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Abstract

Ecological theory holds that tropical forest resistance to hurricanes should increase with stand age and aridity. However, limited

data beyond a handful of long-term monitoring sites makes it hard to link resistance to hurricanes with environmental gradients.

We address this by using trait data for 410 tree species, remote sensing metrics of canopy structure, and 339 plots to assess

whether forest age and aridity mediate the impacts of two hurricanes in Puerto Rico. Hurricanes caused a 45% and 21% decrease

in forest canopy height and cover, respectively, with a 25% increase in tree mortality. Old forest stands in wetter regions as

well as those with tall canopies dominated by low wood density species were the most affected. Interestingly, high resistance to

hurricanes was related to enhanced drought tolerance. These results highlight crucial complexity to include when forecasting

the fate of tropical forests to increasingly stronger hurricanes in a changing climate.

0 3 6 9
MRdead alive (%)

Before After

c)

0.50

0.75

1.00

1.25

0 20 40 60 80

Stand Age (yrs)

W
D

 (
g

 c
m
−
3
)

Life Zone Dry Moist Wet

a)

0.60

0.64

0.68

0.72

2005 2010 2015 2020

Year

W
D

 (
g

 c
m
−
3
)

Scenario Decrease Increase No change

b)

1



P
os
te
d
on

5
O
ct

20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
69
65
16
30
.0
62
48
22
6/
v
1
—

T
h
is

a
p
re
p
ri
n
t
a
n
d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

p < 0.001

0

5

10

Before After

M
R

de
ad

al
iv

e (
%

 y
r−1

)

Total

= 0.1159p < 0.001p = 0.0199p

Dry Moist Wet

Before After Before After Before After
0

5

10

p < 0.001

0.0

0.4

0.8

1.2

Before After

C
an

op
y 

C
ov

er

Total

< 0.001p < 0.001p < 0.001p

Dry Moist Wet

Before After Before After Before After
0.0

0.4

0.8

1.2

p < 0.001

0

10

20

Before After

C
an

op
y 

H
ei

gh
t (

m
)

Total

< 0.001p < 0.001p < 0.001p

Dry Moist Wet

Before After Before After Before After
0

10

20

Hurricane Maria

Wood 
Density
R2: 0.37

Wood 
Density SD

R2: 0.38

Stem Density 
Index

R2: 0.33

Canopy 
Height
R2: 0.51

Δ Canopy
Height
R2: 0.82

Δ Canopy
Cover

R2: 0.45

Δ Mortality 
Rates

R2: 0.16

AridityDiversitySlope

Stand Age

Hurricane Eye 
Distance

Direction - + Estimate 0.10 0.35 0.75 1.00

a)

Indirect

Direct

Arid
ity C

H
Δ 

C
H

Div
ers
ity
Slo

pe

W
D C

W
M

Δ 
C
C

D
is
ta

nc
e H

T

Slo
pe

Sta
nd

 A
ge

-0.2

0.0

0.2

-0.15

-0.10

-0.05

0.00

S
td

. 
E

ff
e

c
ts

 Δ
 M

R
d

e
a

d
a

liv
e

b)

2



 

 

1 

 

I. Title page 1 

Statement of authorship: GVG, JSP, WA, and EH conceived the idea. GVG, JSP, and EH 2 

designed the sampling scheme. GVG and HM performed data collection. JSP, EH, HM, and TEW 3 

contributed data. TR, HM, and GVG performed data curation. GVG performed data analysis with 4 

the input of WA. GVG wrote the first draft of the manuscript. All authors provided feedback on 5 

subsequent versions and edited the manuscript. 6 

Data accessibility: All FIA, LiDAR, and trait data compiled for this work are publicly available 7 

and we indicate such sources in the manuscript. In addition, the hydraulic trait data for this study 8 

will be deposited in the Xylem Functional Traits Database (https://xylemfunctionaltraits.org/) upon 9 

publication. The compiled data associated with each research question and the R code used for 10 

statistical analysis in this study will be deposited in a DRYAD public repository upon acceptance 11 

of the manuscript. We have removed the geospatial information extracted with forest plot 12 

locations from the publicly available data used for statistical analyses due to landowner privacy 13 

rights considered in the United States Food Security Act of 1985 (P.L. 99-198, also known as the 14 

1985 U.S. Farm Bill). 15 

 16 

Title: Aridity and forest age mediate landscape scale patterns of tropical forest resistance 17 

to cyclonic storms 18 

 19 

German Vargas G.; School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, 20 

United States; gevargu@gmail.com  21 

Humfredo Marcano; USDA Forest Service, Southern Research Station, Knoxville, TN 37919, 22 

United States; humfredo.marcano@usda.gov  23 

Tom Ruzycki; Center for Environmental Management of Military Lands, Colorado State 24 

University, Fort Collins, CO 80525, United States; tom.ruzycki@colostate.edu  25 

Tana E. Wood; USDA Forest Service, International Institute of Tropical Forestry, San Juan, PR 26 

00926, United States; tana.e.wood@usda.gov  27 

mailto:gevargu@gmail.com
mailto:humfredo.marcano@usda.gov
mailto:tom.ruzycki@colostate.edu
mailto:tana.e.wood@usda.gov


 

 

2 

 

William R. L. Anderegg; School of Biological Sciences, University of Utah, Salt Lake City, UT 28 

84112, United States; Wilkes Center for Climate Science and Policy, University of Utah, Salt Lake 29 

City, UT 84112, United States; anderegg@utah.edu  30 

Jennifer S. Powers; Department of Plant and Microbial Biology, University of Minnesota, St. Paul, 31 

MN 55108, United States; powers@umn.edu  32 

Eileen H. Helmer; USDA Forest Service, International Institute of Tropical Forestry, San Juan, PR 33 

00926, United States; eileen.helmer@usda.gov 34 

Running title: 35 

Keywords: climate change, drought tolerance, forest inventory analysis, functional diversity, 36 

hurricanes, tree mortality. 37 

Type of article: Letters 38 

Number of words: Abstract (150), Main text (4991) 39 

Number of references: 69 40 

Number of figures: 3 41 

Number of tables: 2 42 

Author for correspondence: 43 

German Vargas G. 44 

School of Biological Sciences 45 

The University of Utah 46 

Telephone: +1 617 459 2792 47 

Email: gevargu@gmail.com 48 

  49 

mailto:anderegg@utah.edu
mailto:powers@umn.edu
mailto:eileen.helmer@usda.gov


 

 

3 

 

II. Abstract page 50 

Ecological theory holds that tropical forest resistance to hurricanes should increase with stand 51 

age and aridity. However, limited data beyond a handful of long-term monitoring sites makes it 52 

hard to link resistance to hurricanes with environmental gradients. We address this by using trait 53 

data for 410 tree species, remote sensing metrics of canopy structure, and 339 plots to assess 54 

whether forest age and aridity mediate the impacts of two hurricanes in Puerto Rico. Hurricanes 55 

caused a 45% and 21% decrease in forest canopy height and cover, respectively, with a 25% 56 

increase in tree mortality. Old forest stands in wetter regions as well as those with tall canopies 57 

dominated by low wood density species were the most affected. Interestingly, high resistance to 58 

hurricanes was related to enhanced drought tolerance. These results highlight crucial complexity 59 

to include when forecasting the fate of tropical forests to increasingly stronger hurricanes in a 60 

changing climate. 61 

  62 
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III. Main text 63 

Introduction 64 

Climate change is expected to cause an increase in the intensity of cyclonic storms, 65 

hereafter hurricanes, in tropical regions due to increases in ocean heat energy (Seneviratne et al. 66 

2021). Hurricanes play a significant role in mediating tropical forest ecosystem processes and 67 

forest structure (Lugo 2008). Predicting the response of tropical forests to changes in hurricane 68 

intensity is a challenging task due to their high biological diversity and environmental complexity 69 

(McLaren et al. 2019; Uriarte et al. 2019; Lin et al. 2020). Given this complexity, forest resistance 70 

to hurricanes is likely to vary across the environmental gradients shaping forest structure and 71 

function. In E.P. Odum’s seminal paper ‘The strategy of ecosystem development,’ he theorizes 72 

that, as ecosystems age, their attributes will favor slower energy exchange with greater 73 

ecosystem homeostasis (e.g. resistance and/or resilience) (Odum 1969). However, this 74 

framework might not fully represent all of the factors mediating tropical forest resistance to 75 

hurricanes across environmental gradients (Vitousek & Reiners 1975; Uriarte et al. 2009; Feng et 76 

al. 2020). It is crucial then to evaluate whether the factors influencing tropical forests’ 77 

characteristics mediate resistance to hurricanes. 78 

During hurricane disturbances, two main mechanisms lead to tree mortality: uprooting 79 

and stem breakage (Lugo 2008). Tall tree species with low wood density (WD) have higher 80 

immediate mortality through either mechanism (Zimmerman et al. 1994; Ogle et al. 2006; Curran 81 

et al. 2008; Uriarte et al. 2019; Taylor et al. 2023). Yet other factors, such as aridity, can influence 82 

traits like WD. This raises the question of whether known patterns of trait variation can mediate 83 

forest resistance to hurricanes irrespective of forest age. It is well known that community-level 84 

patterns of functional traits, such as WD, vary across gradients of water availability (i.e., aridity) 85 

(Bruelheide et al. 2018). For instance, in arid regions plant species tend to show shorter stature, 86 

deep roots, high WD, and xylem tissue resistant to drought stress (Olson et al. 2018; Tumber-87 

Dávila et al. 2022; Vargas G. et al. 2022). These characteristics represent a ‘slow growing-88 

hydraulically safe’ physiological strategy (Reich 2014; Díaz et al. 2016; Oliveira et al. 2021), 89 
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which is associated with higher tree survival during periods of extreme drought (Anderegg et al. 90 

2016). Forest stand age also affects these patterns of trait variation because, in tropical forests, 91 

low WD species usually dominate young stands at the wet end of the aridity spectrum while high 92 

WD species dominate young stands at the dry end (Poorter et al. 2019) (Fig. 1, a). Thus, the 93 

patterns of stand-level plant traits conferring resistance to hurricanes should depend on forest 94 

age and interactions with other environmental filters such as aridity. 95 

Beyond the major effects on tree mortality and changes in forest structure, hurricanes 96 

also impact plant community composition. After a hurricane, there is an increase in the number of 97 

forest gaps (Lugo 2008), potentially favoring fast-growing drought-vulnerable plant species 98 

(Alonso-Rodríguez et al. 2022; Smith-Martin et al. 2022). Changes in the light environment can 99 

also lead to increases in phylogenetic relatedness in the seedling community (Comita et al. 100 

2018). However, in tropical forests located at the dry end of aridity gradients, recruitment after 101 

hurricanes mostly occurs through the re-sprouting of snapped trees, and large re-organizations of 102 

the plant community are rarely seen (Van Bloem et al. 2007; Curran et al. 2008). These lines of 103 

evidence indicate that the trajectory (i.e., increase or decrease) and the rate of change in 104 

functional composition (e.g., trait velocities) after a hurricane may consequently follow many 105 

alternative routes depending on environmental factors and surviving tree species characteristics 106 

(Fig. 1, b) (Lugo 2008; Trugman et al. 2020). The combined effect of forest stand age and climate 107 

on these responses remains uncertain as no study has explored this extensively (Lin et al. 2020). 108 

The factors that contribute to hurricane resistance at broad geographic scales are not yet 109 

fully understood. Recent remote sensing analyses suggest that large reductions in canopy 110 

greenness and increases in non-photosynthetic vegetation may be associated with tall forest 111 

canopies, hurricane exposure, old stand age, or wetter forests (Van Beusekom et al. 2018; Feng 112 

et al. 2020; Hall et al. 2020; Leitold et al. 2022). However, only one study performed a ground 113 

validation of impacts using limited (n < 30) forest plot data in which canopy height was the most 114 

important forest characteristic explaining biomass loss during hurricanes (Hall et al. 2020). This 115 

highlights two major areas that require further research. First, the extent to which remotely 116 
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observed changes are linked to actual tree mortality remains unclear. Second, to our knowledge, 117 

no studies consider forest age and community-level functional traits in determining the severity of 118 

hurricane impacts. 119 

We tested whether remotely sensed losses in canopy height and canopy cover were 120 

linked to an increase in plot forest mortality and investigated whether these patterns differed 121 

depending on the forest’s functional composition, aridity, and age. We leveraged forest basal 122 

area data from a network of 339 long-term permanent inventory plots from Forest Inventory 123 

Analysis (FIA) data in the archipelago of Puerto Rico collected before and after Hurricanes Irma 124 

and Maria. We hypothesized that resistance to hurricane disturbances would increase with aridity 125 

and decrease with stand age, even after accounting for the differences in topographic slope and 126 

proximity to the eye of the storm (Feng et al. 2020). We further hypothesized that aridity would 127 

limit the increase in community-level trait values indicative of vulnerability to drought (i.e., low 128 

WD) following hurricane disturbance. Specifically, we asked: 1) How do climate and stand age 129 

mediate forest diversity, structure, and community-level trait values? 2) How did forest structure, 130 

mortality, community-level traits, and trait velocities change after Hurricanes Irma and Maria in 131 

2017? 3) Do climate and stand age determine the trajectory of trait velocities after the 132 

hurricanes? 4) Are hurricane-related changes in forest mortality directly and indirectly mediated 133 

by community-level traits? 134 

 135 

Materials and methods 136 

Study region and forest inventory 137 

We used the network of 369 long-term permanent plots (0.067 ha each) from the U.S. 138 

Department of Agriculture Forest Service Forest Inventory Analysis Program (FIA) that were 139 

established between 2001-2004 for Puerto Rico, Vieques, Culebra, and U.S. Virgin Islands 140 

(Brandeis et al. 2009). We selected 339 plots with a forest condition class covering >30% of a 141 

given plot’s area (Trugman et al. 2020) and excluded plots in mangrove forests. The selected 142 

plots span a steep rainfall gradient from 700 to 4600 mm, a mean temperature gradient from 19 143 
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to 29 ºC (Daly et al. 2003), and a mosaic of forest stands of different ages recovering from near 144 

total deforestation in the 1950s followed by agricultural land abandonment and further 145 

socioeconomic development (Wadsworth 1950; Birdsey & Weaver 1987; Brandeis et al. 2007). 146 

On the selected plots, we calculated the Shannon diversity index (diversity), basal area in m2 ha-1 147 

(BA), and the ratio between above-ground biomass and stem density (SDI). Dense stands with 148 

small trees have small SDI, while a large SDI indicates forest stands composed of large stems. 149 

We calculated forest mortality as the percentage of dead BA at the end of the interval (BAdead) in 150 

relation to the plot total BA at the beginning of the interval (BAtotal) divided by the time in years 151 

between each census (MRdead/alive in % yr-1) (Equation 1) for each census interval for each plot. 152 

This mortality calculation excluded trees that died from fire or non-natural causes. 153 

𝑀𝑅!"#! #$%&"⁄ = ()*!"#! )*$%$#&⁄ )∗-..
/'0/(

   Equation 1,  154 

 155 

Remote sensing metrics of forest structure 156 

We complemented the FIA data with remotely sensed forest canopy height, cover, and 157 

stand age. We summarized plot-level changes in canopy height and cover from 1-m spatial 158 

resolution maps of those variables for the years 2016 and 2018 developed by Rounds et al. 159 

(2023) from airborne LiDAR data collected by the U.S. Geological Survey. From these maps, we 160 

used average canopy height values of 1-m pixels in each 0.065 ha plot and the proportion of 161 

pixels with forest cover for canopy cover. To determine stand age, we used data combining land-162 

cover maps from the years 1951-2000 with plot status (forest or nonforest) since then (Helmer et 163 

al. 2023).  164 

 165 

Forest functional composition 166 

We characterize functional composition with four plant traits that together indicate 167 

species’ growing strategies (e.g., fast vs. slow) and drought tolerance (Table S1). Fast-slow traits 168 

include wood density (WD) and specific leaf area (SLA), which provide a proxy of species’ 169 
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resource acquisition strategies in which low WD and high SLA indicate a fast-growing acquisitive 170 

strategy (Díaz et al. 2016). Drought tolerance traits include the stem water potentials at leaf turgor 171 

loss point (ΨTLP) and at 50% loss of hydraulic conductivity or 50% accumulation of embolisms 172 

(ΨP50), which describe the thresholds of leaf and xylem function under drought (Vargas G. et al. 173 

2022). While most trait data come from previously published sources, we collected data on 174 

drought tolerance traits for nine species during February-March 2020 (Methods S1). For each 175 

plot, we calculated trait community-weighted means, community-weighted standard deviation, 176 

and the rate of change of traits through time (i.e., ‘trait velocities’). Trait velocities provide 177 

information on the functional trajectories of plant communities in which directionality is associated 178 

with environmental filters such as drought events or successional gradients (Trugman et al. 179 

2020). 180 

 181 

Climatic predictors 182 

We used two complementary metrics to characterize climatic water availability. First, we 183 

referred to a previously published 30-year record of mean annual potential evapotranspiration to 184 

precipitation ratio (Daly et al. 2003), which provides insight into the level of aridity for any specific 185 

plot in the FIA inventory. Second, we calculated the minimum value of the standardized 186 

precipitation evapotranspiration index (SPEImin) for the five years leading up to each FIA census 187 

(Methods S2). This approach allowed us to gauge the intensity of drought during a given census 188 

interval, as drought events can have short-term effects that differ from long-term climate 189 

(Anderegg et al. 2015). By considering both short and long-term climates, we were able to 190 

construct a more nuanced understanding of the climatic drivers of forest characteristics for each 191 

FIA plot. 192 

 193 

Statistical analysis 194 

To test whether stand age and climate mediate forest diversity, structure, and functional 195 

composition, we fitted a series of linear mixed-effect models with the community-weighted means, 196 
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canopy cover, canopy height, SDI, and diversity as response variables, and stand age, aridity, 197 

and SPEImin as fixed effects. In this model, a joint categorical variable that included geological 198 

class (alluvial volcanic sedimentary, karst, serpentine) and forest type for a given life zone (dry, 199 

moist, wet, lower montane), with a total of 12 levels, was used as a random effect given that 200 

forests grouped by these two categorical variables share similarities in species composition and 201 

forest structure (Brandeis et al. 2009). We started by fitting the model with all the possible 202 

interactions among explanatory variables and then selected the model with the lowest AIC. If two 203 

models showed AIC values with a difference < 2, we selected the model with the higher number 204 

of explanatory variables. Predictor variables were standardized to allow comparison of model β 205 

coefficients. For this analysis, we used all the FIA plot data during the last census for a given plot 206 

before September 17th, 2017 (Hurricane Maria). 207 

We identified 180 out of the original 339 plots with inventory data before and after 208 

September 17th, 2017. On these plots, we employed a four-step process to explore the impacts 209 

of hurricanes Irma and Maria. First, we compared values of canopy height, cover, MRdead/alive, 210 

species diversity, and community traits before and after the impact of the hurricanes using a 211 

series of paired Wilcoxon signed rank tests with continuity correction, given the lack of normality 212 

in our response variables. This analysis was complemented with forest-type specific tests for dry, 213 

moist, and wet forests. We excluded lower montane forests from these tests due to the low 214 

sample size (n < 30). We then calculated the rate of change (Δ) of canopy height, cover, 215 

MRdead/alive, and functional traits from the last census before September 17th, 2017 to the census 216 

after that.  217 

Second, we fitted a series of linear mixed models exploring whether ΔMRdead/alive, canopy 218 

cover (ΔCC), and height (ΔCH) were explained by trait community-weighted means, their 219 

standard deviations, proximity to hurricane eye track (obtained from the National Hurricane 220 

Center's Tropical Cyclone Reports, www.nhc.noaa.gov, accessed September 2022) (Fig. S7), 221 

stand age, canopy height, or topographic slope. Additionally, we fitted linear mixed models to 222 

explore whether the ΔCH predicted ΔMRdead/alive and ΔCC. We used the combination of geological 223 

http://www.nhc.noaa.gov/
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classes and life zones as random effects. The models using community-weighted means and 224 

standard deviation were weighted such that plots with higher trait BA coverage (i.e., relative BA of 225 

the species for which we have trait data) had higher weight in the analysis. Because these 226 

models consider only one predictor, we did not standardize the explanatory variables before the 227 

analysis.  228 

Third, we assessed whether climate and stand age explained increases or decreases in 229 

community trait values. To do this, we fitted a generalized mixed-effect model in which the 230 

response variable is binomially distributed where 1 represents decreases in trait values (negative 231 

trait velocity) and 0 increases in trait values (positive trait velocity) after the impacts of the 232 

hurricanes. We fitted the model using a complementary log-log link function and then calculated 233 

the risk ratio as the ratio between the probability of observing a negative trait velocity over the 234 

probability of observing a positive trait velocity. We used the combination of geological classes 235 

and life zones as random effects. 236 

Last, we assessed the direct and indirect effects on forest resistance to hurricane 237 

disturbances using a piecewise structural equation model (SEM) (Lefcheck 2016). We built a 238 

single SEM that included all three metrics of the impact of Hurricane Maria (ΔMRdead/alive, ΔCC, 239 

and ΔCH) as response variables. Direct or indirect predictors included climate (aridity), 240 

topography (proximity to hurricane eye, slope), forest structure (stand age, canopy height, SDI), 241 

species diversity, and functional composition (community-weighted mean and standard deviation 242 

for WD). The selection of predictors was a two-fold process. First, we selected predictors based 243 

on the previous analyses to explain both forest characteristics and hurricane impacts. This 244 

provided an initial structure of hypothesized causal paths in the SEM (Fig. S4). Second, we 245 

selected predictors that were poorly related to each other (Spearman’s rho < 0.5) as 246 

multicollinearity might confound the outcome of the SEM (Garrido et al. 2022). We assessed 247 

model fit using Shipley’s test of directed separation (Shipley 2000). This tests the assumption that 248 

all variables are conditionally independent by calculating Fisher’s C and whether the considered 249 

causal relationships are consistent with the data (p > 0.05) (Lefcheck 2016). High Fisher’s C 250 
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values indicate strong discrepancies between the proposed model and the observed variation in 251 

the data (Shipley 2000; Lefcheck 2016). We then obtained standardized estimates of the direct, 252 

indirect, and mediator effects of the predictors on all the response variables in the model. In all 253 

models with random effects, we calculated the variance explained by the fixed effects (R12 ), and 254 

the variance explained by both fixed and random effects (R32) (Nakagawa & Schielzeth 2013; 255 

Nakagawa et al. 2017). All data management and analyses were done using R 4.2.1 (R Core 256 

Team 2022) with packages tidyverse (Wickham et al. 2019), SPEI (Baquería & Vicente-Serrano 257 

2017), piecewiseSEM (Lefcheck 2016), semeff (Murphy 2022), lmer4 (Bates et al. 2015), and 258 

MuMin (Bartón 2022). 259 

 260 

Results 261 

Drivers of forest structure and function 262 

Aridity and stand age explained variations in forest structure and function: species 263 

diversity, canopy height, canopy cover, and SDI increased with stand age (Table 1). Stand age 264 

effects on canopy height varied based on aridity levels, as evidenced by a strong interaction 265 

effect (Table 1). Canopy height increases less with age in dry regions (~3.5-7 m) than in wetter 266 

ones (~8-20 m). Short-term drought stress (SPEImin) moderately (p = 0.01) affected diversity 267 

(Table 1), in which plots that experienced severe drought conditions (SPEImin < -2) in the five 268 

years before September 2017 were on average 12 % less diverse.  269 

With increasing aridity, there was a 10% increase in community-weighted WD and a 270 

decrease of 8% for ΨTLP and 10% for ΨP50. This can be seen in the dry forests of Southwestern 271 

Puerto Rico and outlying Vieques and Culebra Islands (Fig. S1), where drought tolerant tree 272 

species are more prevalent (average ΨP50: -7.5 MPa, ΨTLP: - 2.9 MPa), contrasting with the wetter 273 

Northeast (average ΨP50: -2.5 MPa, ΨTLP: - 1.7 MPa). As for stand age, older forests had lower 274 

SLA and more negative ΨTLP and ΨP50. Aridity modulated the effects of stand age on WD, SLA, 275 

and ΨTLP, in drier regions community-weighted means did not change with stand age and the 276 

opposite occurred in wetter regions as evidenced by the presence of interaction effects (Table 1). 277 
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 278 

Effects of Hurricanes Irma and Maria 279 

Before September 2017, MRdead/alive averaged 2.7% of forest basal area per year, canopy 280 

height averaged 3.9 m in the dry end and 12 m in the wetter end, and canopy cover averaged 281 

84% (Fig. 2). After hurricanes Irma and Maria, we found strong evidence of a ~25% increase in 282 

MRdead/alive, ~21% decrease in canopy cover, and ~45% decrease in canopy height (Fig. 2) and 283 

the impacts varied among dominant forest types (Fig. 2). We only found evidence of an increase 284 

in the community-weighted standard deviation of SLA in wet forests (Table S2). Additionally, the 285 

probability of a decline in community-weighted mean WD after the hurricanes was lower in drier 286 

areas. (Table S3, Fig S3, & Fig. S4).  287 

 288 

Factors mediating hurricane effects on tropical forests 289 

From the univariate analyses, we found that the main predictors of Δ MRdead/alive were 290 

distance to the hurricane track (e.g., the shorter the distance the greater the increase in 291 

MRdead/alive) and forest stand age (e.g., older stands showed greater increases in MRdead/alive) 292 

(Table 2). Plots in flat terrain suffered major decreases in canopy cover compared with plots on 293 

steep terrain (Table 2). Species diversity and community-weighted standard deviation for WD 294 

were associated with the change in canopy cover, whereas less diverse plots experienced the 295 

biggest reductions in canopy cover (Table 2). Eight out of the 14 variables individually explain 296 

changes in canopy height. First, plots in older forest stands with taller canopies and closer to the 297 

hurricane track showed the greatest reductions in canopy height (Table 2). Second, plots 298 

dominated by species with fast-growing, drought-sensitive trait values (high SLA; low WD, |ΨTLP| 299 

or |ΨP50|) showed the greatest reductions in canopy height. Edaphic conditions and forest types 300 

were only important for the models predicting the change in canopy height (Table 2). 301 

Structural equation models (SEMs) allowed us to quantify direct and indirect drivers of 302 

the effects of hurricane disturbance and the mediators of such effects. The first model included 303 

only the univariate relations shown in SI Appendix Fig S5 and Tables 1 & 2 yielding poor 304 
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goodness of fit (Fisher’s C = 260.47, d.f.= 76, p < 0.0001) (SI Appendix Fig S6). We obtained the 305 

final SEM model (Fisher’s C = 53.43, d.f.= 68, p = 0.902) after updating the model to account for 306 

missing paths found in the test of direct separation and to exclude weak paths (p > 0.1). The final 307 

SEM showed that ΔMRdead/alive was higher in older forest stands that experienced larger losses in 308 

canopy cover (lower ΔCC), were located closest to the eye of the hurricanes, and were on flat 309 

terrain (Fig. 3, a). Canopy height, WD, and the ΔCH had an indirect effect on ΔMRdead/alive in 310 

which forests with short canopies, low WD, and negative ΔCH experienced the highest 311 

ΔMRdead/alive (Fig. 3, b). Interestingly, WD was the common mediator for the paths explaining 312 

these three metrics of hurricane impacts (ΔCC, ΔCH, and ΔMRdead/alive). 313 

 314 

Discussion 315 

Using the FIA plot network, we comprehensively analyzed how aridity and forest age 316 

mediate forest properties conferring resistance to hurricanes. Hurricanes caused a 45% decrease 317 

in canopy height and a 21% decrease in forest canopy cover, leading to a 25% increase in stand-318 

level tree mortality. After considering the proximity of the storms, we found that older forest plots 319 

and those with tall canopies were most affected. Importantly, tall forests dominated by fast-320 

growing, drought-vulnerable tree species (high SLA, low WD, low |ΨTLP|, and low |ΨP50|) were 321 

found in wetter environments. Stands in wetter environments were also 50% more likely to show 322 

a decrease in community-weighted WD than forests located in drier regions. Our findings 323 

emphasize the positive relationship between a community's ability to tolerate drought and its 324 

resistance to hurricanes across broad ecological gradients. These discoveries highlight factors to 325 

take into consideration when forecasting how forests will respond to increasingly severe 326 

hurricanes. 327 

 328 

Variation in forest structure and function 329 

Both aridity and stand age influenced forest properties associated with resistance to 330 

hurricanes. Species diversity increased with stand age but decreased with SPEImin, 331 
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demonstrating strong controls of environmental factors on species diversity even over short 332 

periods (Anderegg et al. 2013; Batllori et al. 2020). Aridity had a negative effect on canopy height, 333 

which underscores the role of water availability in limiting plant size in dry environments (Olson et 334 

al. 2018; Stovall et al. 2019). Canopy height was also affected by the interaction of aridity and 335 

forest age (Table 1). In arid regions of Puerto Rico, the canopy height of young and old stands 336 

can be similar (~4 m) (Van Bloem et al. 2007). In wetter regions, canopy height increases along 337 

with stand age (Drew et al. 2009). Canopy cover and SDI both increased with age, which was 338 

expected as older forest stands tended to have closed canopies and fewer stems. 339 

We observed increases in community drought tolerance (high WD and more negative 340 

ΨTLP and ΨP50) with aridity, following expected patterns (Vargas G. et al. 2022). However, besides 341 

the sap flux velocity (Bretfeld et al. 2018), to our knowledge, no previous study has linked tropical 342 

forest stand age with community-weighted metrics of drought tolerance. Here we showed that 343 

community-level ΨTLP and ΨP50 became more negative with forest age (Table 1), highlighting 344 

potential linkages between slow-growing species and increased drought resistance as expected 345 

in Odum’s hypothesis (Odum 1969; Reich 2014; Oliveira et al. 2021). Decreases in SLA with 346 

forest age were expected, given that species with a ‘slow’ resource use strategy may dominate 347 

old stands (Díaz et al. 2016; Muscarella et al. 2017). 348 

We also observed an interaction between stand age and aridity for WD, SLA, and ΨTLP. 349 

Trees with a conservative growing strategy dominate young forest stands in arid areas while wet 350 

environments typically show the opposite pattern (Lohbeck et al. 2013; Poorter et al. 2019, 2021). 351 

The interaction effects between aridity and forest age were not present for ΨP50. There are two 352 

possible explanations for this trend. First, in Caribbean arid regions precipitation is fairly low (< 353 

1500 mm yr-1) when compared to other tropical forests (Schwartz et al. 2020), limiting the 354 

presence of drought-sensitive species regardless of forest age (Vargas G. et al. 2021, 2022). 355 

Second, drought-resistant xylem usually has denser wood via increased vessel density and 356 

thickened pit membranes (Isasa et al. 2023).  357 

 358 
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Hurricane impacts across environmental gradients 359 

The hurricane caused a 25% increase in forest mortality rates, a 21% decrease in canopy 360 

cover, and a 45% decrease in canopy height across Puerto Rico (Fig. 2). While the changes in 361 

canopy height and cover were equal among the dominant forest types, increases in mortality 362 

rates were not (Fig. 2). Together with previous remote sensing work (Feng et al. 2020; Hall et al. 363 

2020), these patterns suggest that hurricane impacts are milder in the dry forests. However, 364 

vegetation indices from 30-m satellite imagery do not show the nuances driving the observed 365 

impacts of hurricanes Irma and Maria. While mortality (ΔMRdead/alive) increased with canopy-cover 366 

loss, it was only indirectly related to changes in canopy height (Fig. S5), at least until 2021. Likely 367 

because most stem snapping does not cause tree death (Taylor et al. 2023). These results 368 

highlight the importance of ground validation with extensive plot data such as the FIA database 369 

(Hoque et al. 2017), which addresses the sampling coverage limitations of long-term field 370 

observations (Hall et al. 2020). 371 

 372 

Direct and indirect drivers of hurricane forest damage 373 

The univariate models allowed us to directly link remote sensing metrics of hurricane 374 

impacts with ground-level observations of forest structure and function (Table 2). Forest stands 375 

with greater species diversity and community-level variation in WD lost less canopy cover during 376 

the storms. Although in some cases more diverse forests can experience greater impacts (Tanner 377 

& Bellingham 2006), in Puerto Rico low diversity forests tend to be dominated by non-native tree 378 

species more susceptible to hurricane disturbances (e.g., Spathodea campanulata) (Helmer et al. 379 

2018). Functional strategies were particularly important in determining canopy height reductions. 380 

Stands dominated by fast-growing, drought-vulnerable tree species (high SLA, low WD, low 381 

|ΨTLP|, and low |ΨP50|) showed greater reductions in canopy height. This pattern links remote 382 

sensing observations with classic work on species-specific hurricane responses (Zimmerman et 383 

al. 1994). Additionally, it suggests there might be a tradeoff between fast-growing, hydraulically 384 

vulnerable strategies and resistance to wind disturbances.  385 
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We were only able to detect an effect of aridity on the directionality of trait velocities for 386 

WD. Forest plots in wetter environments showed a higher probability of displaying a decrease in 387 

WD than plots in dry environments (Table S3 & Fig. S3). Though regeneration in wet tropical 388 

forests can favor the recruitment of low WD species (Lohbeck et al. 2013), it is yet to be tested 389 

whether observed patterns are a product of recruitment or a reflection of the surviving plant 390 

community. This uncertainty illustrates the limitations of exploring the impacts of hurricanes on 391 

community-level traits at short temporal scales (< 5 years). It also implies that changes in the 392 

plant community composition might only become apparent over longer periods or when 393 

considering the seedling layer (Comita et al. 2018; Alonso-Rodríguez et al. 2022; Smith-Martin et 394 

al. 2022; Umaña et al. 2023). 395 

From the final SEM model, it was evident that older forest stands that faced a 396 

considerable reduction in canopy cover and were situated on flat terrain closer to the storms' 397 

center, had a significantly higher ΔMRdead/alive (Fig. 3). Such patterns point out three key factors 398 

driving the impacts of hurricanes. First, exposure to hurricane winds plays an important role in 399 

determining the damage during storms (McLaren et al. 2019; Feng et al. 2020; Zhang et al. 400 

2022). This was evidenced by the higher increase in MRdead/alive in forests closer to the hurricane 401 

track and in lowland flat areas compared with steep slopes, some of which may be more 402 

protected from winds (McLaren et al. 2019; Zhang et al. 2022; Helmer et al. 2023). Second, older 403 

forest stands showed greater increases in mortality. This result challenges Odum’s views of 404 

greater homeostasis with increases in the ecosystem age (Odum 1969). In Northeast Puerto 405 

Rico, older forest stands might not or will never reach a stable state due to frequent disturbances 406 

favoring plant communities with a mosaic of both early succession and late succession specialist 407 

tree species (Uriarte et al. 2009). On the other hand, it might be possible that these patterns are 408 

shaped by the widespread presence of non-native species that also tend to have lighter wood, 409 

making them less resistant to hurricanes (Helmer et al. 2018, 2023). In contrast to results from 410 

intensively studied, old forest sites, here younger forests (with widespread species introductions) 411 

showed more homeostasis in that regional CWM traits changed little. Another example of young 412 



 

 

17 

 

forests being more resistant to hurricane disturbance is the disturbance-adapted Sierra palm 413 

forest areas that expanded after Hurricane Georges in 1998. They were more resistant to 414 

Hurricanes Maria and Irma (Zhang et al. 2022). 415 

The indirect effects from the SEM revealed that across Puerto Rico forests with low WD, 416 

tall canopies and large reductions in canopy height showed the largest increases in MRdead/alive 417 

(Fig. 3). Interestingly, WD was the common mediator variable for the observed impacts (ΔCH, 418 

ΔCC, and ΔMRdead/alive). A mediator variable modulates the effect of a given predictor on a 419 

response (MacKinnon et al. 2000). A good example of this can be observed in the effects of CH 420 

and WD on ΔCH (Fig. 3). These results link, for the first time, the well-documented species-421 

specific patterns of hurricane resistance in relation to higher WD and shorter height with 422 

landscape scale responses across aridity gradients obtained from the FIA plot network and 423 

airborne LiDAR (Zimmerman et al. 1994; Ostertag et al. 2005; Ogle et al. 2006; Lin et al. 2018; 424 

Uriarte et al. 2019; Feng et al. 2020; Hall et al. 2020; Helmer et al. 2023). We showed here that 425 

aridity and forest age gradients, plant communities dominated by species with high WD tend to be 426 

shorter in stature and have overall greater resistance to hurricane winds (Fig. 3). These plant 427 

communities also tend to be dominated by species with higher drought tolerance (more negative 428 

ΨTLP & ΨP50) (Fig S8). This evidence suggests that improved drought tolerance could lead to 429 

greater resilience against hurricane disruption, even after accounting for the differences in 430 

proximity to the storm eye (i.e., storm intensity). However, we acknowledge that uncertainties still 431 

exist when considering storm frequency in shaping the observed patterns (Hogan et al. 2018). 432 

 433 

Conclusions 434 

This work allowed us to understand how the interaction between aridity and stand age 435 

mediate forest characteristics that explain landscape scale variability in the impacts of hurricanes 436 

across environmental gradients (Eppinga & Pucko 2018; Uriarte et al. 2019; Zhang et al. 2022; 437 

Umaña et al. 2023) and why LiDAR-based changes in canopy cover better gauge hurricane-438 

related mortality than height changes. We also show that an increase in forest age does not 439 
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necessarily imply increased resistance to hurricanes, which highlights important considerations 440 

when linking ecosystem age with resistance to disturbances (Odum 1969; Uriarte et al. 2009; Lin 441 

et al. 2020). In addition, we propose that the changing climate and projected increased aridity for 442 

tropical regions (Seneviratne et al. 2021) may limit the increase of exploitative drought-sensitive 443 

species that dominate recruitment after hurricanes in wet tropical forests (Smith-Martin et al. 444 

2022; Umaña et al. 2023). Overall, we show that linking successional theory with plant functional 445 

ecology is a promising avenue to identify nuances essential for predicting forests' responses to 446 

increasingly stronger cyclonic storms. 447 
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Tables and Figure legends 658 

Table 1. Results of linear mixed effect models for predicting forest structure and functional 659 

composition metrics before hurricanes Maria and Irma as a function of aridity, stand age (Age), 660 

and short-term drought stress (SPEImin). Forest structure was measured as Shannon diversity 661 

index (Species Diversity), LiDAR-derived canopy height, LiDAR-derived canopy cover, and stem 662 

density index. Functional composition was measured as community-weighted mean wood density 663 

(WD), specific leaf area (SLA), the absolute values of leaf water potential at turgor loss point 664 

(|ΨTLP|), and water potential at 50% loss of conductivity or accumulation of embolisms (|ΨP50|). β 665 

represents the standardized coefficient values and CI the 95% confidence interval. The marginal 666 

R2 (R12 ) represents the variance explained by the fixed effects, and the conditional R2 (R32) is the 667 

variance explained by both fixed and random effects. 668 

Species Diversity Canopy Height 
 Β CI p  β CI p 

Age 0.29 0.22 – 0.36 < 0.001 Age  1.45 0.92 – 1.97 < 0.001 
SPEImin 0.08 0.02 – 0.13    0.009 Aridity -1.27 -2.14 – -0.40    0.004 
𝐑𝐦𝟐  / 𝐑𝒄𝟐 0.20 / 0.40 Age : Aridity -0.91 -1.35 – -0.47 < 0.001 

  R$%  / R&% 0.17 / 0.48 
  
Canopy Cover Stem Density Index 
 Β CI p  β CI p 

Age  0.06 0.04 – 0.09 < 0.001 Age  0.26  0.20 – 0.33 < 0.001 
Aridity -0.03 -0.07 – 0.01    0.108 Aridity -0.09 -0.20 – 0.02    0.108 

Age : Aridity -0.05 -0.07 – -0.03 < 0.001 R$%  / R&% 0.18 / 0.30 
𝐑𝐦𝟐  / 𝐑𝒄𝟐 0.15 / 0.23   

  
WD (g cm-3) SLA (m2 kg-1) 
 Β CI p  β CI p 

Age 0.00 -0.01 – 0.02    0.437 Age -0.77 -1.12 – -0.42 < 0.001 
Aridity 0.06  0.04 – 0.07 < 0.001 Aridity -0.36 -0.88 – 0.16    0.174 

Age : Aridity -0.02 -0.03 – -0.01 < 0.001 SPEImin -0.23 -0.50 – 0.05    0.106 
𝐑𝐦𝟐  / 𝐑𝒄𝟐 0.28 / 0.30 Age : Aridity  0.41  0.12 – 0.69    0.006 

  R$%  / R&% 0.10 / 0.22 
  
|ΨTLP| (MPa) |ΨP50| (MPa)* 
 Β CI p  β CI p 

Age  0.04 -0.01 – 0.08    0.054 Age 0.23 0.09 – 0.38 0.002 
Aridity  0.15  0.11 – 0.20 < 0.001 Aridity 0.25 0.07 – 0.42 0.006 

Age : Aridity -0.06 -0.10 – -0.03 < 0.001 R$%  / R&% 0.14 / 0.15 
𝐑𝐦𝟐  / 𝐑𝒄𝟐 0.27 / 0.28   

*For |ΨP50| we used the plots with a trait coverage of > 35% instead of weighing the analysis by the trait basal area 669 
coverage given the smaller sample size when compared to the other traits. This was done to avoid the presence of 670 
singularities when fitting the model. 671 
 672 
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Table 2. Standardized β coefficients from univariate linear mixed effect models of the changes 673 

(Δ) in mortality rates (MRdead/alive), canopy cover, and canopy height as a function of distance to 674 

hurricane eye (DHT), topographic slope, stand age (SA), canopy height (CH), species diversity, 675 

stem density index (SDI), community-weighted mean and standard deviation (SD) for wood 676 

density (WD), specific leaf area (SLA), leaf water potential at turgor loss point (|ΨTLP|) and water 677 

potential at 50% embolism (|ΨP50|). Marginal R2 (R12 ) and conditional R2 (R32) represent the 678 

variance explained only by fixed effects and by both fixed and random effects respectively. 679 

 Δ MRdead/alive Δ Canopy Cover Δ Canopy Height 
 β R$%  R'% p β R$%  R'% p β R$%  R'% p 
DHT -0.1183 0.05 0.07 0.0040 0.0095 0.02 0.12 0.1413 0.3254 0.04 0.20 0.0196 
Slope -0.0705 0.02 0.05 0.0784 0.0137 0.03 0.10 0.0171 -0.1865 0.01 0.26 0.1295 
SA 0.1246 0.05 0.13 0.0021 -0.0003 0.00 0.08 0.9627 -0.2961 0.03 0.32 0.0181 
CH 0.0163 0.00 0.01 0.6956 -0.0021 0.00 0.09 0.7368 -1.5066 0.79 0.79 0.0001 
Diversity 0.0217 0.00 0.02 0.5859 0.0152 0.04 0.08 0.0079 -0.0151 0.00 0.26 0.9018 
SDI -0.0336 0.00 0.02 0.3952 -0.0059 0.01 0.09 0.2987 -0.4596 0.07 0.31 0.0001 
SLA -0.0065 0.00 0.06 0.8730 -0.0092 0.02 0.11 0.1374 -0.4882 0.09 0.32 0.0001 
WD 0.0112 0.00 0.03 0.7894 0.0019 0.00 0.09 0.7660 0.6110 0.14 0.24 0.0001 
|ΨTLP| 0.0550 0.02 0.02 0.1369 0.0031 0.00 0.02 0.6118 0.5205 0.12 0.39 0.0006 
|ΨP50| 0.0606 0.03 0.29 0.2821 0.0107 0.04 0.21 0.2378 0.5765 0.17 0.47 0.0045 
SD-SLA 0.0412 0.01 0.06 0.3293 -0.0004 0.00 0.11 0.9439 -0.1757 0.01 0.29 0.1771 
SD-WD 0.0097 0.00 0.02 0.8061 0.0120 0.03 0.09 0.0345 0.1477 0.01 0.28 0.2139 
SD-|ΨTLP| 0.0598 0.03 0.03 0.1234 0.0086 0.02 0.03 0.1681 0.2520 0.03 0.41 0.0987 
SD-|ΨP50| 0.0708 0.04 0.32 0.1373 0.0091 0.03 0.02 0.2294 0.2320 0.03 0.47 0.1861 
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Fig. 1. Hurricanes act as a major disturbance agent in tropical forests. Panel a) shows the 681 

relation between CWM-WD and forest stand age for three forest types associated with climatic 682 

conditions for a given life zone in Puerto Rico, Vieques, and Culebra islands. Panel b) shows the 683 

hypothesized prediction that hurricanes will reinitiate the functional trajectory, but the resulting 684 

functional composition will depend on the available species pool given the effect of environmental 685 

drivers on forest age (Panel a)). In panel b), points represent CWM-WD through time, the gray 686 

shaded area represents the 95% confidence interval of the CWM-WD, the straight blue line is the 687 

mean trendline of CWM-WD against time, the vertical dashed line is the hurricane impact, and the 688 

three dashed lines represent hypothesized functional trajectories. Panel c) shows mortality rates 689 

(MRdead/alive), measured as the percentage basal area loss during the census interval before and 690 

after Hurricanes Irma and Maria for 179 Forest Inventory Analysis plots in Puerto Rico, Vieques, 691 

and Culebra islands. Additional maps were produced for community-weighted traits (Fig. S1). 692 

 693 

Fig. 2. Comparison of mortality rates (MRdead/alive), canopy cover, and canopy height before and 694 

after the impacts of Hurricanes Irma and Maria. P-values were obtained using a paired Wilcoxon 695 

signed rank test with continuity correction across all forest types (Total), tropical dry (Dry), tropical 696 

moist (Moist), and tropical wet (Wet). 697 

 698 

Fig. 3. Structural equation model (SEM) to determine the direct and indirect effects mediating tree 699 

mortality during Hurricanes Irma and Maria in Puerto Rico. Panel a) shows a diagram depicting 700 

the causal pathways exploring the effects of climate, topography, and forest function in mediating 701 

the impacts of Hurricane Maria measured as the changes (Δ) in mortality rates (MRdead/alive), 702 

LiDAR-derived canopy cover (CC), and LiDAR-derived canopy height (CH). Complete arrows and 703 

line thickness represent moderate (p < 0.05) to strong (p < 0.001) evidence of an effect, while 704 

dashed lines represent weak (p > 0.05) evidence of an effect but still accounted for in the model. 705 

The R2 in each node represents the conditional R2 (R32), which shows the variance explained by 706 

both fixed and random effects. Panel b) shows the standardized effects of variables with either a 707 
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direct or indirect effect on ΔMRdead/alive. Points represent the median standardized estimate and 708 

error bars represent the 95% confidence interval obtained from 5000 bootstrapped samples. The 709 

gray color shows whether the 95% confidence interval overlaps with zero for a given predictor in 710 

the SEM. Additional direct and indirect standardized effects plots for Δ CC, Δ CH, and CH are in 711 

Fig. S5. 712 


