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Abstract

The scaling exponent relating the mean and variance of the density of individual organisms in space (i.e. Taylor’s slope: zspace)

is well studied in Ecology, but the analogous scaling exponent for temporal datasets (ztime) is underdeveloped. Previous theory

suggests the narrow distribution of ztime (e.g. typically 1 - 2) could be due to interspecific competition. Here, using 1,694

communities time series, we show that ztime can exceed 2, and reaffirm how this can affect our inference about the stabilizing

effect of biodiversity. We also develop new theory, based on temporal change in the ranks of species abundances, to help account

for the observed ztime distribution. Specifically, we find that communities with minimal turnover in species’ rank abundances

are more likely to have higher ztime. Our analysis provides a deeper mechanistic understanding of how species-level variability

affects our inference about the stability of ecological communities.
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 Abstract: 

 The  scaling  exponent  relating  the  mean  and  variance  of  the  density  of  individual  organisms  in 

 space  (i.e.  Taylor’s  slope:  z  space  )  is  well  studied  in  Ecology,  but  the  analogous  scaling  exponent 

 for  temporal  datasets  (z  time  )  is  underdeveloped.  Previous  theory  suggests  the  narrow  distribution 

 of  z  time  (e.g.  typically  1  -  2)  could  be  due  to  interspecific  competition.  Here,  using  1,694 

 communities  time  series,  we  show  that  z  time  can  exceed  2,  and  reaffirm  how  this  can  affect  our 

 inference  about  the  stabilizing  effect  of  biodiversity.  We  also  develop  new  theory,  based  on 

 temporal  change  in  the  ranks  of  species  abundances,  to  help  account  for  the  observed  z  time 

 distribution.  Specifically,  we  find  that  communities  with  minimal  turnover  in  species’  rank 

 abundances  are  more  likely  to  have  higher  z  time  .  Our  analysis  provides  a  deeper  mechanistic 

 understanding  of  how  species-level  variability  affects  our  inference  about  the  stability  of 

 ecological communities. 
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 Introduction 

 Our  understanding  of  the  temporal  variability  of  populations  or  communities,  which  is  of 

 long-standing  interest  in  ecology  (Anderson  et  al.  1982;  Bahram  et  al.  2015)  ,  often  centers 

 around  a  scaling  relationship  between  the  mean  and  variance  of  species’  abundances  (aka 

 Taylor’s  Law,  1961).  In  a  pioneering  meta-analysis  in  1961,  L.R.  Taylor  proposed  a  general 

 scaling  relationship,  referred  to  as  Taylor’s  (power)  law  (hereafter  TL),  relating  the  variance  (  )  𝑣 

 of  population  density  with  its  mean  (  ):  ,  for  values  of  >0,  z  being  called  TL  slope  or  𝑚  𝑣    =  𝑎𝑚  𝑧  𝑎 

 exponent.  This  scaling  relationship  is  ubiquitously  observed  for  many  taxa  in  nature  (e.g., 

 bacteria,  fish,  plants,  insects,  voles,  etc.),  and  has  also  been  applied  outside  of  ecological  systems 

 (Eisler  et  al.  2008;  Kalyuzhny  et  al.  2014;  Taylor  2019)  .  Although  Taylor’s  law  was  originally 

 developed  for  the  analysis  of  spatial  variation  of  population  density  (Taylor  1961)  ,  it  is  also 

 highly  relevant,  but  less  often  studied,  in  the  context  of  temporal  analyses  of  communities 

 (reviewed  by  Cobain  et  al.  2019).  In  spatial  analyses  of  density  variation  (TL  space  ),  z  space  is  an 

 index  of  the  degree  of  patchiness  of  the  population  density  of  a  single  species  among  sites  (i.e. 

 metapopulations).  Whereas,  in  temporal  analyses  of  density  variation  (TL  time  ),  z  time  is  an  index  of 

 temporal  aggregation  of  the  abundance  fluctuations  of  multiple  species  in  a  community  (i.e., 

 from  the  same  site).  The  z  time  exponent  has  been  useful  for  assessing  population  persistence 

 (Pertoldi  et  al.  2008;  Kalyuzhny  et  al.  2014)  ,  the  stability  of  crop  yields  (Döring  et  al.  2015)  ,  and 

 fluctuations in fish stocks  (Kuo  et al.  2016; Xu  et  al.  2019; Segura  et al.  2021)  . 

 Currently,  understanding  the  importance  of  mean-variance  fluctuation  scaling  (i.e.  z  time  )  for 

 making  inferences  from  community  dynamics  is  limited  by  uncertainty  in  i)  the  distribution  of 

 z  time  in  natural  communities,  ii)  how  z  time  variability  affects  interpretations  of  community  stability, 
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 and  iii)  the  mechanisms  underlying  z  time  variability.  We  address  each  of  three  gaps  (referred  to 

 below  as  G1-G3).  First,  existing  studies  of  natural  communities  have  documented  a  limited  range 

 of  variation  in  z  time  (Cobain  et  al.  2019;  Xu  &  Cohen  2019)  ,  but  with  the  increasing  availability 

 of  long-term  community  time  series  we  can  improve  our  inference  about  the  distribution  of  z  time 

 in nature. 

 Second,  there  is  longstanding  theory  about  how  variation  in  z  time  is  relevant  for  interpreting 

 community  stability  (Cottingham  et  al.  2001;  Kilpatrick  &  Ives  2003;  Kalyuzhny  et  al.  2014; 

 Cobain  et  al.  2019;  Zhao  et  al.  2019)  ,  but  these  interpretations  are  somewhat  sensitive  to  mean 

 variance  scaling.  Importantly,  when  is  greater  than  1,  the  expected  temporal  variance  of  the  𝑧 

 total  community  abundance  is  less  than  that  of  a  single  population  for  that  same  mean  abundance 

 (Fig.  1),  meaning  that  species-level  variance  increases  nonlinearly  in  relation  to  mean 

 abundances.  This  reduced  variance  arises  because  of  the  statistical  averaging  of  independently 

 varying  population  time  series,  which  is  known  as  the  portfolio  effect  concept  (hereafter  PE) 

 (Doak  et  al.  1998;  Schindler  et  al.  2015)  .  PE  has  been  widely  used  to  quantify  the  importance  of 

 species  diversity  for  overall  community  stability  (i.e.,  inverse  of  community  variability,  CV),  but 

 its  interpretation  depends  on  z  time  for  that  community  (Cottingham  et  al.  2001)  .  For  example,  the 

 magnitude  of  the  PE  is  negligible  when  z  time  ~1,  and  increases  with  z  time  (Fig.  1E,  red  line).  This 

 means  that  estimates  of  community  stability  (i.e.  1/CV),  for  a  given  species  richness,  decrease 

 with  the  increase  in  z  time  for  a  community  (Fig.  1E,  black  line).  Importantly,  the  consistently 

 negative  relationship  between  stability  and  over  a  wide  range  of  species  diversity  (Fig.  2A)  𝑧 

 means  that  the  expected  slope  of  the  relationship  between  species  richness  and  stability  decreases 

 substantially  as  z  time  increases  (Fig.  2A,  inset).  Often,  PEs  are  estimated  by  comparing  the  overall 
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 community  variability  with  the  average  variability  of  constituent  populations,  or,  in  a  spatial 

 context,  by  comparing  the  CV  of  overall  the  meta-population  abundance  with  the  average  CVs  of 

 the  subpopulations  (Schindler  et  al.  2010)  .  However,  Anderson  et  al.  (2003)  showed  that  the 

 above-mentioned  approach  is  appropriate  only  for  z  time  =2,  and  they  provided  an  alternate 

 approach accounting for the potential heterogeneity of z among communities. 

 Third,  existing  theory  can  explain  why  z  time  often  varies  between  1  and  2  (Taylor  &  Woiwod 

 1982;  Tokeshi  1995;  Xiao  et  al.  2015)  ,  but  provides  no  general  mechanistic  explanation  for  the 

 entire  empirically  observed  range  of  z  time  .  For  spatial  TL  context,  several  proposed  mechanisms 

 that  explain  variation  in  z  space  have  considered  density  dependence  (Perry  1994)  , 

 density-independent  and  stochastic  population  growth  (Cohen  et  al.  2013)  ,  population  synchrony 

 (Cohen  &  Saitoh  2016)  ,  and  random  sampling  from  skewed  distribution  (Cohen  &  Xu  2015)  . 

 Whereas  for  z  time  proposed  mechanisms  have  considered  interspecific  competition  (Kilpatrick  & 

 Ives  2003)  ,  environmental  variability  (Cohen  &  Saitoh  2016)  ,  correlated  reproduction 

 (Ballantyne  &  J.  Kerkhoff  2007)  ,  sampling  error  (Kalyuzhny  et  al.  2014)  ,  and  limited  sampling 

 effort  (Giometto  et  al.  2015)  .  However,  all  of  these  previous  studies  have  focused  on  explaining 

 why  z  time  is  typically  less  than  2,  and  only  a  few  previous  studies  have  provided  a  mechanistic 

 explanation  for  why  it  can  be  greater  than  2.  In  spatial  models,  z  space  can  be  greater  than  2  due  to 

 synchrony  among  metapopulations  (Reuman  et  al.  2017)  especially  when  they  are  rare  (Ghosh  et 

 al.  2020a)  ,  and  due  to  growing  stochasticity  (Cohen  et  al.  2013)  or  unexpected  changes  in  a 

 smoothly  autocorrelated  environment  (Cohen  2014)  .  In  the  case  of  z  time  ,  only  one  previous  study 

 of  a  fish  community  found  that  environmental  variability  can  lead  to  a  size-based  Taylor’s  slope 

 greater than 2  (Cobain  et al.  2019)  . 
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 In  this  paper,  we  will  address  each  of  those  three  aforementioned  gaps.  First  (for  G1  ),  we 

 estimate  the  distribution  of  z  time  (hereafter  z)  in  nature  by  compiling  thousands  of  long-term  (>20 

 years)  community  time  series  (>15  species).  Second  (for  G2  ),  we  use  this  dataset  to  explore  the 

 consequence  of  variation  in  z  for  interpreting  stability  in  general,  and  the  portfolio  effect  in 

 particular.  Third  (for  G3  ),  we  propose  a  novel  and  general  mechanism  that  can  help  explain  the 

 wide  range  of  z  observed  in  natural  communities.  Our  mechanism  is  based  on  how  species’ 

 rank-abundance  distribution  in  a  community  change  over  time  (MacArthur  1957;  McGill  et  al. 

 2007)  .  Although  the  rank-abundance  curves  are  widely  studied  in  ecology  (Whittaker  1965)  , 

 their  temporal  turnover  has  not  been  previously  explored  in  the  context  of  explaining  variation  in 

 mean-variance scaling among communities (i.e. variability in z). 

 Materials & Methods 

 We  compiled  long-term  abundance  (or  biomass  when  abundance  was  not  available  for  379  plant 

 communities)  annual  time  series  (20  to  57  years)  data  from  a  public  database  (Ghosh  et  al.  2023) 

 for  1,694  communities  in  total,  and  for  multiple  taxa  (e.g.,  birds,  fish,  terrestrial  and  freshwater 

 invertebrates,  phytoplankton,  plants  with  a  minimum  of  15  species  sampled  annually).  We 

 included  species  that  were  present  for  at  least  for  70%  of  the  total  sampling  period,  thus, 

 following  other  studies  (Sasaki  &  Lauenroth  2011;  Valencia  et  al.  2020)  ,  we  focused  on  the 

 dynamics  of  dominant  species  in  communities.  For  each  of  the  1,694  communities,  we  computed 

 the  average  correlation  between  years  (  ),  and  five  additional  metrics  using  the  ecofolio  𝑟 

 R-package  (Anderson  et  al.  2013)  .  They  are  temporal  Taylor’s  slope  (z),  community-level 

 temporal  synchrony  among  species  as  variance  ratio,  VR,  (Loreau  &  de  Mazancourt  2008)  , 
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 temporal  community  stability  (as  CV  -1  ),  and  two  types  of  portfolio  effects  (Anderson  et  al. 

 2013)  ,  PE,  considering  without  (i.e.  based  on  an  average-CV  based  approach)  and  with 

 mean-variance  scaling.  We  also  computed  net  tail-dependence  among  species’  ranks  (i.e. 

 dependence  between  lower  ranks  minus  dependence  between  higher  ranks,  rarest  species  got 

 lowest  rank)  between  any  two  years  of  the  whole  study  period,  using  partial  Spearman 

 correlation  approach  (Ghosh  et al.  2020a, b)  . 

 We  addressed  the  first  gap  (  G1)  by  evaluating  the  wide  variation  in  z  for  the  largest  collection  of 

 such  long-term  natural  communities.  We  also  simulated  communities  with  different 

 combinations  of  richness  (varying  from  30  to  70)  and  z  (varying  from  1  to  3)  to  test  whether  the 

 two  types  of  PE  differ  from  each  other  when  z  is  not  equal  to  2.  We  later  used  both  of  these 

 empirical  and  simulated  communities  to  address  G2  and  verified  how  the  average-CV  based 

 approach  overestimated  PE  when  z<2,  and  underestimated  when  z>2  (results  in  Figs.  2B-3,  see 

 Box  1  for  theoretical  expectations).  We  also  developed  a  rank  abundance  curve  (RAC)  turnover 

 model  to  provide  a  general  mechanism  behind  the  wide  variation  in  z  found  for  natural 

 communities  (addressing  G3  ).  We  then  used  the  model  to  help  us  understand  potential 

 explanations for the observed variation of zin nature (results are shown in Figs. 4D, 5). 

 To  develop  the  model,  we  simulated  three  types  of  communities  with  the  same  number  of  species 

 (  )  and  the  same  between-year  correlation  (  ).  They  are  -  type  I,  Fig.  4A:  having  more  𝑅  𝑟 

 dependence  among  the  dominant  group  of  species  (i.e.,  consistent  upper  ranks  in  RAC  and  more 

 turnover  in  lower  ranks),  type  II,  Fig.  4B:  having  more  dependence  among  the  not-so-common  or 

 rare  group  of  species  (i.e.,  consistent  lower  ranks  in  RAC  and  more  turnover  in  upper  ranks),  and 
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 type  III,  Fig.  4C:  having  no  dependence  in  any  specific  group  (i.e.,  complete  and  random  annual 

 turnover  among  species  ranks).  “Copula”,  a  mathematical  tool  and  a  rank-based  approach,  has 

 been  used  to  compute  tail-dependence  (i.e.,  dependence  in  the  extremely  high  or  low  values) 

 among  two  correlated  ecological  variables  in  past  studies  (Ghosh  et  al.  2020a,  b,  c,  2021;  Walter 

 et  al.  2022)  .  Copulas  make  the  marginal  distribution  uniform  so  that  the  dependence  information 

 remains  unique  on  its  own.  For  example,  with  the  same  sample  set  one ( 𝑥 
 𝑖 
   ,     𝑦 

 𝑖 
);     𝑖    =  1 ,  2 ,    ...,     𝑅 

 can  generate  type  I,  type  II,  and  type  III  dependence  using  three  particular  single-parameter 

 “copula”  families:  Survival  Clayton,  Normal,  Clayton,  respectively  (see  iRho  function  from 

 copula  R-package  for  details  (Yan  2007)  ).  We  used  this  approach  in  the  community  matrix,  ,  𝑀 

 (with  abundance  or  biomass  for  number  of  species  that  are  sampled  for  years;  species  along  𝑅  𝑁 

 columns  and  years  along  rows)  so  that  the  Spearman  correlation  between  any  two  years  are  the 

 same.  Specifically,  we  first  constructed  such  a  community  from  Clayton  family  that  has 

 dependence  in  lower  ranks  (type  II),  and  then  we  permuted  in  such  a  way  to  eliminate  the  𝑀 

 tail-dependence  structure  but  preserve  the  same  between-year  correlation,  (up  to  sampling  𝑟 

 error).  In  doing  so,  this  permutation  generated  a  Normal  copula  (type  III).  Then,  we  again 

 permuted  the  community  matrix  to  get  upper  tail-dependence  (i.e.,  dependence  in  upper  ranks)  𝑀 

 preserving  between-year  correlations  and  leading  to  the  Survival  Clayton  copula  (i.e.  a 

 180-degree  rotation  of  Clayton  family).  We  generated  1,000  surrogates  for  each  type  of 

 community  (see  Simulation_zmorethan2.R  script  from  the  Zenodo  repo: 

 https://doi.org/10.5281/zenodo.8373892  ).  A  similar  algorithm  was  previously  used  in  Spatial 

 Taylor’s  law  context  to  generate  surrogate  communities  with  the  same  correlation  but  different 

 dependence structures among sites  (Ghosh  et al.  2020a)  . 
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 Given  this  set  of  community  types,  we  hypothesized  that  the  third  type  (i.e.  Fig.  4:  Case  III) 

 would  lead  to  z  values  within  the  commonly  observed  range  of  1  and  2,  irrespective  of  the  value 

 of  the  r.  However,  we  also  suspected  that  any  tail-dependencies  in  the  ranks  (e.g.  lower  or  upper 

 tail  dependencies  in  Case  1  and  II)  could  expand  the  range  of  z  both  below  1  and  above  2  (i.e., 

 for  the  Case  I,  II).  To  explore  this,  we  simulated  for  a  given  year-to-year  correlation,  ,  three  𝑟 

 types  of  communities  each  with  1,000  surrogates  (or  replicates),  and  species  richness  =40  𝑅    

 where  we  tracked  species  abundance  for  =22  years.  Therefore,  each  replicate  community  type  𝑁    

 has  the  same  year-to-year  correlation,  ,  and  we  varied  over  a  range  from  0.2  to  0.9  (results  𝑟  𝑟 

 shown  in  Fig.  4D).  and  for  this  simulation  are  chosen  to  have  same  median  values  for  𝑅     𝑁    

 richness and timeseries length found in our dataset, so that we can compare the results. 

 Results 

 Our  data  compilation  confirms  that  most  of  communities  had  values  of  z  within  the  commonly 

 reported  range  from  previous  studies  (i.e.,  between  1  to  2),  but  also  reveals  that  nearly  5%  of 

 communities  had  values  of  z  outside  that  range  (Fig.  3A),  addressing  G1  .  Consistent  with 

 previous  theory,  and  confirmed  with  simulated  community  timeseries  (Fig.  2A),  stability  was 

 higher  for  communities  having  z<2  than  the  communities  with  z>2  (Fig.  3B,  addressing  G2  ). 

 The  positive  effect  of  diversity  (i.e.  richness)  on  stability  was  weaker  (slope  is  less  steep)  for 

 communities  with  z>2.  This  result  highlights  the  potential  need  to  account  for  heterogeneity  in  z 

 values  when  comparing  the  stability  among  communities.  We  additionally  find  that  such 

 heterogeneity  is  important  for  interpreting  stabilizing  mechanisms  of  community  stability,  such 

 as  the  portfolio  effect  (for  G2  ).  Simulated  communities  show  the  limitations  of  previous 

 approaches  (i.e.  based  on  average-CVs  following  Box  1  )  that  overestimate  PE  for  z<2  (Fig.  2B, 
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 solid  lines),  and  the  underestimate  PE  for  z>2  (Fig.  2B,  dashed  lines).  As  expected,  these 

 approaches  converge  to  the  same  answer  when  z=2,  and  so  the  relevance  of  this  improved 

 method  depends  on  how  often  the  mean-variance  scaling  exponent  in  natural  communities 

 deviates  from  2.  Consistent  with  this  previous  theory,  our  empirical  estimates  of  PE  were  higher 

 without  accounting  for  the  mean-variance  scaling  (Fig.  3C),  because  the  majority  of  communities 

 had  z<2.  Comparing  these  two  approaches  (i.e.  with  and  without  accounting  for  mean-variance 

 scaling)  clearly  shows  larger  values  for  PE  without  mean-variance  scaling  (i.e.  green  points, 

 n=1,610,  above  the  diagonal  line,  Fig.  3D)  for  z<2,  whereas  communities  with  z>2  had  larger  PE 

 when  accounting  for  mean-variance  scaling  (i.e.  pink  points,  n=80,  below  the  diagonal  line,  Fig. 

 3D). 

 Our  model  of  RAC  turnover  provides  new  insight  into  explaining  the  wide  variation  observed  in 

 in  our  empirical  dataset  (Figs.  4D,  5),  addressing  G3  .  The  simulation  from  RAC  turnover  model, 

 as  depicted  in  Fig.  4D,  shows  communities  exhibiting  high  annual  turnover  among  all  species 

 had  z  values  within  the  expected  range  (black  solid  points  ~1.5  showed  the  mean  of  1,000 

 estimates,  Case  III).  Moreover,  we  find  that  communities  with  high  turnover  for  any  particular 

 group  (rare:  Case  I,  dominant:  Case  II)  show  a  much  wider  range  of  z.  For  above-average 

 year-to-year  correlation  (  >0.5),  communities  where  rare  species  change  their  ranks  more  𝑟 

 frequently  are  more  likely  to  have  z  less  than  1  (Case  I,  follow  blue  dotted  lines  in  Fig.  4D  after 

 the  crossing  at  =0.5).  Whereas,  communities  in  which  dominant  species  changed  their  ranks  𝑟 

 more  frequently  are  more  likely  to  have  z  greater  than  2  (Case  II,  follow  red  dotted  lines  in  Fig. 

 4D  beyond  =0.5).  The  patterns  are  opposite  below  =0.5,  where  Case  I  and  Case  II  have  a  𝑟  𝑟 

 higher  probability  to  have  z>2,  and  z<1,  respectively.  Our  repeated  simulation  for  different 
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 combinations  of  richness  (  ),  and  time  series  length  (  )  gives  similar  general  finding,  and  is  𝑅  𝑁 

 robust to the choice of both  and  .  𝑅  𝑁 

 When  analysing  empirical  community  time  series,  we  found  that  the  year-to-year  correlation,  ,  𝑟 

 was  often  greater  than  0.5.  This  range  of  led  to  our  expectation,  from  the  above-mentioned  𝑟 

 simulation  result,  that  communities  showing  more  dependence  in  species’  upper  ranks  (Case  I 

 from  Fig.  4D)  would  likely  to  have  z<1,  whereas,  communities  with  more  dependence  in 

 species’  lower  ranks  (Case  II  from  Fig.  4D)  would  likely  to  have  z>2.  Indeed,  our  empirically 

 observed  distribution  of  the  net  tail-dependence  of  communities  is  broadly  in  line  with  our 

 modeling  outcomes  (Fig.  5D).  Specifically,  we  find  higher  z  values  to  be  associated  with 

 communities  that  also  show  more  dependence  in  lower  ranks.  In  our  analysis  of  the  natural 

 communities,  we  interpret  more  negative  values  to  indicate  stronger  dependence  in  upper  ranks 

 (i.e.  dominant  species),  and  less  negative  to  positive  values  mean  increasing  contribution  of 

 dependence  in  lower  ranks  (i.e.  rare  species).  Overall,  the  qualitative  match  between  our 

 simulation  results  in  Fig.  4  and  our  analysis  of  empirical  analysis  in  Fig.  5  support  our 

 predictions.  Specifically,  communities  with  high  annual  turnover  over  their  entire 

 rank-abundance  distribution  tend  to  have  z-values  within  the  range  of  1  and  2,  whereas 

 communities  with  high  annual  turnover  in  just  their  most  dominant  or  more  rare  species  can  have 

 z-values less than 1 or greater than 2. 

 In  our  compilation  of  community  timeseries,  the  species  richness  varies  from  15  to  89 

 (median=40  species,  Fig.  5A),  the  length  of  timeseries  sampled  varies  from  20  to  57  years 

 (median=22  years),  the  correlations  between  years  are  typically  >0.5  (Fig.  5B),  and  the 
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 synchrony  among  species  (as  measured  by  the  variance  ratio)  is  typically  <0.75  (Fig.  5C).  The 

 Variance  Ratio  (VR)  has  a  range  of  (0,  1).  VR  values  close  to  0  implies  less  synchrony  and 

 values  of  1  indicate  perfect  synchrony.  Though  most  data  lies  in  the  bottom-left  box  of  Fig.  5C 

 with  low  synchrony  (VR<0.5,  1<z<2),  there  are  also  some  communities  with  z>2  but  low 

 synchrony (in the top-left box). 

 Discussion 

 Overall,  our  data  compilation,  analysis,  and  simulation  model  allows  us  to  explore  how 

 heterogeneity  in  z  can  affect  inferences  about  stability-diversity  relationships  and  the  portfolio 

 effect  (PE)  (Fig.  3),  and  provides  a  novel  explanation  for  the  wide  distribution  of  temporal 

 Taylor’s  slope  (z)  observed  in  ecological  communities  (Fig.  4).  Previous  work  has  established 

 that  strong  positive  relationships  between  richness  and  stability  are  only  expected  when  z<2  (Fig. 

 3B),  and  that  variability  in  z  among  communities  can  mask  how  we  estimate  the  contribution  of 

 PE  to  community  stability  (Fig.  3C-D).  Although  the  majority  of  empirical  observations  of 

 communities  find  z  between  1  and  2  (Fig.  3A),  large  values  of  z  are  common  enough  to  affect 

 inferences  about  the  causes  of  stability  variation.  For  example,  measuring  the  PE  without 

 considering  the  mean-variance  scaling  relationship  can  lead  to  substantial  overestimates  of 

 stability  when  z<2,  and  increasingly  large  underestimates  when  z>2  (Fig.  2B).  As  the  statistical 

 averaging  effect  is  likely  a  fundamental  mechanism  of  stability  (Zhao  et  al.  2022)  ,  it  is  essential 

 to make accurate assessments in order to support conservation and management efforts. 

 Several  previous  mechanisms  have  been  proposed  to  explain  variability  in  z,  and  have  speculated 

 about  causal  drivers  of  community  stability.  Interspecific  competition  and  environmental 
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 variability,  for  example,  can  explain  some  variation  in  z  that  can  impact  stability  (Kilpatrick  & 

 Ives  2003;  Cobain  et  al.  2019)  .  For  example,  negative  interactions  among  species  (e.g. 

 competition)  is  a  commonly  proposed  mechanism  for  explaining  why  abundant  species  are  less 

 variable  than  expected  given  their  mean  abundance,  leading  to  communities  with  z<2  (Kilpatrick 

 and  Ives  2003).  Here,  our  proposed  mechanism  can  explain  z  values  both  less  than  and  greater 

 than  2  (Fig.  4).  This  implies  there  can  be  multiple  reasons  for  the  observed  range  of  z  values  in 

 natural  communities,  and  also  multiple  explanations,  beyond  simply  competition,  for  why 

 communities  can  both  have  low  synchrony  and  have  z-values  less  than  and  greater  than  two  (Fig. 

 5C). 

 Our  simulations  demonstrate  how  high  turnover  among  all  species’  ranks  (reordering  all  species) 

 can  yield  communities  with  z-values  in  the  range  of  [1,  2],  whereas  group-specific  turnover, 

 namely  rank-inconsistency  only  for  the  dominant  species  or  rare  species  throughout  the  years, 

 can  yield  communities  with  z  values  outside  the  range  of  [1,  2].  Few  previous  studies  have 

 connected  species  abundance  distribution  with  Taylor’s  law  (Ma  2015;  Cohen  2020)  ,  but  doing 

 so  can  reveal  how  changes  in  rank  abundance  distribution  (Fig.  5)  can  impact  our  assessment  of 

 community  stability  (Fig.  3).  Our  results  show  that  monitoring  the  RACs  for  rare  vs.  dominant 

 groups  of  species  can  help  explain  the  broad  range  of  z  observed  in  nature.  There  is  a  long 

 history  of  tracking  RACs  to  understand  community  dynamics  in  response  to  global  change 

 drivers  (Collins  et  al.  2008;  Avolio  et  al.  2015,  2019;  Jones  et  al.  2017)  .  Our  work  suggests  we 

 need  a  better  understanding  of  the  reasons  for  temporal  variation  in  RACs  and  z.  For  a  specific 

 richness,  RAC  can  change  due  to  both  species  reordering  and  changes  in  eveness  without 

 reordering  (  (Collins  et  al.  2008;  Avolio  et  al.  2015,  2019;  Jones  et  al.  2017)  ).  A  previous  study 
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 (Wohlgemuth  et  al.  2016)  highlighted  the  role  of  species  reordering  rather  than  evenness  in 

 maintaining  ecosystem  functioning.  Our  study  also  highlights  that  changes  in  species  reordering, 

 rather  than  eveness,  is  most  likely  to  affect  z  and  hence  how  we  make  inferences  from  observed 

 community dynamics (Figs. 1, 2, and 5). 

 Earlier  studies  also  showed  that  environmental  variability  (e.g.,  temperature,  soil  quality, 

 drought)  can  affect  the  dynamics  of  species  turnover,  and  hence  the  temporal  variation  in  the 

 identity  of  dominant  and  rare  species  in  a  community  (Ulrich  et  al.  2016;  Castillioni  et  al.  2020)  . 

 Changes  in  the  dominance  structure  of  communities  is  expected  due  to  differences  in  species 

 environmental  tolerance  and  competitive  ability  in  a  given  environment  (Shurin  2007)  . 

 Reordering  of  the  identity  of  species  in  rank-abundance  curves  is  also  likely  when  a  community 

 responds  to  environmental  change  (e.g.,  forb  vs  grass  (Hoover  et  al.  2014)  ).  For  example,  in  a 

 long-term  study  on  desert  grassland,  the  reordering  of  which  species  were  dominant  varied 

 through  time  in  response  to  both  pulse  (wildfire)  and  press  (changes  in  Pacific  decadal 

 oscillation)  climatic  perturbations  (Collins  et  al.  2020)  .  There  is  overwhelming  evidence  that 

 environmental  change  can  drive  community  dynamics  that  substantially  alter  RACs  (McCarthy 

 et  al.  2018)  .  However,  more  work  is  clearly  needed  to  test  the  hypotheses  about  how  climatic 

 change,  for  example,  can  alter  the  tail-dependence  in  species’  ranks,  and  whether  mean-variance 

 relationships  are  stable  in  relation  to  their  temporal  Taylor’s  slope  (i.e.  z).  A  recent  study  (Tippett 

 &  Cohen  2020)  showed  seasonal  variation  in  variance-to-mean  relationship  for  all-India  daily 

 rainfall  pattern  (low  during  peak  monsoon,  high  during  otherwise).  Such  mean-variance 

 relationships  in  climatic  factors  might  affect  communities’  mean-variance  scaling  relationship  in 

 a similar way. 
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 In  conclusion,  we  have  shown  that  considering  Taylor’s  law  can  improve  our  understanding  of 

 community  variability,  stability,  portfolio  effects,  and  species  abundance  distribution  over  time. 

 There  are  several  important  insights  from  our  study.  First,  identifying  the  causes  of 

 mean-variance  scaling  of  population  abundances  is  important  for  the  longstanding  challenge  of 

 understanding  relationships  between  diversity  and  stability  of  communities  (McCann  2000)  . 

 Importantly,  greater  species  richness  does  not  necessarily  ensure  more  temporal  stability  if 

 abundant  species  are  more  variable  than  expected,  such  that  communities  have  z>2  (Fig.  3B). 

 Second,  identifying  the  importance  of  portfolio  effects  as  a  stabilizing  mechanism  of 

 communities  can  be  both  over-  or  underestimated  if  the  mean-variance  scaling  relationship  is  not 

 carefully  considered  (Zhao  et  al.  2022)  .  Third,  we  establish  a  novel  and  general  biological 

 mechanism  that  can  help  explain  observed  wide  variation  in  z  (i.e.,  <1  or  >2)  seen  in  natural 

 communities.  We  confirm  our  hypothesis  with  simulated  (i.e.,  from  the  RAC-turnover  model  ; 

 Fig.  4)  and  empirical  data  (i.e.,  from  1,694  long-term  natural  communities;  Fig.  5)  that  temporal 

 turnover  in  RACs  via  species-reordering  is  an  important  factor  determining  the  value  of  z.  This 

 finding  is  consistent  with  earlier  studies  that  showed  global  change  drivers  can  reshape  RACs  via 

 species  reordering  (Avolio  et  al.  2015,  2022)  ,  and  could  be  crucial  for  better  understanding  the 

 mechanism behind the community response to global change drivers. 

 Acknowledgments:  SG  was  supported  by  funding  from  UZH.  BM  was  supported  by  funding 

 from  Eawag,  SNF  (grant  no.  310030-207910),  and  ETH  Board  (blue-green  biodiversity 

 initiative).  We  would  like  to  thank  Dr.  Carlos  Melian  for  the  helpful  discussions  about  Taylor’s 

 law. 
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 Figures: 

 Figure  1:  The  concept  of  temporal  Taylor’s  law:  in  ecological  communities  population 

 abundance  has  a  variance  to  mean  scaling  relationship.  Temporal  variance  can  fluctuate  with  an 

 exponent  (z)  to  the  temporal  mean  -  in  log  scale,  the  relationship  would  be  a  fitted  straight  line  of 

 slope  z.  Taylor’s  slope  (z)  can  be  below  <2,  A  or  >2,  C,  with  z=2  often  considered  as  a  limiting 

 case,  B.  A-C  show  three  representative  species  among  a  total  of  70  species  in  the  community 

 17 

 368 

 369 

 370 

 371 

 372 

 373 

 374 

 375 



 (thinner  lines)  and  total  community  abundance  timeseries  on  the  top  (thicker  lines).  Species  are 

 very  weakly  related  in  each  of  these  simulated  communities  (synchrony  or  variance  ratio  < 

 0.025).  Due  to  the  fluctuation  scaling  relationship,  the  variance  of  total  community  abundance  is 

 often  lower  (symbol  X)  than  the  predicted  value  on  the  dotted  line  for  a  given  community  mean, 

 D.  Higher  value  of  z  results  in  a  larger  difference,  and  lowers  community  stability  (i.e.,  the 

 inverse of variability in total community abundance timeseries), E. 

 Figure  2:  Temporal  Taylor’s  law  slope,  z,  affects  stability  (A)  and  portfolio  effect  (B)  for  three 

 different  levels  of  richness:  R=30,  50,  and  70.  The  diversity-stability  relationship  has  a  steeper 

 positive  slope  for  lower  z,  but  a  weaker  positive  slope  at  higher  z  (inset,  A).  Within  the  feasible 

 set  of  [1,  2]  portfolio  effect  (PE)  computed  based  on  average-CV  (i.e.,  without  mean-variance 

 scaling,  solid  lines,  B)  gives  an  overestimate  of  accurate  measure  of  PE  (i.e.  considering 

 mean-variance  scaling,  dashed  lines,  B).  For  z>2,  PE  without  mean-variance  scaling 

 underestimates the true effort. At z=2, both measures are exactly the same. 
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 Figure  3:  Empirical  observations  verify  the  concepts  of  Fig  2.  The  majority  of  the  communities 

 had  temporal  Taylor’s  law  slope  (z)  <2  (n=1610),  and  5%  of  communities  had  z>2  (n=84)  (A). 

 Stability,  the  inverse  of  variability  in  total  community  abundance  (=1/CV),  was  lower  for 

 communities  with  z>2  and  the  stability-diversity  relationship  had  a  weaker  positive  slope 

 compared  to  communities  that  had  z<2  (B).  Distributions  of  portfolio  effects  computed  with  and 
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 without  mean-variance  relationship  are  depicted  in  C.  For  communities  having  z>2,  the  portfolio 

 effect  due  to  mean-variance  scaling  was  higher  (pink  points  below  the  dotted  1:1  line)  than  the 

 portfolio  effect  if  mean-variance  scaling  had  not  been  considered.  On  the  other  hand,  for 

 communities  with  z<2,  the  pattern  was  opposite  (green  points  above  the  dotted  1:1  line),  i.e.,  a 

 higher estimate for portfolio effect happened without considering mean-variance scaling. 

 Figure  4:  Mechanism  explaining  variation  in  temporal  Taylor’s  law  slope  (z)  for  ecological 

 communities  when  species  show  a  positive  year-to-year  correlation  (  >0)  in  the  RAC-turnover  𝑟 

 model  (see  Materials  &  Methods  ).  In  a  community  where  some  dominant  species  are  always 

 dominant  throughout  the  years  (so  consistent  in  high  rank-abundances)  but  rare  species  show  a 

 more  annual  turnover,  z  could  be  <1  or  >2  depending  on  the  value  of  (Case  I:  A,  the  blue  line  𝑟 

 20 

 398 

 399 

 400 

 401 

 402 

 403 

 404 

 405 

 406 

 407 

 408 

 409 



 in  D).  In  an  opposite  scenario,  in  a  community  where  some  rare  species  are  always  rare 

 throughout  the  years  (so  consistent  in  low  rank-abundances)  but  dominant  species  show  a  more 

 annual  turnover,  z  could  also  be  <1  or  >2  depending  on  the  value  of  (Case  II:  B,  the  red  line  in  𝑟 

 D).  When  in  a  community  all  species  would  fluctuate  in  their  annual  rank  abundance,  1<z<2 

 would  happen,  irrespective  of  values  (Case  III:  C,  the  black  line  in  D).  Simulation  with  𝑟 

 surrogate  communities  (40  species  were  simulated  for  22  years  to  match  the  median  values  of 

 sampled  richness  and  years  from  empirical  communities)  shows  dependence  in  either  rank 

 (lower  or  upper)  can  make  z<1  or  z>2,  whereas  turnover  for  all  species  always  results  in  1<z<2; 

 for  details  see  Materials  &  Methods  .  The  bars  are  due  to  two  standard  deviations  for  the 

 estimates from 1,000 surrogate communities, and plotted around the mean (solid points). 
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 Figure  5:  Empirical  observations  show  results  consistent  with  the  mechanism  from  Fig.  4.  A 

 total  of  1,694  communities  have  richness  in  between  [15,  88],  A,  an  on-average  correlation 

 between  years  >0.5,  B,  and  interspecific  synchrony  (variance  ratio)  <0.75,  C.  Range  of  𝑟  𝑟 

 indicates  z  can  be  greater  than  2  if  ranks  of  rare  species  were  consistent  throughout  years  as 

 shown  for  the  red  line  in  Fig.  4D.  Empirical  communities  also  show  z>2  is  possible  as 

 consistency  or  dependence  increases  in  the  lower  ranks  (Pearson  correlation,  R  ,  from  the  linear 

 regression is significantly positive, shown in panel D). 
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 Box 1:  Quantifying portfolio effect, PE, for a community considering with or without 

 mean-variance fluctuation relationship 

 Let  us  consider  we  are  monitoring  a  community  with  n  number  of  species  for  N  years,  where 

 mean,  ,  and  variance,  ,  of  species  abundance  or  biomass  are  related  via  temporal  Taylor’s  𝑚 
 𝑖 

 𝑣 
 𝑖 

 law slope  :  𝑧 

 ………… (1)  𝑣 
 𝑖 
   =  𝑎  𝑚 

 𝑖 
 𝑧    ;     𝑖 =  1 ,  2 ,...,  𝑛    

 Portfolio  effect,  PE  is  defined  as  the  of  a  single  species  timeseries  compared  to  the  of  𝐶𝑉  𝐶𝑉 

 the total community abundance (or biomass) timeseries. 

 ………… (2)  𝑃𝐸 =     𝐶𝑉 
 𝑠𝑝 

    /  𝐶𝑉 
 𝑐𝑜𝑚 

 Following  the  recipe  given  by  Anderson  et  al.  (Anderson  et  al.  2013)  ,  we  computed  in  two  𝑃𝐸 

 ways:  (i)  type  I:  based  on  the  average  of  species  in  the  community  as  and  (ii)  type  𝐶𝑉  𝑃𝐸 
 𝑎𝑣𝑔𝐶𝑉 

   

 II: considering the effect of the mean-variance relationship as  .  𝑃𝐸 
 𝑚𝑣 

   

 Both types of  have the same denominator, i.e.,  for total community timeseries  𝑃𝐸  𝐶𝑉 

 ………… (3)  𝐶𝑉 
 𝑐𝑜𝑚 

=
 𝑚 

 1 
 𝑧 + 𝑚 

 2 
 𝑧 +.....   + 𝑚 

 𝑛 
 𝑧 

 𝑚 
 1 
+ 𝑚 

 2 
+....   + 𝑚 

 𝑛 
=  𝑖 = 1 

 𝑛 

∑  𝑚 
 𝑖 
 𝑧 

 𝑖 = 1 

 𝑛 

∑  𝑚 
 𝑖 

 For  type  I  average-  based  approach,  is  computed  as  the  average  of  individual  species’  𝐶𝑉  𝐶𝑉 
 𝑠𝑝 

 that leads to following relationship for  :  𝐶𝑉  𝑃𝐸 
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 ………… (4)  𝑃𝐸 
 𝑎𝑣𝑔𝐶𝑉 

=  𝐶𝑉 
 𝑠𝑝 

    /     𝐶𝑉 
 𝑐𝑜𝑚 

=  1 
 𝑛 

 𝑖 = 1 

 𝑛 

∑
 𝑚 

 𝑖 
 𝑧 

 𝑚 
 𝑖 

⎛

⎝

⎞

⎠
×  1 

 𝐶𝑉 
 𝑐𝑜𝑚 

=  1 
 𝑛  𝐶𝑉 

 𝑐𝑜𝑚  𝑖 = 1 

 𝑛 

∑  𝑚 
 𝑖 
( 𝑧  /2 )− 1 

 For  type  II  mean-variance  scaling  approach,  is  computed  as  the  single  species’  ,  as  if  𝐶𝑉 
 𝑠𝑝 

 𝐶𝑉 

 only  one  species  equivalent  to  total  community  (abundance  or  biomass)  is  present.  This  leads 

 to following relationship for  :  𝑃𝐸 

 ………… (5)  𝑃𝐸 
 𝑚𝑣 

=  𝐶𝑉 
 𝑠𝑝 

    /     𝐶𝑉 
 𝑐𝑜𝑚 

=  𝑖 = 1 

 𝑛 

∑  𝑚 
 𝑖 ( ) 𝑧 

 𝑖 = 1 

 𝑛 

∑  𝑚 
 𝑖 

⎛
⎜
⎜

⎝

⎞
⎟
⎟

⎠

×  1 
 𝐶𝑉 

 𝑐𝑜𝑚 
=  1 

 𝐶𝑉 
 𝑐𝑜𝑚  𝑖 = 1 

 𝑛 

∑  𝑚 
 𝑖 ( )( 𝑧  /2 )− 1 

 Now we will compare between two types of  from  Eqs. (4-5), for different values of  .  𝑃𝐸  𝑧 

 Case I: when  ,  𝑧 =  2  𝑃𝐸 
 𝑎𝑣𝑔𝐶𝑉 

    /  𝑃𝐸 
 𝑚𝑣 

=  1 .

 Case II: when z<2, to illustrate say, z=1: 

 then  ,  i.e.,  (see  (Ramanujan  1915)  ).  This  𝑃𝐸 
 𝑎𝑣𝑔𝐶𝑉 

    /  𝑃𝐸 
 𝑚𝑣 

=  𝑖 = 1 

 𝑛 

∑  𝑚 
 𝑖 
− 1/2 

 𝑛 
 𝑖 = 1 

 𝑛 

∑  𝑚 
 𝑖 ( )− 1/2  𝑃𝐸 

 𝑎𝑣𝑔𝐶𝑉 
>  𝑃𝐸 

 𝑚𝑣 

 inequality  indicates  if  we  do  not  consider  the  fluctuation  scaling  relationship,  average  𝐶𝑉 

 based method will overestimate stability. 

 Case III: when z>2, to illustrate say, z=4: then 

 ,  i.e.,  This  inequality  indicates  if  we  do  not  consider  𝑃𝐸 
 𝑎𝑣𝑔𝐶𝑉 

    /  𝑃𝐸 
 𝑚𝑣 

=  1/  𝑛  𝑃𝐸 
 𝑎𝑣𝑔𝐶𝑉 

<  𝑃𝐸 
 𝑚𝑣 

.
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 the fluctuation scaling relationship, average  based method will underestimate stability.  𝐶𝑉 

 Both  Case  II  and  case  III  can  be  verified  trivially  with  mathematical  induction  and  also 

 consistent with the metapopulation context (spatial Taylor’s law;  (Anderson  et al.  2013)  ). 
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