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José Aleixo1 and Rogério Serôdio1
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The investigation of linear periodic systems is a prominent subject of research within the domain of linear systems theory. In

this context, the state-space realization of such systems is of particular significance. In fact, after successfully treating the

realization problem for time-invariant systems, various researchers have directed their attention toward investigating the case

of linear periodic systems. Meanwhile, in the late 1980s, Jan C. Willems proposed an approach that broadened the range of

systems studied, now referred to as the behavioral approach. This approach views the behavior of a system as its fundamental

element, including all signals that adhere to the system laws (also called system trajectories). More recently, the behavioral

framework has also been extended separately to periodic and quaternionic behavioral systems. Our work consists of considering

linear periodic input/output quaternionic behavioral systems and using recent developments in order to obtain quasi-minimal

and uniform state-space realizations.
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The investigation of linear periodic systems is a prominent subject of research within

the domain of linear systems theory. In this context, the state-space realization of such

systems is of particular significance. In fact, after successfully treating the realization

problem for time-invariant systems, various researchers have directed their attention

toward investigating the case of linear periodic systems. Meanwhile, in the late 1980s,

Jan C. Willems proposed an approach that broadened the range of systems studied,

now referred to as the behavioral approach. This approach views the behavior of a

system as its fundamental element, including all signals that adhere to the system

laws (also called system trajectories). More recently, the behavioral framework has

also been extended separately to periodic and quaternionic behavioral systems.

Our work consists of considering linear periodic input/output quaternionic behav-

ioral systems and using recent developments in order to obtain quasi-minimal and
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1 INTRODUCTION

In the realm of linear systems theory, the state-space realization problem is a well-established fundamental topic for time-

invariant systems. However, in the case of periodic systems, this area remains relatively less investigated. Over the past few

decades, there has been some research yielding results on fast realization algorithms as, for instance, the algorithm proposed

by Aleixo and Rocha1,2. Another area that has received little attention is that of quaternionic linear systems, especially in the

periodic context. Our goal was to merge these two contributions, in order to explore the feasibility of applying the realization

algorithm proposed by Aleixo and Rocha to periodic quaternionic linear systems.

The paper is organized as follows. Section 2 contains the essential background on quaternions necessary to support our approach

along with an overview of the targeted periodic quaternionic linear system intended for realization. Section 3 and Section 4 are

devoted to the introduction of the algorithm proposed by Aleixo and Rocha1,2, as well as its practical implementation using

Python™. Section 5 is devoted to the presentation of a numerical example and the conclusions are left to Section 6.
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2 QUATERNIONS AND QUATERNIONIC SYSTEMS

2.1 Quaternions

Let H = {a + biii + cjjj + dkkk ∶ a, b, c, d ∈ R} be the quaternion field, where iii2 = jjj2 = kkk2 = −1, iiijjj = −jjjiii = kkk, jjjkkk = −kkkjjj = iii,

and kkkiii = −iiikkk = jjj. For qqq = a+ biii+ cjjj + dkkk ∈ H, the conjugate of qqq is defined as qqq = a− biii− cjjj − dkkk. Thus, a, the real part of

qqq, denoted by Re(qqq), is given by a = (qqq + qqq)∕2 and qqqqqq = qqqqqq = a2 + b2 + c2 + d2 ∈ R. The norm of qqq, denoted by |qqq|, is defined

to be
√
qqqqqq. By routine computation, we can show the following basic property.

Theorem 1. For any qqq1, qqq2 ∈ H, qqq1 + qqq2 = qqq1 + qqq2, and qqq1qqq2 = qqq2 qqq1.

As is well known, see Tian3, the real quaternion algebra H is algebraically isomorphic to the matrix algebra through the

bijective map that associates to each quaternion qqq = a + biii + cjjj + dkkk the matrix

!(qqq) =

⎡
⎢⎢⎢⎢⎣

a −b −c −d

b a −d c

c d a −b

d −c b a

⎤
⎥⎥⎥⎥⎦
.

Furthermore, Tian3 proved the following result.

Theorem 2. Let qqq1, qqq2 ∈ H and � ∈ R. Then

(a) qqq1 = qqq2 ⇐⇒ !(qqq1) = !(qqq2).

(b) !(qqq1 + qqq2) = !(qqq1) + !(qqq2).

(c) !(qqq1qqq2) = !(qqq1)!(qqq2).

(d) !(�qqq1) = �!(qqq1).

(e) !(1) = I4.

(f) !(qqq1) = !T (qqq1).

(g) !
(
qqq − 1−1

)
= !−1(qqq1), if qqq1 ≠ 0.

For A =
[
qqqij

]
∈ Hm×n the real matrix representation of the quaternion matrix A is defined to be

Ω(A) =
[
!(qqqij)

]
∈ R

4m×4n. (1)

From (1) and Theorem 2 it is easy to prove the following result.

Theorem 3. Let A ∈ Hm×n, B ∈ Hn×p, and � ∈ R. Then

(a) Ω(In) = I4n.

(b) Ω(AB) = Ω(A)Ω(B).

(c) Ω(AB) = Ω(A)Ω(B).

(d) Ω(AB) = Ω(A)Ω(B).

(e) Ω(A + B) = Ω(A) + Ω(B).

(f) Ω(�A) = �Ω(A).

Due to the non-commutative nature of the quaternion multiplication, some Linear Algebra concepts suffer some modifications.

One such concept that has relevance in this work is the following.
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Definition 1 (Wei et al.4). Let v1, v2,… , vr ∈ Hn be vectors with quaternion entries. The vectors v1, v2,… , vr are left linearly

independent, if for �1, �2,… , �r ∈ H,

�1v1 + �2v2 +⋯ + �rvr = 0

implies �1 = �2 = ⋯ = �r = 0. Otherwise we say that v1, v2,… , vr are left linearly dependent. Similarly, the vectors

v1, v2,… , vr are right linearly independent, if for �1, �2,… , �r ∈ H,

v1�1 + v2�2 +⋯ + vr�r = 0

implies �1 = �2 = ⋯ = �r = 0. Otherwise, we say that v1, v2,… , vr are right linearly dependent.

Another concept is the rank of a quaternion matrix.

Definition 2. Let A ∈ Hm×n. The rank of A is the maximum number of columns of A which are right linearly independent and

is denoted by rank(A).

It can be proved, see Wan5, that the maximum number of right linearly independent columns is equal to the maximum number

of left independent rows.

Definition 3 (Wan5). Let A,B ∈ Hm×n. These matrices are said to be equivalent if exists P ∈ Hm×m and Q ∈ Hn×n such that

A = PBQ.

The following results and respective proofs can be found in Wan5.

Theorem 4. Equivalent matrices have the same rank.

Theorem 5. Let A ∈ H
m×n and rank(A) = r. Then A is equivalent to[

Ir ∗

0(m−r)×r 0(m−r)×(n−r)

]
∈ H

m×n.

Proposition 1. Let A ∈ Hm×n. Then rank(Ω(A)) = 4 rank(A).

Proof. Let A ∈ Hm×n and rank(A) = r. Then, by Theorem 5, A is equivalent to

B =

[
Ir ∗

0(m−r)×r 0(m−r)×(n−r)

]
∈ H

m×n.

Hence, by Theorem 3

Ω(B) =

[
I4r ∗

04(m−r)×4r 04(m−r)×4(n−r)

]
∈ R

4m×4n.

By Theorem 4, we conclude that rank(Ω(B)) = rank(Ω(A)) = 4r.

There is also a full rank matrix decomposition in quaternion matrix algebra. Wang6 presents the next theorem.

Theorem 6. Let A ∈ Hm×n and rank(A) = r. Then there exist B ∈ Hm×r, C ∈ Hr×n with rank(B) = rank(C) = r, such that

A = BC .

2.2 Quaternionic linear systems

The theory of quaternionic systems in the classic state-space approach began to take shape in the early 1980s, thanks to some

significant contributions of Hazewinkel et al.7,8. Subsequently, quaternionic systems underwent a reexamination within the

framework of the behavioral approach, marked by contributions from Pereira et al.9,10.

The periodic case as described in Aleixo and Rocha1,2 for real systems is taken into consideration throughout this work even

though we deal with quaternionic systems since it is possible to view every quaternionic system as a real (or a complex) system

of higher dimension with a special structure. That is, we assume that for a given periodic quaternionic linear system with period

P, m inputs, and p outputs, a minimal n-dimensional time-invariant state-space realization of a lifted system is known and given

by the quadruplet:

F ∈ H
n×n, G ∈ H

n×mP, H ∈ H
pP×n, J ∈ H

pP×mP
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with matrices G, H , and J being partitioned as

G =
[
G1 G2 ⋯ G

P

]
, H =

⎡
⎢⎢⎢⎢⎣

H1

H2

⋮

H
P

⎤
⎥⎥⎥⎥⎦
, J =

⎡
⎢⎢⎢⎢⎣

J1,1 0 ⋯ 0

J2,1 J2,2 ⋯ 0

⋮ ⋮ ⋱ ⋮

J
P,1 J

P,2 ⋯ J
P,P

⎤
⎥⎥⎥⎥⎦

and where the lower block-triangularity of matrix J is inherited by the necessary condition for the existence of a periodic

realization.

3 ALEIXO AND ROCHA ALGORITHM

The algorithm proposed by Aleixo and Rocha introduces the concept of an n-chain (of size s) of matrices 1M,… , sM , each

one holding

rank lM ⩽ n, with l = 1,… , s

such that:

1M ∶=
[

1M
1

1M
2

]
=
[

0Q 1M
2

]
=

⎡
⎢⎢⎢⎢⎣

F G1

H
P

J
P,1

⋮ ⋮

H2 J2,1

⎤
⎥⎥⎥⎥⎦
≡ K1

and
l+1M ∶=

[
l+1M

1
l+1M

2

]
=
[

lQ l+1M
2

]
,

where lQ is a (n + (P − (l + 1)) p) × n matrix such that ∃ lR, lS , and lT satisfying:

lM =

[
lQ

lR

] [
lS lT

]

and

l+1M
2
∶=

⎡
⎢⎢⎢⎢⎣

Gl+1

J
P,l+1

⋮

Jl+2,l+1

⎤
⎥⎥⎥⎥⎦
, l = 1,… , s − 1.

It follows that each matrix lM , with l = 1,… , s, has dimension (n + (P − l) p) × (n + m), while the size of the chain, s, has

maximum value P − 1.

It has been shown by Aleixo and Rocha1,2 that a linear time-invariant system Σ =(F ,G,H, J ), which generates an (n, t)-chain

of size P−1 (with 0 ⩽ t ⩽ max {(P − 1) p, m}), is induced by a P-periodic state-space system Σ(k) =(A(k) , B(k) , C(k) , D(k)),

of state dimension n + t, such that:

B(P − 1) =

[
0t×m

G
P

]
, C(0) =

[
0p×t H1

]
, D(t) = Jt+1,t+1, t = 0,… P − 1

and, consequently, the realization algorithm is completed by specifying

A (t) , t = 0,… , P − 1

B (t) , t = 0,… , P − 2 (2)

C (t) , t = 1,… , P − 1.

Thus, for the computation of the unknowns (2), this chain of matrices must have size P − 1 allowing each matrix lM , for

l = 1,… , P − 1, to be factored as

lM =

[
lQ

C (l)

] [
A (l − 1) B (l − 1)

]
,
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with the remaining matrix A(P − 1) obtained from the last matrix (factorization) of the chain

P−1M =

[
A (P − 1)

C (P − 1)

] [
A (P − 2) B (P − 2)

]
.

4 ALEIXO AND ROCHA ALGORITHM IMPLEMENTATION

In the sequel, we consider the algorithm presented in Aleixo and Rocha1,2.

Aleixo and Rocha’s Algorithm

1: procedure REALIZATION(F ,G,H, J , P )

2: t = 0 and l = 1

3: while l < P − 1 do

4: Construct l

t
M

5: if rank
(
l

t
M

)
⩽ n + t then

6: Increment l

t
M with appropriate number of zeros

7: end if

8: Factorize l

t
M

9: end while

10: return A(⋅), B(⋅), C(⋅), and D(⋅)

11: end procedure

If the software we are using, in this case Python™, natively incorporated the quaternion algebra, we could directly implement

this technique within the computer. However, this is not the current scenario. To handle quaternion computations within the

isomorphic real matrix space and switch back to quaternions, we must account for (1).

When working in the isomorphic real matrix space, three concerns may be seen by looking at the steps in the algorithm

above. First, we must take Proposition 1 into account while calculating the rank. Furthermore, we must also make sure that the

quaternionic structure is maintained while factorizing the lM matrices. For that, we take into consideration a Gaussian-based

transformation of the quaternionic matrices similar to the algorithm proposed by Wang et al.6. Finally, when incrementing a

matrix lM with zeros, we must remember that these zeros are quaternions, and so each zero is represented by a 4×4 nil matrix.

We can come back to the quaternions whenever needed.

In the following section, we present an example where the procedure was implemented as previously stated. However, we

show the matrices that were produced in quaternion form instead.

5 EXAMPLE

Consider the minimal 2-dimensional time-invariant realization of a quaternionic lifted model given by the quadruplet:

F =

[
iii jjj

iii + kkk 1 + jjj + kkk

]
, G =

[
1 iii jjj

2jjj 1 iii

]
, H =

⎡
⎢⎢⎢⎢⎢⎣

1 iii

jjj jjj

7iii kkk

⎤
⎥⎥⎥⎥⎥⎦

, and J =

⎡
⎢⎢⎢⎢⎢⎣

iii 0 0

2jjj 2kkk 0

3 3kkk 3jjj

⎤
⎥⎥⎥⎥⎥⎦

and assume, conformably the partitions made, that P = 3, m = 1, and p = 1.
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Consider matrix 1M given by

1M =

⎡
⎢⎢⎢⎢⎣

F G1

H3 J31

H2 J21

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

iii jjj 1

iii + kkk 1 + jjj + kkk 2jjj

7iii kkk 3

jjj jjj 2jjj

⎤
⎥⎥⎥⎥⎥⎦

.

It is easy to check that, rank
(
1M

)
= 3 > n = 2.

Define a new time-invariant realization with increased dimension n̄ = n + (3 − 2) = 3 as follows:

1F ∶=

⎡
⎢⎢⎣

0 01×2

02×1 F

⎤
⎥⎥⎦
=

⎡
⎢⎢⎢⎣

0 0 0

0 iii jjj

0 iii + kkk 1 + jjj + kkk

⎤
⎥⎥⎥⎦

1G ∶=
[
1G1 1G2 1G3

]
=

[
0 0 0

G1 G2 G3

]
=

⎡
⎢⎢⎢⎣

0 0 0

1 iii jjj

2jjj 1 iii

⎤
⎥⎥⎥⎦

1H ∶=

⎡⎢⎢⎢⎢⎣

1H1

1H2

1H3

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

0 H1

0 H2

0 H3

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

0 1 iii

0 jjj jjj

0 7iii kkk

⎤⎥⎥⎥⎥⎦
and 1J ∶= J .

Now, define a new matrix 1
1
M as:

1
1
M =

⎡
⎢⎢⎢⎢⎣

1F 1G1

1H3 J31

1H2 J21

⎤
⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 iii jjj 1

0 iii + kkk 1 + jjj + kkk 2jjj

0 7iii kkk 3

0 jjj jjj 2jjj

⎤⎥⎥⎥⎥⎥⎥⎦

.

Since rank
(
1
1
M

)
= 3 ⩽ n̄, it is possible to factor this matrix as:

1
1
M =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0

iii jjj 1

iii + kkk 1 + jjj 2jjj

iii kkk 3

jjj jjj 2jjj

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

0 1 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎦
=∶

⎡
⎢⎢⎣

1
1
Q

1
1
R

⎤
⎥⎥⎦
[

1
1
S 1

1
T

]
.

Now, define matrix 2
1
M as:

2
1
M =

⎡
⎢⎢⎣
1
1
Q

1G2

J32

⎤
⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0

iii jjj 1 iii

iii + kkk 1 + jjj 2jjj 1

iii kkk 3 3kkk

⎤
⎥⎥⎥⎥⎥⎦

.
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Since rank
(
2
1
M

)
= 3 ⩽ n̄, one can factor this matrix as:

2
1
M =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0

iii jjj 1

iii + kkk 1 + jjj 2jjj

iii kkk 3

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 −
1

5
−

11

10
iii +

11

5
jjj +

11

10
kkk

0 1 0
7

5
+ 2iii + jjj +

4

5
kkk

0 0 1 −
1

10
+

2

5
iii −

3

10
jjj −

1

5
kkk

⎤
⎥⎥⎥⎥⎥⎦

=∶

⎡
⎢⎢⎣

2
1
Q

2
1
R

⎤
⎥⎥⎦
[

2
1
S 2

1
T

]
.

Thus, we can deduce that the provided lifted model induces a 3-periodic system with a state-space realization of quasi-minimal

(and uniform) dimension 3. The realization is:

A(0) = 1
1
S =

⎡
⎢⎢⎣

0 1 0

0 0 1

0 0 0

⎤
⎥⎥⎦

A(1) = 2
1
S =

⎡
⎢⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎥⎦

A(2) = 2
1
Q =

⎡
⎢⎢⎣

0 0 0

iii jjj 1

iii + kkk 1 + jjj 2jjj

⎤
⎥⎥⎦

B(0) = 1
1
T =

⎡
⎢⎢⎣

0

0

1

⎤
⎥⎥⎦

B(1) = 2
1
T =

1

10

⎡⎢⎢⎢⎣

−2 − 11iii+ 22jjj + 11kkk

14 + 20iii + 10jjj + 8kkk

−1 + 4iii − 3jjj − 2kkk

⎤⎥⎥⎥⎦
B(2) = 1G3 =

⎡
⎢⎢⎣

0

jjj

iii

⎤
⎥⎥⎦

C(0) = 1H1 =
[
0 1 iii

]
C(1) = 1

1
R =

[
jjj jjj 2jjj

]
C(2) = 2

1
R =

[
iii kkk 3

]

D(0) = J11 =
[
iii
]

D(1) = J22 =
[
2kkk

]
D(2)=J33=

[
3jjj

]
.

6 CONCLUSION

As we have shown, quaternion algebra does not need to be computerized to examine the periodic quaternionic linear systems

proposed in this work. Utilizing the isomorphic real matrix representation of quaternions suffices. However, before proceeding

with the full rank decomposition and computing the rank, one must exercise caution. This is because the isomorphism results in

a fourfold increase in the dimensions of all matrices while the algorithm must ensure the preservation of the quaternion structure

of these matrices.
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