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Abstract

After the vaccine implementation for COVID-19, the WHO set a unified vaccination approach to be adopted by all different

countries. However, given the various constraints including vaccine availability, heterogeneous age distributions, and differing

control measures across countries, questions arise about the optimality of the WHO strategy. In this study, we develop an

age-structured SEIR epidemic model with vaccinated and unvaccinated compartments to optimize age-targeted vaccination

strategies for COVID-19, incorporating realistic constraints. The model equilibria and the basic reproduction number $R -

0$ are checked. Moreover, mathematical formulation and analysis of optimal control problem, are conducted. The model is

calibrated to COVID-19 data and simulated to solve the optimal control problem under various vaccination and distancing

scenarios. Results demonstrate that the optimal strategy strongly depends on the population age distribution and contact

patterns. Findings emphasize the significance of age-specific disease transmission in designing vaccination priorities, particularly

when vaccine supplies are constrained. The model provides a quantitative framework to inform optimal allocation strategies in

a general way that allows to adapt the model for other infectious diseases exhibiting similar features to Covid-19.
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Abstract
After the vaccine implementation for COVID-19, the WHO set a unified vaccination approach to be adopted
by all different countries. However, given the various constraints including vaccine availability, heterogeneous
age distributions, and differing control measures across countries, questions arise about the optimality of
the WHO strategy. In this study, we develop an age-structured SEIR epidemic model with vaccinated and
unvaccinated compartments to optimize age-targeted vaccination strategies for COVID-19, incorporating
realistic constraints. The model equilibria and the basic reproduction number R0 are checked. Moreover,
mathematical formulation and analysis of optimal control problem, are conducted. The model is calibrated to
COVID-19 data and simulated to solve the optimal control problem under various vaccination and distancing
scenarios. Results demonstrate that the optimal strategy strongly depends on the population age distribution
and contact patterns. Findings emphasize the significance of age-specific disease transmission in designing
vaccination priorities, particularly when vaccine supplies are constrained. The model provides a quantitative
framework to inform optimal allocation strategies in a general way that allows to adapt the model for other
infectious diseases exhibiting similar features to Covid-19.

K E Y W O R D S

Optimal Control, epidemiology, Vaccine, COVID-19, age-structured model

1 INTRODUCTION

All over the world, different countries have been affected by the Covid-19 pandemic. The virus has revealed to be quite tricky
to handle specially with factors like overpopulation and hyper-connectivity1. And in less than six months after the detection
of the first cases, the world witnessed the worst health crisis of the this century. The shortage of feedback made it harder to
control the disease without extreme measures: lockdown, closing of the public places... And scientists had to muddle through
the intricacies of the forming bubble with the hope of quick results. Thereafter, people were constrained to nearly two years of
trial and error before the vaccine implementation. Moreover, they were subject to the consequences of the lack of feedback on
whatever strategy chosen for the vaccination2. This led the World Health Organization (WHO) to set a vaccination strategy
that was applied in different countries across the world. The strategy used is a three-step approach to vaccination, where old
individuals, health workers and high-risk groups of all ages, in every country are vaccinated first, followed by the full adult age
group in every country and lastly extended vaccination of adolescents.3 However, in various countries several severe waves
followed the vaccination campaigns4. This highlighted that besides experimental and biological studies, mathematical modeling
and computer sciences are also quite needed while studying any pandemic, specially to face over saturation of the hospitals
that threatened both individuals’ health and countries economics5. The seriousness of the situation, called for the use of all
available tools to face it. Epidemiological models and optimal control were commonly used to provide information useful for
decisions on disease prevention, surveillance, control, treatment and vaccine strategies implementation. This type of models is
applied to several infectious diseases ranging from Influenza to Ebola or the ongoing COVID-19 outbreak6,7,8,9,10,11,12. And
based on the newly-striking Covid-19 pandemic, that showed the importance of quick acting, came the idea of this work. As
a matter of fact, this study offers an epidemiological model that can be applied to the range of infectious diseases presenting

Mathematical Methods in The Applied Sciences 2023;00:1–16 wileyonlinelibrary.com/journal/ © 2023 Copyright Holder Name 1



2 TAYLOR ET AL.

common features of Covid. The model mainly aims to determine population-specific optimal vaccination strategy. The numerical
simulations were conducted using Covid data as a response to the current crisis. The model elaborated is age-structured as
experimental data showed that age is the most associated factor with the risk of hospitalization or death. In fact, while all age
groups are affected by the infection, the incidence of severe forms and mortality is highest among the oldest population group13.
Indeed, age structuring was commonly used when addressing the ongoing Covid-19 topic whether to discuss the effect of age
distribution on the progress and fatality of the disease14,15 or to investigate the effectiveness of the various strategies adopted to
contain the ongoing Covid-1916,17. The choice of this approach is mainly due to the impact of age on two key factors of disease
spread: the immunity of individuals and their contact webs. Verily, the immune system deteriorates with age, losing its capacity
to fight infections and diseases18. What is more, different age groups have different contact webs. Thus, the difference in age
distributions leads to very unlike contact matrices that have a direct impact on infection transmission. Age-structured models
coupled with optimal control served also to provide insight into the best control strategies19. Thus, to recapitulate, the aim of this
work is to create feedback that can be useful for a range of age-dependent infectious diseases in the first part. The second part’s
objective is to use the model created to produce information about the optimal vaccination strategy and check its sensitivity to
external constraints like maximal vaccination threshold, age distribution, and contact.

The model formulated consists of n age groups interacting with each other. Each class has its own mathematical SEIR model
where both vaccinated and unvaccinated categories are presented, as well as its own vaccination rate as the control. For each
class, the optimal vaccination rate is determined under different constraints of maximal doses. The model is then studied as an
optimal control problem where the vaccination rates of each age class were used as the control, with the aim of minimizing the
number of infected cases that necessitate hospitalization. The problem should be set and studied in a general way allowing to
determine the optimal strategies to contain infections for other age-sensitive infectious diseases.

The document is organized as follows: in section 2, the SEIR model is formulated for the general case of n age groups. Section
3 is dedicated to the study of model dynamics. Specifically, it is disease-free equilibrium (DFE) was studied along with the
basic reproductive number. The formulation of the optimal control problem and its results are given in section 4. After proving
the existence of optimal control, the problem was treated numerically using the optimization suite GEKKO20. The numerical
simulations allowed to determine the optimal vaccination strategy under different constraints of maximal vaccination threshold.
They also helped investigate its sensitivity to some external factors like distancing measures and age distribution. The conclusion
is drawn in section 6.

2 STRUCTURED MODEL DESCRIPTION

In this section, we present an age-structured model where n age groups interact with each other: each one with its own SEIR
model for both vaccinated and unvaccinated groups where S, E, I, and R denote respectively the proportions of susceptible,
exposed (asymptomatic infectious), infected (symptomatic infectious) and removed (deceased and recovered) individuals.
Thus, for an age group i ∈ {1, . . . , n}, the susceptible compartment Si loses population through vaccination to the vaccinated
susceptible compartment Sv

i or through exposure to the virus at a rate Fi. These individuals join the exposed Ei doomed to
infection generating two categories of the unvaccinated infected I1i, non-severe cases, and I2i, the severe ones. Similarly, a
proportion of the vaccinated susceptible exits this compartment towards the vaccinated exposed one, Ev

i , through contact with
vaccinated or unvaccinated exposed or infected individuals of all age groups.

A proportion qv
1iE

v
i of the exposed joins the vaccinated infected of type 1, Iv

1i, which includes vaccinated individuals not
suffering from severe COVID-19 cases. While, another proportion qv

2iE
v
i joins the vaccinated infected of type 2, Iv

2i, which
comprises individuals with severe COVID-19 cases. All infected compartments Iki, k = 1, 2 and Iv

ki, k = 1, 2 lose population
through death or recovery (see Figure 1). Thus, for each population i ∈ {1, . . . , n}, the model can be written as follows:
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F I G U R E 1 Diagram of one age class dynamics subject to model (1-10) where Fi =
n∑

j=1

(α1iI1j + α2iI2j + βiEj + αv
1iI

v
1j + αv

2iI
v
2j + βv

i Ev
j )dij

Ṡi = –FiSi – τiSi (1)

Ėi = FiSi – (q1i + q2i)Ei (2)
˙I1i = q1iEi – r1iI1i (3)
˙I2i = q2iEi – r2iI2i (4)

Ṙi = r1iI1i + r2iI2i (5)

Ṡv
i = τiSi – δFiSv

i (6)

Ėv
i = δFiSv

i – (qv
1i + qv

2i)E
v
i (7)

˙Iv
1i = qv

1iE
v
i – r1iIv

1i (8)
˙Iv
2i = qv

2iE
v
i – r2iIv

2i (9)

Ṙv
i = r1iIv

1i + r2iIv
2i (10)

where for all i ∈ {1, ..., n}, αki, k = 1, 2 and αv
ki, k = 1, 2 denote the infection rates of a susceptible by contacting respectively

an unvaccinated and a vaccinated infected of type k, k = 1, 2. Parameters βi and βv
i represent respectively the infection rates of a

susceptible by contacting an unvaccinated and a vaccinated exposed. Parameters dij, j = 1, ..., n is the probability that an individ-
ual of the jth class infects an individual of the ith one. Parameters qki, k = 1, 2 and qv

ki, k = 1, 2 stand for type-k infection rate
among the unvaccinated and vaccinated exposed. Parameters r1i and r2i are the removal rates for I1i and I2i, respectively, and δ

denotes the probability of infection among vaccinated susceptible.At last, Fi =
n∑

j=1

(α1iI1j +α2iI2j +βiEj +αv
1iI

v
1j +αv

2iI
v
2j +βv

i Ev
j )dij

For analysis purposes, it is useful to put the model into its matrix form which is the following:

Ṡ = –A1diag(S)DI1 – A2diag(S)DI2 – βdiag(S)DE – Av
1diag(S)DIv

1
– Av

2diag(S)DIv
2 – βvdiag(S)DEv – diag(τ )S

Ė = A1diag(S)DI1 + A2diag(S)DI2 + βdiag(S)DE + Av
1diag(S)DIv

1
+ Av

2diag(S)DIv
2 + βvdiag(S)DEv – (Q1 + Q2) E

İ1 = Q1E – r1I1

İ2 = Q2E – r2I2

Ṙ = r1I1 + r2I2

Ṡv = –δA1diag(Sv)DI1 – δA2diag(Sv)DI2 – δβdiag(Sv)DE – δAv
1diag(Sv)DIv

1
– δAv

2diag(Sv)DIv
2 – δβvdiag(Sv)DEv – diag(τ )S

Ėv = δA1diag(Sv)DI1 + δA2diag(Sv)DI2 + δβdiag(Sv)DE + δAv
1diag(Sv)DIv

1
+ δAv

2diag(Sv)DIv
2 + δβvdiag(Sv)DEv –

(
Qv

1 + Qv
2

)
Ev

İv
1 = Qv

1Ev – r1Iv
1

İv
2 = Qv

2Ev – r2Iv
2

Ṙv = r1Iv
1 + r2Iv

2
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where, S = (Si)1≤i≤n, E = (Ei)1≤i≤n, Ev = (Ev
i )1≤i≤n, Ik = (Iki)1≤i≤n, R = (Ri)1≤i≤n, Sv = (Sv

i )1≤i≤n, Iv
k = (Iv

ki)1≤i≤n, Rv =
(Rv

i )1≤i≤n, τ = (τi)1≤i≤n, F = (Fi)1≤i≤n, Ak = diag (α1i)1≤i≤n, Av
1 = diag

(
αv

1i

)
1≤i≤n, β = diag (βi)1≤i≤n, βv = diag

(
βv

i

)
1≤i≤n,

Qk = diag (qki)1≤i≤n, Qv
k = diag

(
qv

ki

)
1≤i≤n, rk = diag (rki)1≤i≤n and D = (dij)1≤i,j≤n, for k = 1, 2.

Assumptions:

• Let Pi be the population proportion of class i defined as

Pi = Si + Ei + I1i + I2i + Sv
i + Ev

i + Iv
1i + Iv

2i + Ri + Rv
i .

Each subpopulation, for all i ∈ {1, ..., n}, is closed and Pi is constant. Thus, it can be assumed, without loss of generality, that

n∑
i=1

Pi = 1. (11)

• All parameters of the model are considered positive and constant.
• In this study, absence of immunity loss prohibits individuals from removed compartments Ri and Rv

i to return to the susceptible
compartments Si and Sv

i .

3 ANALYSIS OF THE MODEL WITH CONSTANT CONTROL

In this section, we study the existence of the disease-free equilibrium (DFE) in a particular case where the vaccination rate is
supposed constant.

Proposition 1. The disease-free equilibrium (DFE) of model (1-10), X∗ = (X1, . . . , Xn) where, for all i ∈ {1, . . . , n}, Xi =
(S∗

i , E∗
i , I∗1i, I∗2i, R∗

i , Sv∗
i , Ev∗

i , Iv∗
1i , Iv∗

2i , Rv∗
i ), is given by:

• S∗
i + Sv

i ∗ +R∗
i + Rv

i ∗ = Pi and E∗
i = I∗ki = Ev∗

i = Iv∗
ki = 0, if τi(t) = 0.

• S∗
i = E∗

i = I∗1i = I∗2i = Ev∗
i = Iv∗

1i = Iv∗
2i = 0 and Sv∗

i + R∗
i + Rv∗

i = Pi, if τi(t) > 0.

Proof. For all i ∈ {1, . . . , }, the equilibrium X∗
i is the solution of the following system:

0 = –(Fi + τi)Si

0 = FiSi – (q1i + q2i)Ei

0 = q1iEi – r1iI1i

0 = q2iEi – r2iI2i

0 = r1iI1i + r2iI2i

0 = τiSi – δFiSv
i

0 = δFiSv
i – (qv

1i + qv
2i)E

v
i

0 = qv
1iE

v
i – r1iIv

1i

0 = qv
2iE

v
i – r2iIv

2i

0 = r1iIv
1i + r2iIv

2i

According to the first equation of this system, either Si = 0 or Fi + τi = 0.

• if Fi + τi = 0, then one has τi = Fi = 0 which implies that for all j ∈ {1, . . . , n}, I

Ej = Ev
j = Ikj = Iv

kj = 0,∀j ∈ {1, . . . , n} and k ∈ {1, 2}
Ri = R0

i and R=
i Rv0

i
Si = S0

i and Sv
i = Sv0

i such that S0
i + Sv0

i + R0
i + Rv0

i ) = Pi

• if Si = 0, then one has Fi + τi ≥ 0
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Si = Ei = Ev
i = Iki = Iv

ki = 0, k ∈ {1, 2}
Ri = R0

i and R=
i Rv0

i
Sv

i = Sv
i (0) such that Sv0

i + R0
i + Rv0

i = Pi

Thus, for all i ∈ {1, . . . , n}, an equilibrium point X∗
i of age class i, has one of the following forms

T A B L E 1 This is sample table caption.

If τi = 0 If τi > 0

X∗
i = (Pi, 0, 0, 0, 0, 0, 0, 0, 0, 0) X∗

i = (S0
i , 0, 0, 0, 0, 0, 0, 0, 0, Rv0

i ) X∗
i = (0, 0, 0, 0, Pi, 0, 0, 0, 0, 0)

X∗
i = (0, 0, 0, 0, Pi, 0, 0, 0, 0, 0) X∗

i = (0, 0, 0, 0, R0
i , Sv0

i , 0, 0, 0, 0) X∗
i = (0, 0, 0, 0, 0, Pi, 0, 0, 0, 0)

X∗
i = (0, 0, 0, 0, 0, Pi, 0, 0, 0, 0) X∗

i = (0, 0, 0, 0, 0, Sv0
i , 0, 0, 0, Rv0

i ) X∗
i = (0, 0, 0, 0, 0, 0, 0, 0, 0, Pi)

X∗
i = (0, 0, 0, 0, 0, 0, 0, 0, 0, Pi) X∗

i = (S0
i , 0, 0, 0, R0

i , 0, 0, 0, 0, Rv0
i ) X∗

i = (0, 0, 0, 0, R0
i , Sv0

i , 0, 0, 0, 0)
X∗

i = (S0
i , 0, 0, 0, 0, Sv0

i , 0, 0, 0, 0) X∗
i = (S0

i , 0, 0, 0, R0
i , Sv0

i , 0, 0, 0, 0) X∗
i = (0, 0, 0, 0, R0

i , 0, 0, 0, 0, Rv0
i )

X∗
i = (0, 0, 0, 0, R0

i , 0, 0, 0, 0, Rv0
i ) X∗

i = (0, 0, 0, 0, R0
i , Sv0

i , 0, 0, 0, Rv0
i ) X∗

i = (0, 0, 0, 0, 0, Sv0
i , 0, 0, 0, Rv0

i )
X∗

i = (S0
i , 0, 0, 0, R0

i , 0, 0, 0, 0, 0) X∗
i = (S0

i , 0, 0, 0, 0, Sv0
i , 0, 0, 0, Rv0

i ) X∗
i = (0, 0, 0, 0, R0

i , Sv0
i , 0, 0, 0, Rv0

i )

To construct the next-generation matrix, only equations corresponding to the infectious compartments are considered, i.e. (2),
(3), (4), (7), (8) and (9), for all age groups.

Proposition 2. The basic reproduction number R0 is strictly positive and corresponds to the dominant eigenvalue of the matrix

M̃ = M1(Q1 + Q2)–1

where

• P = (P1, . . . , Pn)
• M1 =

(
βdiag(P)D + A1diag(P)Dr–1

1 Q1 + A2diag(P)Dr–1
2 Q2

)
Proof. The basic reproduction number R0 is related to the start of the epidemy as it allows the measurement of the secondary cases
of infection caused by one infected individual introduced to a population of susceptible individuals. Thus, in order to compute it,
the next-generation matrix is evaluated at disease-free equilibrium X = (Xi)1≤i≤n where Xi = (Pi, 0, . . . , 0) for all i ∈ {1, . . . , n}
with the assumption of vaccination absence i.e.τi = 0 for all i ∈ {1, . . . , n}. The non-negative matrix, F, corresponding to the
new infections in the population, evaluated at the disease-free equilibrium X∗ = (X∗

i )1≤i≤n = (Pi, 0, 0, 0, 0, 0, 0, 0, 0, 0)1≤i≤n, is
given by:

F =



βdiag(S)D A1diag(S)D A2diag(S)D βvdiag(S)D Av
1diag(S)D Av

2diag(S)D
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


=
(

F1 F2

0 0

)
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The non-singular matrix, V, corresponding to the transfer of individuals in and out of compartments, is:

V =



–(Q1 + Q2) 0 0 0 0 0
Q1 –r1 0 0 0 0
Q2 0 –r2 0 0 0
0 0 0 –(Qv

1 + Qv
2) 0 0

0 0 0 Qv
1 –r1 0

0 0 0 Qv
2 0 –r2


=
(

V1 0
O V2

)

Then,

V–1 =
(

V–1
1 0

O V–1
2

)
where,

V–1
1 =

 –(Q1 + Q2)–1 0 0
–r–1

1 Q1(Q1 + Q2)–1 –r–1
1 0

–r–1
2 Q2(Q1 + Q2)–1 0 –r–1

2

 and V–1
2 =

 –(Qv
1 + Qv

2)–1 0 0
–r–1

1 Qv
1(Qv

1 + Qv
2)–1 –r–1

1 0
–r–1

2 Qv
2(Qv

1 + Qv
2)–1 0 –r–1

2


The basic reproduction number, R0, corresponds to the dominant eigenvalue of the next generation matrix M, defined as

follows:

M = –FV–1 =
(

–F1V–1
1 –F2V–1

2
0 0

)
where,

–F1V–1
1 =

M1(Q1 + Q2)–1 A1diag(S)Dr–1
1 A2diag(S)Dr–1

2
0 0 0
0 0 0

 and –F2V–1
2 =

M2(Qv
1 + Qv

2)–1 Av
1diag(S)Dr–1

1 Av
2diag(S)Dr–1

2
0 0 0
0 0 0


where M1 and M2 are defined as follows:

M1 =
(
βdiag(S)D + A1diag(S)Dr–1

1 Q1 + A2diag(S)Dr–1
2 Q2

)
M2 =

(
βvdiag(S)D + Av

1diag(S)Dr–1
1 Qv

1 + Av
2diag(S)Dr–1

2 Qv
2

)
Thus, the basic reproduction number corresponds to the dominant eigenvalue of the next-generation matrix M given by:

M =

M1(Q1 + Q2)–1 A1diag(P)Dr–1
1 A2diag(P)Dr–1

2 M2(Qv
1 + Qv

2)–1 Av
1diag(P)Dr–1

1 Av
2diag(P)Dr–1

2
0 0 0 0 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
0 0 0 0 0 0


The characteristic polynomial of M is given by:

PM(λ) = (–λ)5n.det(M1.(Q1 + Q2)–1 – λIn)

Let M̃ be the matrix defined by:
M̃ = M1.(Q1 + Q2)–1

Hence, other then 0, PM has the same roots as PM̃ = det(M1.(Q1 + Q2)–1 – λIn). Assuming that all parameters of the model are
strictly positive as well as Pi for all i ∈ {1, . . . , n}, then, one can say that M̃ has strictly positive coefficients and is consequently
irreducible. Hence according to the theorem of Perron-Frobenius, ρ, the dominant eigenvalue of M̃, is a simple eigenvalue.
Moreover, one has

s ≤ ρ ≤ S
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where s = min
1≤i≤n

Si, S = max
1≤i≤n

Si and Si =
n∑

j=1

pjdij

q1j + q2j

(
βi + α1i

q1j

r1j
+ α2i

q2j

r2j

)
.

And since all parameters are strictly positive, then so is s which implies that ρ > 0. Consequently, as R0 corresponds to the
spectral radius of M, then R0 = ρ.

4 OPTIMAL CONTROL PROBLEM

The present section is devoted to ascertaining the optimal vaccination strategy under different scenarios. A good vaccination
strategy is evaluated in terms of its impact on the proportion of severely infected individuals in both the vaccinated and unvacci-
nated subgroups. The optimal strategy is the one that minimizes the number of critical cases (ones that need hospitalization) over
the whole period [0, T] where the control is the vector of vaccination rates 0 ≤ τi(t) ≤ τmax

i where τmax
i represents the maximal

vaccination rate and 0 represents the minimal one which stands for no vaccination at all.
The objective of this study is to determine the optimal vaccination strategy that minimizes the number of critical cases among

the vaccinated and the unvaccinated I2 and Iv
2. Thus, for all t in [0, T], the Lagrangian L is defined as follows:

L(I2, Iv
2) =

n∑
i=1

I2
2i(t) + Iv2

2i (t)

Thus, the optimal control problem is given by:

min
0≤τ≤τmax

i

∫ T

0
L(t)dt (12)

subject to the system (1-10).
Let U be the set of admissible controls given by:

U = {τ (t) = (τi(t))1≤i≤n,∀1 ≤ i ≤ n, τi(t) ∈ L1([0, τmax
i ])}

Proposition 3. There exists an optimal control τ∗ = (τ∗i )1≤i≤n and a corresponding state variables vector(
Si, Ei, I1i, I2i, Ri, Sv

i , Ev0
i , Iv

1i, Iv
2i, Rv

i

)
1≤i≤n that minimizes the objective function.

Proof. The existence of the optimal control pair can be obtained using a result by12,21.
In fact, one can easily verify that:

1. For τi = 0, there exists a corresponding solution to the model according to Cauchy-Lipschitz theorem. Thus the set of
controls and corresponding state variables is nonempty.

2. Let τ 1, τ 2 ∈ U and ψ ∈ [0, 1]. Then one has ψτ 1 + (1 – ψ)τ 2 ∈ U.
Moreover, for a sequence (τ p) ⊂ U such that lim

p→+∞
τ p = τ , one has τ ∈ U.

Hence, the admissible set of controls is convex and closed.
3. The right-hand side of the state system (1-10, 12) is bounded by a linear function in the state and control variables. In fact,

for all i ∈ {1, . . . , n} and for k ∈ {1, 2}, one has

|Ṡi| ≤ max(αki,βki,αv
ki,β

v
ki)∥X∥ + ∥τ∥

|Ėi| ≤ (max(αki,βki,αv
ki,β

v
ki) + q1i + q2i)∥X∥ + ∥τ∥

| ˙Iki| ≤ (qki + rki)∥X∥ + ∥τ∥

|Ṙi| ≤ (r1i + r2i)∥X∥ + ∥τ∥

|Ṡi
v| ≤ δmax(αki,βki,αv

ki,β
v
ki)∥X∥ + ∥τ∥

|Ėi| ≤ (δmax(αki,βki,αv
ki,β

v
ki) + qv

1i + qv
2i)∥X∥ + ∥τ∥

| ˙Iki| ≤ (qv
ki + rki)∥X∥ + ∥τ∥

|Ṙi| ≤ (r1i + r2i)∥X∥ + ∥τ∥
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4. The integrand of the objective functional L is convex on U since its constant in τ .
5. Since L ≥ 0. We consider treating the cases L = 0 For L > 0, there exist constants ω1 > 0,ω2 > 0 and ρ > 1 such that

L ≥ ω2 + ω1(
n∑

k=1

τ 2
k )

ρ
2

where ω1 = ϵ
2
√

nτmax
, ω2 = ϵ

2 , ρ = 2 and ϵ =

(
n∑

i=1

I2
2i(0) + Iv2

2i (0)

)
e–r2iT In fact, one has:

I2i(t) =
(

I2i(0) + q2i

∫ t

0
Ei(s)er2isds

)
e–r2it

Iv
2i(t) =

(
Iv
2i(0) + qv

2i

∫ t

0
Ei(s)er2isds

)
e–r2it

Thus,

I2
2i(t) =

(
I2
2i(0) + 2I2i(0)q2i

∫ t

0
Ei(s)er2is + q2

2i

(∫ t

0
Ei(s)er2isds

)2
)

e–2r2it

Iv2
2i (t) =

(
Iv2
2i (0) + 2Iv

2i(0)qv
2i

∫ t

0
Ei(s)er2is + qv2

2i

(∫ t

0
Ei(s)er2isds

)2
)

e–2r2it

Since all the sum terms are positive, one can say that

L ≥
n∑

i=1

(
I2
2i(0) + Iv2

2i (0)
)

e–2r2iT

Let ϵ =
n∑

i=1

(
I2
2i(0) + Iv2

2i (0)
)

e–2r2iT , then one has

ϵ =
ϵ

2∥τ∥2 ∥τ∥
2 +

ϵ

2
≥ ϵ

2
√

nτmax
∥τ∥2 +

ϵ

2

In order to determine the optimal control, Pontryagin’s Minimum Principle was used21.
The Hamiltonian is given by:

H(t, τ , X,λ) = ⟨λ(t), Ẋ(t)⟩ +
n∑

i=1

I2
2i + Iv2

2i

where X = (Xi)1≤i≤n is the vector of state variables previously defined and λ = (λi)1≤i≤n is the vector of adjoint variables with

λi = (λSi (t),λEi (t),λI1i (t),λI2i (t),λRi (t),λSv
i
(t),λEv

i
(t),λIv

1i
(t),λIv

2i
(t),λRv

i
(t))

and ⟨., .⟩ is the scalar product.

Proposition 4. Given optimal controls τ∗1 , . . . , τ∗n and the corresponding solution X(t) of the corresponding state system (1-10) -
(12), there exists a vector of adjoint variables λ = (λi)1≤i≤n that satisfy:
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λ̇Si = (Fi + τi)λSi – FiλEi – τiλSv
i

(13)

λ̇Ei =
n∑

j=1

βjdji

(
Sj(λSj – λEj ) + δ Sv

j (λSv
j

– λEv
j
)
)

+ (q1i + q2i)λEi – q1iλI1i – q2iλI2i (14)

˙λI1i =
n∑

j=1

α1jdji

(
Sj(λSj – λEj ) + δ Sv

j (λSv
j

– λEv
j
)
)

+ r1iλI1i (15)

˙λI2i =
n∑

j=1

α2jdji

(
Sj(λSj – λEj ) + δ Sv

j (λSv
j

– λEv
j
)
)

+ r2iλI1i – 2I2i (16)

λ̇Ri = 0 (17)

λ̇Sv
i

= δ Fi(λSv
i

– λEv
i
) (18)

˙λEv
i

=
n∑

j=1

βv
j dji

(
Sj(λSj – λEj ) + δSv

j (λSv
j

– λEv
j
)
)

+ (qv
1i + qv

2i)λ
v
Ei

– qv
1iλIv

1i
– qλ2iI2i

(19)

˙λIv
1i

=
n∑

j=1

αv
1jdji

(
Sj(λSj – λEj ) + δ Sv

j (λSv
j

– λEv
j
)
)

+ r1iλI1i (20)

˙λIv
2i

=
n∑

j=1

αv
2jdji

(
Sj(λSj – λEj ) + δ Sv

j (λSv
j

– λEv
j
)
)

+ r2iλI1i – 2I2i (21)

λ̇v
Ri

= 0 (22)

with transversality conditions:
λ(T) = 0. (23)

Furthermore, the optimal control is given by τ∗ = (τ∗1 , . . . , τ∗n ) where for all i ∈ {1, . . . , n},

τ∗i =


0 , ifλSv

i
Sv

i – λSi Si > 0
τmax

i , ifλSv
i
Sv

i – λSi Si < 0
singular , ifλSv

i
Sv

i – λSi Si = 0



10 TAYLOR ET AL.

Proof. According to Pontryagin’s minimum principle, for all i ∈ {1, . . . , n} the adjoint variables satisfy:

λ̇Si = –
∂H
∂Si

= (Fi + τi)λSi – FiλEi – τiλSv
i

λ̇Ei = –
∂H
∂Ei

=
n∑

j=1

βjdjiSj(λSj – λEj ) + δ
n∑

j=1

βjdjiSv
j (λSv

j
– λEv

j
) + (q1i + q2i)λEi – q1iλI1i – q2iλI2i

˙λI1i = –
∂H
∂I1i

=
n∑

j=1

α1jdjiSj(λSj – λEj ) + δ
n∑

j=1

α1jdjiSv
j (λSv

j
– λEv

j
) + r1i(λI1i – λRi )

˙λI2i = –
∂H
∂I2i

=
n∑

j=1

α2jdjiSj(λSj – λEj ) + δ
n∑

j=1

α2jdjiSv
j (λSv

j
– λEv

j
) + r2i(λI1i – λRi ) – 2I2i

λ̇Ri = –
∂H
∂Ri

= 0

λ̇Sv
i

= –
∂H
∂Sv

i
= δ Fi(λSv

i
– λEv

i
)

˙λEv
i

= –
∂H
∂Ev

i
=

n∑
j=1

βv
j djiSj(λSj – λEj ) + δ

n∑
j=1

βv
j djiSv

j (λSv
j

– λEv
j
) + (qv

1i + qv
2i)λ

v
Ei

– qv
1iλIv

1i
– qλ2iI2i

˙λIv
1i

= –
∂H
∂Iv

1i
=

n∑
j=1

αv
1jdjiSj(λSj – λEj ) + δ

n∑
j=1

αv
1jdjiSv

j (λSv
j

– λEv
j
) + r1i(λI1i – λv

Ri
)

˙λIv
2i

= –
∂H
∂Iv

2i
=

n∑
j=1

αv
2jdjiSj(λSj – λEj ) + δ

n∑
j=1

αv
2jdjiSv

j (λSv
j

– λEv
j
) + r2i(λI1i – λv

Ri
) – 2I2i

λ̇v
Ri

= –
∂H
∂Rv

i
= 0

with the final conditions
λi(tf ) = 0

Moreover, the Pontryagin’s Minimum Principle states that the optimal control τ∗ minimizes the Hamiltonian, hence we should
seek the minimum of H with respect to τi, i ∈ {1, ..., n}. Since

∂H
∂τi

= λSv
i
Sv

i – λSi Si,

the minimum is either reached at τ∗i = 0 or τ∗i = τmax
i according to the sign of λSv

i
Sv

i – λSi Si.
However, if there exists an interval [t0; t1] ⊂ [0; T], such that the switching function λSv

i
(t)Sv

i (t) – λSi (t)Si(t) = 0, for all t ∈ [t0; t1]
the control is considered singular.

5 NUMERICAL SIMULATIONS AND DISCUSSION

In this section, we conduct numerical simulations using parameters of Covid-19. In order to simulate the optimal control
corresponding to the various age distributions, we use data of three countries presenting the main three different age distributions:
expansive (Senegal), Stationary (Tunisia) and Constrictive (USA)(See table A1).

The problem was solved using the Python optimization suite GEKKO † 20. During all the simulation process, the populations
studied were divided into six age groups: 0 – 14 years( class 1) , 15 – 29 years ( class 2), 30 – 44 years ( class 3), 45 – 59 years (
class 4), 60, 74 years ( class 5) and ≥ 75 years ( class 6) ‡.

Moreover, Covid-19 high sensitivity to the age of the individuals among the population studied sets the ground for certain
questions to arise about the effect that different age distributions can have on the optimal strategy that is to be chosen.

† https://github.com/BYU-PRISM/GEKKO
‡ https://covid19.who.int/WHO-COVID-19-global-data.csv
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T A B L E 2 Different types of age pyramids.

Expansive: young and growing Stationary:non growing Constrictive:elderly and shrinking

(a) Optimal vaccination for stationary age
distribution with 25% maximal threshold

(b) Optimal vaccination for expansive age
distribution with 25% maximal threshold

(c) Optimal vaccination for constrictive age
distribution with 25% maximal threshold

(d) Optimal vaccination for stationary age
distribution with 50% maximal threshold

(e) Optimal vaccination for expansive age
distribution with 50% maximal threshold

(f) Optimal vaccination for constrictive age
distribution with 50% maximal threshold

(g) Optimal vaccination for stationary age
distribution with 75% maximal threshold

(h) Optimal vaccination for expansive age
distribution with 75% maximal threshold

(i) Optimal vaccination for constrictive age
distribution with 75% maximal threshold

F I G U R E 2 Optimal vaccination for different age distributions: stationary((a), (d) and(g)), expansive ((b), (e) and (h)) and
constrictive((c), (f) and (i)) three different maximal vaccination thresholds: 25%, 50% and 75% of the total population

Thereafter, we conducted the simulations using data of three countries exhibiting different age distributions with the objective
of determining the optimal vaccination strategy for each country22. And as one of the major limitations that faced many countries
at the start was the vaccine shortage, we tried to take that into account by setting three different maximal thresholds of vaccination.
In the first case, it is assumed that the vaccine availability allows for only 25% of the total population to be vaccinated. In the
second case, the maximal vaccination threshold is set at 50%. At last, it is assumed that it is possible to provide vaccination
up until 75% of the total size of the population. The results are then, compared to the vaccination strategy set by the WHO.
This strategy is composed of several successive steps. The first step consists of vaccinating the oldest class and the at-high-risk
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(a) Optimal vaccination for stationary age
distribution with 25% maximal threshold

(b) Optimal vaccination for expansive age
distribution with 25% maximal threshold

(c) Optimal vaccination for constrictive age
distribution with 25% maximal threshold

(d) Optimal vaccination for stationary age
distribution with 50% maximal threshold

(e) Optimal vaccination for expansive age
distribution with 50% maximal threshold

(f) Optimal vaccination for constrictive age
distribution with 50% maximal threshold

(g) Optimal vaccination for stationary age
distribution with 75% maximal threshold

(h) Optimal vaccination for expansive age
distribution with 75% maximal threshold

(i) Optimal vaccination for constrictive age
distribution with 75% maximal threshold

F I G U R E 3 Vaccinated proportion of each age class according to the optimal vaccination rate for different age distributions:
stationary((a), (d) and(g)), expansive ((b), (e) and (h)) and constrictive((c), (f) and (i)) three different maximal vaccination
thresholds: 25%, 50% and 75% of the total population

groups such as health workers. At the end of this step, and if there are still vaccines available, the second step is triggered. This
step consists of moving to the next-in-age class and the iterative process then continues until the end of the vaccine stocks in
availability.

As a matter of fact, a major difference from the WHO vaccination strategy is noticed for all maximal vaccination thresholds.
This difference corresponds to the simultaneous vaccination of all age groups no matter how tight or loose the constraint of
vaccine availability is. When maximal vaccination threshold is set to 25% of the total population, one notices for the stationary
case that the optimal strategy is more inclined to prioritize the old despite the simultaneous administration of the vaccine to all the
age classes. For the expansive distribution, the optimal strategy prioritizes the two oldest classes and the two youngest ones. And
taking the USA, one obtains a more or less equal distribution among all the age classes in the population. Clearly, the optimal
distributions are not similar, yet one common aspect can be noticed among them which is prioritization according to both age and
proportion among the population. This aspect is most clear for the expansive distribution in the first place, then the constrictive
case. And although it does not seem to apply in the case of the stationary distribution, attentive observation reveals that it does
as most of the individuals belong to one of the four oldest classes. However, once the constraint of the maximal vaccination
threshold is set high enough, the optimal strategies of the different age distributions start converging towards a more similar
behavior where the oldest classes are prioritized while other classes show close vaccination proportions. This only puts emphasis
on the fact that priority is accorded based on the proportion of the class among the population as much as it is based on age . The
similarity then tends to be even more visible when the maximal threshold is set to 75% (See figures 2 and 3). As a matter of fact,
the loose constraint allows more equal distribution due to easy access to the vaccine. This tendency to show the same shape as the
age pyramid is actually a result of the loose constraints that erase the urge to prioritize based on age. The impact of age is quite
visible when coupled with tight constraints. In fact, despite the shortage of vaccines, the optimal vaccination strategy is based on
similar vaccination of all age classes right from the start of the campaign. On the opposite, the WHO vaccination strategy is
based on a successive age-prioritization-based approach based on successive vaccination of different classes. In fact, the optimal
control strategy suggests simultaneous vaccination of all the classes while the WHO strategy implies moving to the young
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classes only when the old ones are completely vaccinated which can result in not vaccinating young individuals when vaccines
are constrained to low maximal thresholds. Moreover, according to the optimal vaccination, the prioritization depends on both
the age of the individuals and the age distribution among the population. Whereas, the WHO strategy prioritization is based
only on the individuals’age. Additionally, the optimal strategy has a tendency to mimic the age distribution of the population
rather than have a uniform behavior that does not depend on the population’s age. However, the results of the simulations can be
improved by improving the model itself. In fact, the absence of immunity loss is a limitation of the model that does not allow to
conduct a long-term study of the optimal vaccination and limits all the results to no more than a six-month time interval. As
a perspective, we suggest conducting this study over a longer period of time adding immunity loss for optimizing long-term
vaccination strategy as well as vaccination to different non vaccinated compartments other then the infected ones.

6 CONCLUSION

In this work, an age-structured SEIR mathematical model for infectious disease spread is developed. Then an optimal control
problem that aims to determine the vaccination strategy that minimizes critical infections, with vaccination rate as the control, is
developed and studied. The steady states were determined under the assumption of constant control along with the the basic
reproduction number.

The model was simulated for the ongoing Covid-19 pandemic using parameters that were estimated based on real data of the
daily confirmed cases of countries presenting three different age distributions: Tunisia, Senegal, and USA. For the three age
distributions, the optimal strategy was checked under different constraints: vaccination ability respectively limited to 25%, 50%,
and 75% of the total population. The simulations revealed a number of differences and similarities with the WHO vaccination
strategy. In fact, the optimal strategy is unique as it follows the age distribution of the population studied. The results suggest to
start vaccinating all age groups at the same time, no matter what the present constraint is. The vaccination duration, however,
differs from one class to the other and according to the constraints.

The results of this study do not imply by any means that countries should aim for less than 100% of population vaccination
against any infectious disease. It merely presents an alternative for countries that can not achieve such an objective for any reason.

To sum up, one can say that there is no optimal strategy that works for all different countries. Optimal strategy is affected by
several factors such as the population mean age and contact matrix. However, all strategies intersect when it comes to prioritizing
the oldest age group. The optimal strategy also requires prioritizing the mass regardless of their age. This is a response to
the age distribution and the contact matrix impact. And it is explained by several reasons mostly related to their important
proportion among the total population as well as their wide contact webs that can badly affect certain vital parameters such as
the transmission rate of the disease.

How to cite this article: Bouhali A., Ben Aribi W., Ben Miled S., and Kebir A. Age-optimal vaccination strategy for respiratory
infectious disease: a constraint-dependant approach Mathematical Methods in The Applied Sciences .

APPENDIX

A APPENDIX

Most parameters used were either taken from literature or estimated based on real data. In fact, the estimation of the basic
reproduction number based on data from March 2021 resulted in R0 = 2.19. The infection rates by unvaccinated type-1 infected
α1i , 1 ≤ i ≤ n were estimated in a way to satisfy the following equations

α1i + α2i + βi + αv
1i + αv

2i + βv
i = 1 , 1 ≤ i ≤ n. (A1)

α2i = 0.1α1i , βi = 0.6α1i , ∀ 1 ≤ i ≤ n (A2)

αv
ki = 0.8αki , k = 1, 2 , βv

i = 0.8βi , ∀ 1 ≤ i ≤ n (A3)
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with respect to the value of R0. The infection probability among vaccinated susceptible δ was chosen such that 1 – δ = 0.9
represents the vaccine efficiency. Both incubation and hospitalization rates ψ and η were taken from the literature. Removal rates
for both vaccinated and unvaccinated groups ri and rv

i for all 1 ≤ i ≤ n were estimated based on experimental data. Then, to
determine the remaining parameters, the following assumptions were used

q1i = (1 – η)ψ , q2i = η ψ , ∀ 1 ≤ i ≤ n

qv
1i = (1 – 0.1 η)ψ , qv

2i = 0.1 η ψ , ∀ 1 ≤ i ≤ n

The initial conditions used are based on real data of Tunisia, Senegal, and USA populations at the beginning of vaccination
campaigns at March 1st, 2021, February 24, 2021, and December 12, 2020 respectively.

• The initial condition for Tunisia

• The initial condition for Senegal

• The initial condition for USA

S(0) = (0.169, 0.188, 0.181, 0.173, 0.147, 0.064)

E(0) = (0.00555, 0.00615, 0.00593, 0.00567, 0.00482, 0.00209)

I1(0) = (0.00537, 0.00594, 0.00573, 0.00548, 0.00465, 0.00199)

I2(0) = (2.93276 10–7, 1.62375 10–6, 3.4463 10–6, 8.69563 10–6, 1.47812 10–5, 2.89039 10–5)

R(0) = (0.00347, 0.00384, 0.00370, 0.00354, 0.00301, 0.00130)

Sv (0) = Ev (0) = Iv
1(0) = Iv

2(0) = Rv (0) = 0R6

The contact matrices D used are estimated and updated for 6 age groups for Tunisia, Senegal, and the USA by using data
from23.
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