy. The model classified 9,339 malware
samples into 25malware families with a 94.5% accuracy
rate.
Kumar et al. [39] proposed a malware classification and
detection approach based on CNN that he used to clas-
sify the malware image dataset, achieving 98% accuracy
for the 25 malware family-representative 9,339 sam-
ples.
Kalash et al. [40] proposed a deep learning approach
using CNN for classifying the malware dataset samples.
There are two datasets, and themodelwas implemented
(MalImg and Microsoft malware challenge). They at-
tained 98.52% and 98.99% accuracy for both datasets,
respectively.
Singhet al. [41] gathered and analyzed a dataset of
37,374 samples from 22 malware families. Additionally,
he proposed a deep CNN-based classification method
and got 98.98% accuracy when classifying the malware
dataset samples.
Gibert et al. [42] proposed classifying malware im-
ages into specific families using a CNN-based model
with three convolutional layers and a fully connected
layer. Two publicly accessible datasets, Microsoft mal-
ware andMalImg, were used to test and train the model.
The model’s accuracy levels are 98.48% and 97.49%, re-
spectively.
In Visualdroid [43], security analysts must first obtain a
sample of the malware, then create an appropriate sig-
nature (or make sure the sample can be correctly labeled
based on existing signatures), and finally push the new
signature to all antimalware tools, typically via an online

Ali Raza et al. 5

update mechanism. A malware sample cannot be auto-
matically or instantly used to generate a signature.
In StormDroid [44], dynamic and static analysis are
merged. The .apk file is used to access static features,
such as some API calls. Its dynamic features are derived
from running log records that keep track of operating
system interactions, network activity, and file system ac-
cess. Opcode sequences are considered detection fea-
tures as well.
Scott et al. [45] presented MalNet, a sizeable malware
for Android FCG dataset, and used new graph represen-
tation learning approaches for Android malware detec-
tion.
Xu et al. [46] presented DroidEvolver to identify An-
droid malware that updates automatically and without
user intervention. The model is updated using online
learning techniques, eliminating the need for retraining
and lowering the high computational cost. The authors
assessed 34,722 malicious and 33,294 benign applica-
tions during a six-year period. According to the au-
thors, the model outperformed the state-of-the-art Ma-
maDroid model in terms of the average F1 measure.
Fu and Cai [47] investigated Android malware detectors’
concerns with deterioration. The authors analyze the
performance of four state-of-the-art detectors and find
that the performance of the available solutions degrades
over time. Additionally, the researchers proposed a new
approach built on a long-term analysis of application
characterization with a focus on runtime behaviors. In
order to analyze the deterioration problem, a compari-
son between the proposed strategy and four state-of-
the-art approaches was also made.
Suarez-Tangil et al. [48] proposed the DroidSieve tech-
nique for categorization based on static features [49].
The proposed approach assesses static features while
using feature sets that obfuscate information. The
model attained a 99.82% accuracy with no false posi-
tives and a 99.26% family categorization accuracy.
Table 1 provides details about the studies that were ex-
amined, including the authors’ methodology and algo-
rithmic choices. The papers’ results are displayed in Ta-
ble 1.

3 | PROPOSED METHODOLOGY
In this section, we discuss the dataset, implementa-
tion details, and workflow of our proposed model. In
the proposed approach, the Android applications were
collected from various sources, such as (MALNET[45],
MALNET-Tiny[45], BIG [12], Malicia [6]). The extracted
sets of features are preprocessed and transformed into
binary vectors after being extracted from the acquired
APK files. From a category of Android applications, dy-
namic and static, the parameters are extracted in order
to classify the applications into dangerous and benign
apps. These apps are downloaded from publicly acces-
sible sources, third-party app stores, as well as the offi-
cial Google Play store. Intent, version, system services,
manifest permissions, strings, and components are ex-
amples of static parameters. These parameters include
metadata data that is kept in the application. In con-
trast to static parameters, dynamic parameters like logs,
files, system calls, and network activities give informa-
tion regarding an application’s behavior and control flow.
The source model is used as an input for classification
and training purposes once the binary vectors have also
been transformed into graphs.
The static and dynamic features are discussed below:

• Manifest.Permissions: The manifest file, which is
contained in every Android application and used for
providing details about resources, services, packages,
strings, etc., The manifest.permissions file is one of
the package files inside the manifest file. It is used
to give applications authorization. When the applica-
tion is installed, this file is used to verify rights. The
ability to access SMS, location, and storage are cru-
cial rights.

• String Value: These string values are then applied to
the text information of the resources. The Strings.xml
file is often where these files are stored. This file con-
tains details about the application, including its size,
version, list of permissions, and history.

• API Call: Through application programming inter-
faces (APIs), runtime function calls aremade. Applica-
tions are initiated when they require interaction with

6 Ali Raza et al.

TABLE 1 Comparison among the recent related work.
Author Models Years Accuracy(%) Precision(%) Recall(%) F1 Measure(%)
Zhang et al.[50] RF 2019 96.00 97.00 95.00 96.00
Zhihua et al.[1] CNN 2018 94.50 94.60 94.50 88.70
Go et al.[42] ResneXt 2020 98.32 97.64 97.93 97.69
Smmarwar et al.[51] OEL-AMD 2022 96.95 95.99 94.89 95.98

system resources.
• Intent: An application’s activities are started by in-

tents. Intents are triggered whenever an application
wants to carry out a task for the purpose of offering
runtime APK binding.

• Services: The components of Android services are
in responsible for the background tasks carried out
while an application is open. Users do not need to
get involved with services.

• Version: This provides information about the APK
file’s most recent version. Typically, when an appli-
cation is upgraded, versions change.

• Dalvik code: These Java bytecodes were converted
into executable code. In more recent Android ver-
sions, the ART (Android.runtime) library has replaced
Dalvik Code. Debugging tools are provided by the
ART library to help identify application issues.

• Component: Android APKs are divided into compo-
nents for better storage. The components store per-
missions, activities, intents, and resource files.

• System Call: To access the resources of the Android
operating system, applications use system calls. They
serve as system-level APIs that can communicate
with system files.

• Runtime Libraries: Debugging and diagnostic tools
are made available via the Android Runtime (ART).

Ranking was done after feature vectors had been gen-
erated from the feature sets. For instance, the param-
eter "permission" is more important than the parame-
ter "version". In a way similar to this, the importance
of each feature parameter is ranked. By ranking the pa-
rameters, it is possible to filter out insignificant features.
The significant feature sets have been converted into bi-
nary graphs once the feature sets have been filtered.

3.1 | Generating Graph from AndroidApplications
The research criteria state that static features of an APK
file, like the string XMLfiles, resource files, AndroidMan-
ifest.xml, and Dalvik files, can be used to efficiently vi-
sualize an APK graph. These files were used to extract
the malware graph from the malicious APKs. By con-
verting files into binary vectors, graphs can be produced.
The components required to generate graph data sets
are extracted from the dataset APK archives. The APK
data has been kept in a binary array vector matrix and
can be interpreted as a binary stream. The 8-bit binary
files generated by disassembling the APK files are then
mapped to the grayscale range of the graph. The vector
array matrix generated from the binary streams is used
to construct the graph, as shown in Figure 2.
The following are the steps to generate the graph:
Step-1: The files Android Manifest.XML, Re-
sources.arsc, Classes.dex, and jar are extracted
from data sets that contain APK archives.
Step-2: The generated files are disassembled into 8-bit
binary files. When the data in the files is transformed
into binary data, binary vector streams are generated.
Step-3: From the binary vector streams, an 8-bit array
vector matrix is generated.
Step-4: The graph is generated using the array vector
matrix, which is then stored in a graph data set.
The generated graph serves as an input for both the
transfer learning and conventional GNN models. The
last few layers of the transfer learning model are up-
dated, while the first few layers are left unchanged be-
cause they provide generalized feature sets.

Ali Raza et al. 7

 Binary Vector Stream 8-Binary Digit Vector Matrix

Feature Extraction and

Selection

1011010101

1101101001

1111010010

 .

 .

 .

11100101101011001011000010010010

10101100

00110101

00001111

001001010011010111110101

011001100001000111111000

110011000100011111101010

 n

Feature Vector

Representation
Graph

Android Applications

Dataset Samples

Traditional GNN Transfer Learning

Training GNN Layer Upgradation of

Novel Method

Malicious

F IGURE 2 APK to Graph Conversion Process

3.2 | Proposed Work
Figure 3 shows the architecture of TL-GNN. APK graphs
can be efficiently visualized by using the static features
of an APK file, such as the resource files, Dalvik files,
Android Manifest.xml, and string XML files. Graphs can
be obtained by transforming the files into binary vec-
tors. The components required to create graph data sets
are extracted from the data set APK archives. The APK
data has been kept in a binary array vector matrix and
has been interpreted as a binary stream. The 8-bit bi-
nary files generated by disassembling the APK files are
then mapped to the grayscale range of the graph. The
binary streams are converted into a vector array matrix
and then used to construct a graph.
In TL-GNN, the GNN model’s first layers remain un-
changed, and its last layers are modified. It is performed
by altering the features in the final layers while keeping
the initial layer alone in Figure 3. The final layer was

changed because it utilized the majority of the dataset,
while the first layer dealt with common features like the
metadata, version, strings, AndroidManifest file, and var-
ious other static features. The first few layers can be
frozen, which drastically reduces the amount of compu-
tational power needed to train the final few layers.
The following steps demonstrate the algorithm’s work-
flow:

• Generating Dalvik bytecode files by decompiling the
applications.

• Extracting all definedmethods from eachDalvik byte-
code file by scanning it, and finally constructing a
node for every method.

• Building an edge between the caller and caller nodes
based on the call relationship by iteratively travers-
ing each method’s call statement (such as "invoke-*")
to identify the call interaction. The method invoca-

8 Ali Raza et al.

Android Applications

Features Extraction and Selection

Manifest

Permission
API Calls

Strings

Value
Intent

Dalvik Code Services

Version Component

Static-Features

System Calls File Services

Runtime

Libraries
Backup Data

Log Files
Network

Activation

Versions
Privileges of

Root

Dynamic-Features

Convert Binary files in to 8-bit

Vector

Conversion of 8-bit Vector to

Graph

Source Model

(GNN)

T
ra

n
sf

er
 L

ea
rn

in
g

Target Model

(TL-GNN)

Benign

Malicious

Freeze Fine-Tuned

Graph

F IGURE 3 Proposed Work.

tion relationship within the entire application is rep-
resented by the approximation graph, which contains
all methods defined in the Dalvik bytecode code.

3.3 | Dataset
In this section, we’ve discussed well-known malware
datasets for model training and classification. Datasets
are listed in Table 2.
TABLE 2 Datasets List.
Dataset Type Family Samples
MALNET [45] 47 696 1.2 Milliion
Malicia [6] - 51 9339
BIG [12] - 9 10868
MALNET-Tiny [45] 5 - 5000

Microsoft provided the dataset [12] as part of the Mal-
ware Classification Challenge (BIG 2015) competition at
theWWW2015/BIG 2015. The Kaggle platform makes
the real dataset easily accessible. Microsoft provided a
sizable malware dataset that was almost 0.5 gigabytes
in size. The dataset includes more than 20,000 malware
samples in .asm (disassembly code) and .byte (byte code)
files. Bytecode files can be transformed into graphs us-
ing conversionmethods. There are 10,868-byte file sam-
ples in 9 families in the collection. The dataset’s descrip-
tion is in the Table 3. The dataset was tested using both
conventional and transfer learning methods.
In a hierarchy of 47 kinds and 696 families, MALNET
[45] contains 1.2 million function call graphs with over
35k edges and 15k nodes, as shown in Table 4.
MALNET-TINY[45], which has 5,000 graphs in 5 differ-
ent types. In order to keep the dataset truly "tiny," we
also set a 5K node limit for each network. The purpose

Ali Raza et al. 9

TABLE 3 Dataset for the Microsoft Malware Classification Challenge (BIG) description.
Class # Type Family Samples
1 Worm Ramnit 1013
2 Backdoor kelihos_ver 3 2942
3 Backdoor Gatak 1013
4 Adware Lollipop 2478
5 Backdoor kelihos_ver 1 398
6 Obfuscated malware Obfuscator.ACY 1228
7 Trojan Downloader Tracur 751
8 Backdoor Simda 42
9 Trojan Vundo 475

ofMALNET-TINY is to enable users to quickly prototype
new ideas because it takes a tiny fraction of the time to
train a new model.
Before we can apply graph-based analysis, the
Malicia[6] samples must be converted from binaries
into graphs. We found that 1,192 samples from the
Malicia dataset didn’t have a family label, and 581
samples from the dataset were not executable files.
After eliminating these samples, we were left with
9,895 binaries from 51 families in the Malicia dataset,
listed in Table 5.
In Algorithm 1, a pseudo-code for a GNN is displayed.
The classifiers are initially trained with relevant training
data and weights in every iteration of sequential learn-
ing. The data weights will be modified for the next it-
eration in accordance with the classifiers’ results from
training. Until classifiers are trained, both operations are
carried out.

4 | RESULTS AND DISCUSSION
A comparison analysis of the results of the several ex-
periments we performed was done. Here, we examine
the results of the experiments that were performed, as
shown in Table 6.

4.1 | Performance Measurement
To evaluate a classification algorithm, the confusion ma-
trix has to be visualized, and specific performance met-

Algorithm 1 GNN Algorithm’s Framework.
Input: Training dataset L = { (e1, f1), ..., (eN , fN) };
Output: Combination of classifiers EN (e) ;

Ensure:
1: Procedure: GNN Algorithm
2: Initialising: w 1

i
= 1/M for all 1 ≤ i ≤ M

3: for x = 1, 2, 3, ...,M do;
4: if x = 1 then
5: GNN classifier training at weighted sample

sets {L, S1};
6: else
7: Transfer the (x − 1) t h GNN’s learning param-

eters to the x t h GNN classifier;
8: The x t h GNN classifier is trained by the

weighted sample set;
9: end if

10: Determine the predicted output category for the
P classes of the xth GNN classifier pk x (e) , where k
= 1, 2,..., P;

11: Calculate the x t h classifier’s training error, εx ac-
cording to (8);

12: Based on εx , assign the classifier the weight αx
using (11);

13: Normalise the sample weight Sx+1 and modify
the sample weight Sx−1 in accordance with px

k
(e) ;

14: end for

10 Ali Raza et al.

TABLE 4 MALNET Dataset’s statistical description for the nine major graph types.
Node Degree Edge

Type Family Graph mean min std max mean min std max mean min std max
Downloader 7 5k 20K 37 28K 107K 46K 37 63K 321K 1.68 0.96 0.66 3.53
Addisplay 38 17K 13K 37 15K 98K 28K 37 34K 246K 1.87 0.92 0.37 4.38
Spr 46 14k 28K 12 21K 169K 67K 7 52K 369K 2.27 0.58 0.44 4.70
Trojan 441 179K 15K 5 18K 228K 34K 4 42K 530K 2.05 0.58 0.52 6.74
benign 1 79K 3K5 5 30K 552K 79K 3 74k 2M 2.13 0.58 0.31 5.30
Spyware 19 7k 5k 12 6K 55K 11K 7 14K 121K 1.95 0.58 0.46 4.27
Adware 250 884K 14K 7 16K 221K 31K 4 38K 605K 2.21 0.50 0.36 6.24
Riskware 107 32K 12K 5 16K 173K 30K 4 39K 334K 2.16 0.50 0.56 5.42
Exploit 13 6K 24K 19 14K 102K 45K 14 30K 250K 1.88 0.74 0.33 3.34

TABLE 5 Description of Malicia Dataset.
Family Size Samples
cleanman small 32
CLUSTER:46.105.131.121 small 20
securityshield large 150
CLUSTER:85.93.17.123 small 45
zbot large 2167
CLUSTER:astaror small 24
CLUSTER:newavr small 29
winwebsec large 5852
CLUSTER:positivtkn.in.ua small 14
cridex small 74
harbot small 53
smarthdd small 68
other(38 families) small 93

rics must be calculated. These will make it easier to ana-
lyze the effectiveness of differentmethods and compare
each one’s performance.

4.1.1 | Confusion Matrix
A table called the ConfusionMatrix compared the actual
class with the predicted class. It displays the number
of samples in each quadrant. It aids in evaluating the

model’s predicted true positives, false positives, false
negatives, and true negatives. This makes it easier to
evaluate how effectively the model processed the clas-
sification.
The prediction matrix for the approach we propose is
displayed in Figure 4. It helps determine how well the
model performed the classification.

TP - True Positive: An effectively classified malware
application.

FP - False Positive: Abenign application thatwasmis-
classified.

TN - True Negative: A benign application that was
accurately classified.

FN - False Negative: An incorrectly classified mal-
ware application.

1200289 5394

8390 11234

Benign Malware

Benign

Malware

F IGURE 4 Prediction Matrix.

Ali Raza et al. 11

TABLE 6 Comparison among the recent related work.
Models Technique Accuracy Precision Recall F1 Measure Predict Time

(%) (%) (%) (%) (ms)
CNN[1] Deep Learning 94.50 94.60 94.50 88.70 20.00
RF[50] Deep Learning 96.00 97.00 95.00 96.00 16.00
ResneXt[42] Deep Learning 98.32 97.64 97.93 97.69 11.19
OEL-AMD[51] Deep Learning 96.95 95.99 94.89 95.98 16.23
TL-GNN Deep Learning 98.87 99.55 97.30 99.42 5.14

4.1.2 | Evaluation Matrix
Here, we calculate the following evaluation metrics
along with the confusion matrix and evaluate various
models using these metrics to determine which model
works best.

Accuracy: The entire percent of the dataset’s in-
stances for which a prediction was accurate. The math-
ematical formula is shown in the equation 1.

Accur acy =
T N +T P

T P +T N + F N + F P
(1)

Precision: From all the predicted values, it is a frac-
tion of the relevant prediction. The mathematical for-
mula is shown in the equation 2.

P r eci si on =
T P

T P + F P
(2)

Recall: The ratio of instances that were accurately
predicted to all instances. The mathematical formula is
shown in the equation 3.

Recal l =
T P

T P + F N
(3)

F-Measure: We can calculate the f-measure with a
combination of twomeasurements (precision and recall).
The mathematical formula is shown in the equation 4.

F − Measur e = 2 ∗ P r eci si on ∗ Recal l
P r eci si on + Recal l

(4)

4.2 | Performance of Models
Compared to the conventional GNNmodel, the transfer
learning approach performs better. The table 7 presents
the performance results. According to table 7, with bet-
ter accuracy, lower computational costs, and no overfit-
ting issues, the transfer learning approach is better than
other methods. Even if the entire model doesn’t have
to be trained from scratch, the transfer learning model’s
rate of convergence is quick.
TABLE 7 Performance Comparison of the Two
Models
Approach Computation Cost Accuracy
Conventional GNN High 96.20
TL-GNN Low 98.87

We compare the suggested model to the baseline ap-
proach using a variety of evaluation metrics to evalu-
ate the model’s performance. In terms of precision, re-
call, precision, accuracy, and F-measure, the results of
the experiment with CNN and the proposed approach
are displayed in Figure 5. The graph shows the algo-
rithm with the most accurate predicted frequency of
use. This graph is generated after the algorithms have
been trained on the datasets to see whether they are
able to correctly detect the application’s features.
The TL-GNN achieved a higher accuracy of 98.87%with
precision of 99.55%, recall of 97.30% and F-measure of
99.42% than the CNN model, which achieved 94.50%
accuracy, 94.60% precision, 94.50% recall, and 88.70%
F-measure.
Figure 6 shows the experimental results of RF and TL-

12 Ali Raza et al.

F IGURE 5 Comparison Between CNN and
TL-GNN.

GNN in terms of precision, accuracy, F-measure, and re-
call. The TL-GNN achieved a higher accuracy of 98.87%
with a precision of 99.55%, a recall of 97.30%, and an F-
measure of 99.42% than the RF model, which achieved
an accuracy of 96.00% with a precision of 97.00%, a re-
call of 95.00%, and an F-measure of 96.00%.

F IGURE 6 Comparison Between RF and TL-GNN.

Figure 7 shows the experimental results of ResneXt and
TL-GNN, which achieved high accuracy of 98.87% with
precision of 99.55%, recall of 97.30%, and F-measure
of 99.42% compared to the ResneXt model, which
achieved accuracy of 98.32% with precision of 97.64%,
recall of 97.93%, and F-measure of 97.69%.
Figure 8 shows the experimental results of RF and TL-
GNN in terms of precision, accuracy, F-measure, and re-
call. The TL-GNN achieved a higher accuracy of 98.87%
with the precision of 99.55%, recall of 97.30%, and F-
measure of 99.42% than the OEL-AMD model, which

F IGURE 7 Comparison Between Resnext and
TL-GNN.

achieved an accuracy of 96.96% with the precision of
95.99%, recall of 94.89%, and F-measure 95.98%.

F IGURE 8 Comparison Between OEL-AMD and
TL-GNN.

Figure 9 compares the outcomes of our approach with
those of the four models: CNN, RF, ResneXt, and OEL-
AMD. As can be seen, our approach had a quicker detec-
tion rate of 5.14 ms. Due to the other methods’ use of
time-consuming, highly complex approaches, their per-
formance was a little lower. Our method reduces the re-
quirement for huge amounts of computation power as
well as the need for new training data.

5 | CONCLUSION AND FUTUREWORK
We conclude all of our work in this section and provide
suggestions for the future.

Ali Raza et al. 13

F IGURE 9 Comparison Between TL-GNN and
other State-of-the-art Models.

Mobile malware has been available since the arrival of
smartphones. Malware applications continued to be
successful in escaping security models as Android in-
creased in popularity. We addressed using traditional
GNN and transfer learning methods to categorize and
detect Android malware. A two-stage system that trans-
forms Android applications into binary graphs was pro-
posed. These graphs serve as the input for the conven-
tional GNN model. We addressed the issues of com-
plexity, overfitting, and computation cost by applying
the transfer learning method to the trained model by
freezing the starting layers of the pre-trained model.
The evaluation results show that the transfer learning
strategy offers enhanced accuracy of 98.87%, precision
of 99.55%, recall of 97.30%, f1 measure of 99.42%
and a quicker detection rate of 5.14 ms with extremely
few false positives when compared to the conventional
GNN model. We also compared the evaluation results
with those of other approaches. It was shown that trans-
fer learning outperforms conventional methods while
also lowering computation costs.
Future research should provide us with thorough, fine-
grained feature sets for enhanced outcomes. We also
tried to reduce the requirement for high RAM andGPUs,
as well as the issue of overfitting in the event of smaller
data sets, while attempting to overcome the constraints
of the proposed framework employed in our study. The
most important reason for this is that in our study, we
considered both static and dynamic feature sets. Be-
cause static features lack attributes for runtime behav-

ior, new malware strains dynamically change their be-
havior and form to avoid detection methods. The pro-
posed approach is successful in detecting existing mal-
ware, but to maintain the detection approach, fresh sets
of features as well as training layers must be chosen and
transferred to the targeted model. The transfer learning
approach has to be modified for new malware samples,
in contrast to some of the earlier detectors described
above, even though the training time will be reduced
due to the lower computation cost. Novel malware be-
havior, dynamic permissions, resource obfuscation, and
system call obfuscation are just a few of the factors that
affect model updating. The problem of retraining the
target model can be overcome by examining overall be-
havioral features instead of static features. Although
our proposed approach offers good detection accuracy,
we’re going to get beyond those limitations in our next
research to increase the detector’s effectiveness. The
transfer learning approach’s issues with sustainability
and performance deterioration will be the subject of our
next phase.

6 | CONFLICT OF INTERESTS
The authors have no conflicts of interest.

7 | DATA AVAILABILITY
The data will be available upon request from the corre-
sponding author.

8 | CODE AVAILABILITY
The code will be available upon request from the corre-
sponding author.

9 | AUTHORS’ CONTRIBUTIONS
All authors contributed equally to accomplishing this
study. In addition, all authors read and approved the fi-
nal manuscript.

14 Ali Raza et al.

10 | ETHICAL APPROVAL
Not applicable.

11 | CONSENT TO PARTICIPATE
Not applicable.

12 | CONSENT FOR PUBLICATION
Not applicable.

references
[1] Cui Z, Xue F, Cai X, Cao Y, Wang Gg, Chen J. De-

tection of malicious code variants based on deep
learning. IEEE Transactions on Industrial Informatics
2018;14(7):3187–3196.

[2] YuW, Ge L, Xu G, Fu X. Towards neural network based
malware detection on android mobile devices. Cyber-
security systems for human cognition augmentation
2014;p. 99–117.

[3] Gao J, Li L, Kong P, Bissyandé TF, Klein J. Understand-
ing the evolution of android app vulnerabilities. IEEE
Transactions on Reliability 2019;70(1):212–230.

[4] Zhang X, Zhang Y, Zhong M, Ding D, Cao Y, Zhang
Y, et al. Enhancing state-of-the-art classifiers with
api semantics to detect evolved android malware. In:
Proceedings of the 2020 ACM SIGSAC conference
on computer and communications security; 2020. p.
757–770.

[5] AlSobeihy M, Altamimi S, Salem E, Alhazzani H, Alh-
jaile E. Using Machine Learning to Classify Android
Application Behavior. In: 2020 IEEE Asia-Pacific Con-
ference on Computer Science and Data Engineering
(CSDE) IEEE; 2020. p. 1–4.

[6] Bhodia N, Prajapati P, Di Troia F, Stamp M. Transfer
learning for image-based malware classification. arXiv
preprint arXiv:190311551 2019;.

[7] WangW, ZhaoM, Gao Z, Xu G, Xian H, Li Y, et al. Con-
structing features for detecting android malicious ap-
plications: issues, taxonomy and directions. IEEE ac-
cess 2019;7:67602–67631.

[8] Feng P, Ma J, Li T, Ma X, Xi N, Lu D. Android Malware
Detection Based on Call Graph via Graph Neural Net-
work. In: 2020 International Conference on Network-
ing and Network Applications (NaNA) IEEE; 2020. p.
368–374.

[9] Kural OE, Kiliç E, Aksaç C. Apk2Audio4AndMal: Au-
dio BasedMalware FamilyDetection Framework. IEEE
Access 2023;11:27527–27535.

[10] Talha KA, Alper DI, Aydin C. APK Auditor: Permission-
based Android malware detection system. Digital In-
vestigation 2015;13:1–14.

[11] Zhang C, Zhou Q, Huang Y, Tang K, Gui H, Liu F. Auto-
matic Detection of AndroidMalware via Hybrid Graph
Neural Network. Wireless Communications and Mo-
bile Computing 2022;2022.

[12] Farhat H, Rammouz V. Malware classification using
transfer learning. arXiv preprint arXiv:210713743
2021;.

[13] Iadarola G, Martinelli F, Mercaldo F, Santone A. Call
graph and model checking for fine-grained android
malicious behaviour detection. Applied Sciences
2020;10(22):7975.

[14] Saracino A, Sgandurra D, Dini G, Martinelli F. Madam:
Effective and efficient behavior-based android mal-
ware detection and prevention. IEEE Transactions on
Dependable and Secure Computing 2016;15(1):83–
97.

[15] Ni S, Qian Q, Zhang R. Malware identification using
visualization images and deep learning. Computers &
Security 2018;77:871–885.

[16] Levie R, Monti F, Bresson X, Bronstein MM. Cay-
leynets: Graph convolutional neural networks with
complex rational spectral filters. IEEE Transactions on
Signal Processing 2018;67(1):97–109.

[17] Mahindru A, Sangal A. MLDroid—Framework for
Android malware detection using machine learning
techniques. Neural Computing and Applications
2021;33(10):5183–5240.

[18] Ham HS, Choi MJ. Analysis of android malware de-
tection performance using machine learning classi-
fiers. In: 2013 international conference on ICT Con-
vergence (ICTC) Ieee; 2013. p. 490–495.

[19] Urooj B, Shah MA, Maple C, Abbasi MK, Riasat S. Mal-
ware detection: a framework for reverse engineered
android applications through machine learning algo-
rithms. IEEE Access 2022;10:89031–89050.

Ali Raza et al. 15

[20] Molina-Coronado B, Mori U, Mendiburu A, Miguel-
Alonso J. Towards a fair comparison and realistic evalu-
ation framework of android malware detectors based
on static analysis and machine learning. Computers &
Security 2023;124:102996.

[21] Alzaylaee MK, Yerima SY, Sezer S. DL-Droid: Deep
learning based android malware detection using real
devices. Computers & Security 2020;89:101663.

[22] Haq IU, Khan TA, Akhunzada A. A dynamic robust DL-
based model for android malware detection. IEEE Ac-
cess 2021;9:74510–74521.

[23] Fu Z, Ding Y, Godfrey M. An LSTM-Based Malware
Detection Using Transfer Learning. Journal of Cyber-
security 2021;3(1):11.

[24] Qaisar ZH, Li R. Multimodal information fusion for an-
droid malware detection using lazy learning. Multime-
dia Tools and Applications 2022;81(9):12077–12091.

[25] Rammouz V. Using transfer learning for malware de-
tection. PhD thesis, Notre Dame University-Louaize;
2021.

[26] Pektaş A, Acarman T. Deep learning for effective An-
droid malware detection using API call graph embed-
dings. Soft Computing 2020;24:1027–1043.

[27] Xu P, Eckert C, Zarras A. Detecting and categorizing
Android malware with graph neural networks. In: Pro-
ceedings of the 36th annual ACM symposium on ap-
plied computing; 2021. p. 409–412.

[28] Bakour K, Ünver HM, Ghanem R. The Android mal-
ware detection systems between hope and reality. SN
Applied Sciences 2019;1(9):1–42.

[29] D’Angelo G, Palmieri F, Robustelli A, Castiglione A.
Effective classification of android malware families
through dynamic features and neural networks. Con-
nection Science 2021;33(3):786–801.

[30] Bhat P, Behal S, Dutta K. A system call-based an-
droidmalware detection approachwith homogeneous
& heterogeneous ensemble machine learning. Com-
puters & Security 2023;130:103277.

[31] Xu K, Li Y, Deng RH. Iccdetector: Icc-based malware
detection on android. IEEE Transactions on Informa-
tion Forensics and Security 2016;11(6):1252–1264.

[32] Mirzaei O, Suarez-Tangil G, de Fuentes JM, Tapiador
J, Stringhini G. Andrensemble: Leveraging api ensem-
bles to characterize android malware families. In: Pro-
ceedings of the 2019 ACM Asia conference on com-
puter and communications security; 2019. p. 307–
314.

[33] Mercaldo F, Santone A. Deep learning for image-
basedmobilemalware detection. Journal of Computer
Virology and Hacking Techniques 2020;16(2):157–
171.

[34] Mas’ ud MZ, Sahib S, Abdollah MF, Selamat SR, Yu-
sof R, Ahmad R. Profiling mobile malware behaviour
through hybrid malware analysis approach. In: 2013
9th International Conference on Information Assur-
ance and Security (IAS) IEEE; 2013. p. 78–84.

[35] Su X, ZhangD, LiW, Zhao K. A deep learning approach
to android malware feature learning and detection. In:
2016 IEEE Trustcom/BigDataSE/ISPA IEEE; 2016. p.
244–251.

[36] Wang Y, Liu J, Chang X. Assessing transferability of
adversarial examples against malware detection clas-
sifiers. In: Proceedings of the 16th ACM international
conference on computing frontiers; 2019. p. 211–
214.

[37] El-Shafai W, Almomani I, AlKhayer A. Visualized mal-
ware multi-classification framework using fine-tuned
CNN-based transfer learning models. Applied Sci-
ences 2021;11(14):6446.

[38] Singh J, Thakur D, Gera T, Shah B, Abuhmed T, Ali
F. Classification and analysis of android malware im-
ages using feature fusion technique. IEEE Access
2021;9:90102–90117.

[39] Kumar R, Xiaosong Z, Khan RU, Ahad I, Kumar J. Mali-
cious code detection based on image processing using
deep learning. In: Proceedings of the 2018 Interna-
tional Conference on Computing and Artificial Intelli-
gence; 2018. p. 81–85.

[40] KalashM, RochanM, Mohammed N, Bruce ND,Wang
Y, Iqbal F. Malware classification with deep convolu-
tional neural networks. In: 2018 9th IFIP international
conference on new technologies, mobility and secu-
rity (NTMS) IEEE; 2018. p. 1–5.

[41] Singh A, Handa A, Kumar N, Shukla SK. Malware clas-
sification using image representation. In: International
Symposium on Cyber Security Cryptography and Ma-
chine Learning Springer; 2019. p. 75–92.

16 Ali Raza et al.

[42] Go JH, Jan T, Mohanty M, Patel OP, Puthal D, Prasad
M. Visualization approach for malware classification
with resnext. In: 2020 IEEE Congress on Evolutionary
Computation (CEC) IEEE; 2020. p. 1–7.

[43] Casolare R, De Dominicis C, Martinelli F, Mercaldo F,
Santone A. Visualdroid: automatic triage and detec-
tion of android repackaged applications. In: Proceed-
ings of the 15th International Conference on Availabil-
ity, Reliability and Security; 2020. p. 1–7.

[44] Chen S, Xue M, Tang Z, Xu L, Zhu H. Stormdroid: A
streaminglized machine learning-based system for de-
tecting android malware. In: Proceedings of the 11th
ACM on Asia Conference on Computer and Commu-
nications Security; 2016. p. 377–388.

[45] Freitas S, Dong Y, Neil J, Chau DH. A large-scale
database for graph representation learning. arXiv
preprint arXiv:201107682 2020;.

[46] Xu K, Li Y, Deng R, Chen K, Xu J. Droidevolver: Self-
evolving android malware detection system. In: 2019
IEEE European Symposium on Security and Privacy
(EuroS&P) IEEE; 2019. p. 47–62.

[47] Fu X, Cai H. On the deterioration of learning-based
malware detectors for Android. In: 2019 IEEE/ACM
41st International Conference on Software Engineer-
ing: Companion Proceedings (ICSE-Companion) IEEE;
2019. p. 272–273.

[48] Suarez-Tangil G, Dash SK, Ahmadi M, Kinder J, Giac-
into G, Cavallaro L. Droidsieve: Fast and accurate clas-
sification of obfuscated android malware. In: Proceed-
ings of the Seventh ACM on Conference on Data and
Application Security and Privacy; 2017. p. 309–320.

[49] Huang Y, Li X, Qiao M, Tang K, Zhang C, Gui H, et al.
Android-SEM: Generative adversarial network for An-
droid malware semantic enhancement model based
on transfer learning. Electronics 2022;11(5):672.

[50] Zhang H, Luo S, Zhang Y, Pan L. An efficient An-
droid malware detection system based on method-
level behavioral semantic analysis. IEEE Access
2019;7:69246–69256.

[51] Smmarwar SK, Gupta GP, Kumar S, Kumar P. An
optimized and efficient android malware detec-
tion framework for future sustainable computing.
Sustainable Energy Technologies and Assessments
2022;54:102852.

	Introduction
	Literature Review
	Proposed Methodology
	Generating Graph from Android Applications
	Proposed Work
	Dataset

	Results and Discussion
	Performance Measurement
	Confusion Matrix
	Evaluation Matrix

	Performance of Models

	Conclusion and Future Work
	Conflict of Interests
	Data availability
	Code availability
	Authors’ contributions
	Ethical approval
	Consent to participate
	Consent for publication

