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Abstract—In this study, we present an analog-to-digital con-
verter (ADC) optimized for implantable neural interfaces. The
proposed ADC integrates a series of memristors in both the input
and feedback Digital-to-Analog Converter (DAC), significantly
boosting the input impedance and making it suitable for neural
interfaces. A defining feature of the ADC is the ability of the
memristor resistance to adapt to various conditions such as
large DC offset, motion, and stimulation artifacts. The model
was simulated using 65nm MOSFET technology along with a
physical memristor model, yielding an impressive signal-to-noise-
and-distortion ratio (SNDR) of 62.7dB and a substantial Nyquist
sampling rate of 50kHz. Power consumption is remarkably low,
with less than nW for integrators, 5µW for the comparator,
and 0.45 µW for the feedback DAC - a key requirement for
neural interfaces implanted in the brain. The ADC demonstrates
strong resilience against component mismatch, maintaining cir-
cuit stability even in variable conditions. Through its ability to
adjust input resistance, the ADC can enhance its SNDR. This
adaptive and robust ADC design shows promising potential for
implantable neural interface applications.

Index Terms—∆Σ ADC, Memristor, Passive integrator, Satu-
ration protection

I. INTRODUCTION

Implantable neural interfaces represent a significant leap
forward in tackling a range of neurological disorders. Fig. 1
illustrates the primary components of a typical neural interface.
The interface functions by recording data from the neural
side, subsequently converting this analog data into a digital
format [1], [2]. This digitized data is then relayed to a
wearable or handheld device for comprehensive analysis. If an
abnormal signal is detected, the wearable or handheld device is
engineered to send a corrective command to the implant, which
activates the stimulator to suppress the irregular signal. A
pivotal component enabling these functionalities is the analog-
to-digital converter (ADC), which significantly impacts the
quality of the recorded signal and thereby, the accuracy of
abnormal signal detection.

With the necessity for high-fidelity neural signal recordings,
which are characteristically low in amplitude and bandwidth,
delta-sigma ADCs emerge as the optimal choice for digitiza-
tion. Their intrinsic loop filter is capable of mitigating low-
frequency quantization noise, resulting in a superior signal-
to-quantization noise ratio, even with a one-level quantizer.
Nevertheless, conventional delta-sigma ADCs are not without
limitations, rendering their integration into high channel count
neural interfaces a complex task. These constraints also pose

RF Interrogator

Implantable Chip

Power Harvester

ADCADCLNALNA TXTX

StimulatorStimulator DSPDSP RXRX

Fig. 1. The architecture of implantable neural interface, which is mainly
composed of RF interrogator and implantable chip.

challenges for their direct application in neural interface sce-
narios.

To overcome the challenges associated with traditional
delta-sigma ADCs, this paper proposes a memristor-based
delta-sigma ADC that addresses the aforementioned limita-
tions. The organization of this paper is as follows: Section
II provides a review of the state-of-the-art delta-sigma ADCs
used in neural interface analog front-end designs and discusses
their strengths and weaknesses. In Section III, we introduce
the operational mechanisms of the proposed memristor-based
delta-sigma ADC, followed by an in-depth examination of the
circuit implementation. Finally, the operational procedure is
detailed and supported by an evaluation of the simulation data.

II. THE STATE OF ART NEURAL ADC

Figure 2(a) illustrates a conventional 1st-order delta-sigma
ADC, primarily using an integrator to suppress low-frequency
quantization noise. Despite its functionality, this design en-
counters several substantial limitations. Primarily, the require-
ment for an integrator results in considerable power consump-
tion, constraining its applicability within high channel count
implantable devices. Moreover, the integrator introduces low-
frequency flicker noise [4], thereby deteriorating the quality
of the recorded signal. This is particularly problematic in the
context of neural signal detection, characterized by their low-
amplitude and low-frequency nature [5], [6]. Consequently,
achieving an optimal trade-off between power, area, accuracy,
and noise reduction in such power-hungry active circuits
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Fig. 2. (a) A general structure of conventional 1st order ∆Σ ADC, with switch capacitor OTA and a DAC, which gives feedback to the integrator. (b) A
general structure of conventional passive 2nd order ∆Σ ADC realized by two lossy integrators C1 and C2 [3]. (c) Proposed resistive passive 2nd order ∆Σ
ADC realized by memristor input and feedback DAC. (d) The timing diagram of the proposed ADC is shown in (c).

proves to be challenging. Secondly, the innate sample-and-
hold circuit embedded within the design diminishes the input
impedance, which might lead to a potential compromise in sig-
nal quality. Further complications arise due to the integrator’s
susceptibility to saturation, attributable to the DC offset linked
with electrode-induced stimulation and motion artifacts.

The work presented in [7], [8] implements an additional
delta modulation on the traditional delta-sigma ADC. A delta
modulator is positioned at one terminal of the sampling capac-
itor, generating a voltage nearly analogous to the input signal
sampled in the previous clock phase, while the input signal is
concurrently sampled at the other terminal. This configuration
ensures that the charge transferred to the integrator is propor-
tional to the difference between consecutive samples rather
than the input signal itself. This approach mitigates the risk
of integrator saturation due to DC offset and enhances the DC
input impedance by reducing the charge entering the integrator
and the sampling capacitor. However, the full functionality of
this method still depends on the use of a power-consuming
integrator.

The studies by [9], [10] incorporate a passive second-order
loop filter in the delta-sigma ADC, mitigating the limitations
of the power-intensive integrator. As illustrated in Fig. 2(b),
capacitors C1 and C2 serve as lossy integrators, replacing
the active amplifiers, significantly reducing both power con-
sumption and low-frequency noise. The system’s stability is
reinforced by an additional pole added by the capacitor Cz .
The capacitor CR1 samples the input and feedback, channeling
them to the first integrator, while CR2 samples the output of
the first integrator, feeding it to the second. The comparator’s
input impedance is represented by Ccomp. Nevertheless, this
strategy necessitates additional circuitry to increase the input
impedance and manage complications from the DC offset and
stimulation artifacts, complicating the system design.

In light of the aforementioned challenges, this paper in-
troduces another design method for a delta-sigma ADC. The

design incorporates a memristor-based passive loop filter,
which adeptly mitigates the issues of DC offset and stimula-
tion artifacts. Concurrently, it enhances the input impedance,
eliminating the need for a power-consuming integrator.

III. PROPOSED NEURAL ADC

The proposed resistive passive second-order ∆Σ ADC is
depicted in Fig. 2(c). In this architecture, the conventional
input sampling capacitor CR1 in Fig. 2(b) is replaced with
the resistive input (in dark green) and the feedback DAC
(in pink). These replacements are realized through a series
connection of multiple memristors to establish an increased
input resistance Rin and feedback DAC resistance RDAC .
While the second integrator remains unmodified, the resistive
integrator, comprised of Rin and C1, exhibits an approximate
transfer function as follows:

H1(z) =
Vout(z)

Vin(z)
=

1

fSC1Rin

1

1− (1− 1
fSC1Rin

)z−1
(1)

When fSC1Rin is sufficiently large, and ∆VC1 is significantly
smaller than ∆Vin, function (1) turns to,

H1(z) ≈
1

fSC1Rin

1

1− z−1
(2)

A latched comparator with inverters at the differential outputs
is utilized to boost the comparator’s gain.

Fig. 2(d) presents a timing diagram showcasing the primary
operational stages of the proposed ADC. The operation begins
with the closure of clki, enabling the integration of the input
signal on C1 through Rin. Subsequently, closing P1 triggers
the transfer of a minute portion of the charge from C1 to
CR2, enabling CR2 to sample C1’s voltage. When P2 is
closed, the charge on CR2 is distributed to both Cz and
Ccomp, and the comparator concurrently evaluates its input
against the reference voltage. Once the comparator’s outputs
stabilize, clkd ascends, capturing and holding the output result
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for feedback. Depending on the digital result, either V1 or
Vb1 of the feedback DAC is closed, prompting the addition
or removal of ∆q from C1 via RDAC . The negative feedback
maintains Vc1 relatively stable around Vcm.

This approach offers two primary benefits: (1) it substan-
tially increases the input impedance by utilizing a series
of memristors within both the input and feedback DAC,
thereby ensuring the compatibility of the input impedance with
implantable neural interfaces. (2) It enables the memristor
resistance to adapt to a variety of circumstances, including
electrode DC offsets, motion, and stimulation artifacts. This
adjustability, to be discussed in further detail in Section IV,
significantly bolsters the robustness of the ADC, enhancing
its suitability for implantable neural interface applications.

IV. ADAPTATION TO NEURAL SIGNALS WITH VARIED
AMPLITUDE AND FREQUENCY INTERFERENCES

In this section, we delineate the methodology implemented
for training the memristors embedded within our proposed
system. This technique enables the memristors to adapt re-
sponsively to neural signals, which often bear interference
characterized by an assortment of amplitudes and frequencies.
Examples of such interference include electrode DC offsets,
manifesting as high-amplitude signals at a zero frequency, and
motion or stimulation artifacts, which typically present high-
amplitude signals at elevated frequencies.

A. Memristive training

The memristor, a non-volatile passive device, features tun-
able resistance controlled by its state variable [11]. Its resis-
tance only changes when the applied voltage exceeds Von or
drops below Voff ; otherwise, it remains constant.

Fig. 3(a) (highlighted in blue) illustrates the trainable mem-
ristor weight used in the circuit [12][13]. Under regular ADC
operation where the memristor’s resistance is read through
current flow by, switches ei± are kept open, thus maintaining
the memristor’s resistance. During the writing phase, the
remaining circuit components are inactive while either ei+ or
ei− is closed for a defined duration. This action applies a high
(or high reverse) voltage that exceeds one of the memristor’s
threshold voltages across the series of memristors, thereby
inducing an increase (or decrease) in the state variable and in-
crementally adjusting their aggregate resistance. By managing
the control signal ei± appropriately, the overall resistance of
the memristor series can be meticulously trained to the desired
value, enabling the ADC to enhance the signal-to-noise-and-
distortion ratio (SNDR) under specific operational conditions.

B. Input amplitude adaption

The proposed passive second-order ∆Σ ADC is a feedback
system, characterized by a specific transfer function as follows
[3].

Y (z) ≈ X(z) +
EQ

GH(z)
+

Ecomp

H(z)
(3)

where X(z) represents the analog input, Y (z) is the digital
output, EQ denotes the quantization noise, Ecomp is the
comparator thermal noise, G signifies the comparator’s gain,
and H(z) is the loop filter’s transfer function. As the amplitude
of the input signal X(z) decreases while the quantization noise
stays constant, the ADC’s SNDR correspondingly declines.
To counterbalance this amplitude decrease, Rin is adjusted
downwards to a certain extent. This calibration ensures that
the charge introduced into C1 during the sampling stage is
maintained at a comparable level, thereby preserving SNDR.



TABLE I
CIRCUIT PARAMETER

Circuit part Type Parameter Value

ADC Transistor tech 65nm
Power source VDD 2.5V

Sampling frequency fs 10MHz
Bandwidth fBW 50kHz

Total Power Ptotal 5.45µW
Input impedance 13MΩ

OSR fin = 23kHz 200
fin ≤ 5kHz 1000

Capactiors C1/C2 3pF/0.46pF

Rin&RDAC Memristor[14] Von/off 0.3/-0.4V
Ron/off 2k/100kΩ
kon/off -4.8/2.8mm/s
αon/off 3/1

Calibration voltage V+/V− 3.3V/0V
Precision 6 bits

Comparator Source voltage VDD 2.5V
Power Pcomp 5µW

The calibration circuit is depicted in Fig. 3(a), with the
corresponding timing diagram of one training period shown in
Fig. 3(b). During this calibration phase, the second integrator
is deactivated. Similar to the regular operation phase, the initial
sampling stage allows the input current through Rin to charge
C1 for 0.5Ts. Subsequently, the voltage across C1, denoted
as Vc1, is compared with a threshold voltage Vt to ascertain
if C1 is charged more or less by the input. Based on this
comparison, if Vc1 is larger than Vt, Rin is increased by a unit
step via the appropriate feedback e signal; conversely, if Vc1

is smaller than Vt, Rin is reduced by a unit step. Calibration
is completed once the comparator output, o+, yields distinct
values between two consecutive training periods, indicating
that the desired Rin has been achieved.

C. Input frequency adaption

When the input signal’s frequency is reduced, Vin will be
closed to Vcm longer than the higher frequency. The ADC
digital output thus needs more 0, 1 alternation to approximate
these input values. Additionally, when Vin is closed to Vcm,
the input current,

Iin ≈ Vin − VC1

Rin
(4)

will be low for a longer time for low-frequency input. Thus,
to incentive the alternation of digital output and enlarge the
difference between Vin and Vcm, we calibrate the RDAC to
low resistance to push more feedback charge to C1 each cycle.
This will make the VC1 varied large between cycles.

Fig. 3(c)&(d) shows the circuits to calibrate the RDAC

and the timing diagram of the circuit. The two integrators
are omitted from the graph by ellipses. Three counters that
count 0, 1, and 0/1 alternations are added at last to provide
calibration feedback signals to memristive weight. The circuit
during this calibration will continue to normally work until one
of the three counter’s values exceeds its threshold (c# = 1)
and be interrupted for calibration. When c0 or c1 is raised, the
corresponding e signal calibrates the RDAC to 1 unit down

TABLE II
COMPARISON WITH PASSIVE 2nd ORDER ∆Σ ADC

This work [10] [15] [16] [17] [3]

Input Method Res Cap Cap Res Cap Cap
CMOS Node (nm) 65 130 65 130 130 1200

fs(Hz) 10M 2M 256k 2M - 10M
Power (µW ) 5.45 0.14 0.18 0.47 1275 250

Bandwidth (Hz) 50kHz 10k 3k 500 100k 20k
ENOB(bits) 10.1 8 9.6 11.5 12 10.8

FoMw(fJ/conv) 48.87 27 36.7 162 1550 3400
Calibration? Yes No No No No No

to increase IDAC for more alternation. And vice versa when
c01 = 1. After the calibration, the circuit will return to the
usual quantization until the next c# = 1.

V. EVALUATION

Utilizing 65nm MOSFET technology and the VTEAM
memristor model [14], [18], the proposed ADC design min-
imizes power consumption, critical for implantable neural
interfaces. Detailed design features are presented in Table I,
and the comparison with existing ADC is shown in Table II.
Power consumption is nearly negligible for the two passive
integrators, with the comparator and feedback DAC consuming
approximately 5.45 µW in total.

The following performance results are evaluated after sec-
tion IV.B and then IV.C calibration process. With a Nyquist
bandwidth of up to 50kHz, the proposed ADC achieves an
SNDR of 62.7dB when processing a 23kHz input signal, as
illustrated in Fig. 3(e). The ADC’s versatility is highlighted
when addressing diverse neural signal amplitudes - it enhances
the minimum SNDR from 47dB to 54.5dB following Rin

calibration, as demonstrated in Fig. 3(f).
The proposed ADC design exhibits significant resilience to

mismatches. By calibrating both Rin and RDAC , potential
instability induced by capacitor mismatches in the lossy inte-
grator is effectively mitigated. This robustness is demonstrated
via a mismatch sweep at an input frequency of 5kHz, as shown
in Fig. 3(j).

The frequency response simulation, shown in Fig. 3(h),
reveals stability across frequencies and an improved SNDR
up to 76.2dB post RDAC calibration, considering the primary
neural signal distribution falls below 5kHz.

VI. CONCLUSION

In conclusion, this paper introduced an ADC design that
offers a dual advantage of enhanced impedance and adjustable
resistance to accommodate varying interference amplitude and
frequencies, such as electrode DC offsets and motion or
stimulation artifacts. This adaptability significantly strengthens
the ADC’s performance for implantable neural interfaces.

Moreover, the ADC’s effective use of passive elements min-
imized power consumption, a critical aspect for implantable
neural interfaces. The ADC showed a robust response across
the broad range of potential amplitudes in neural signals.

In light of the results, the proposed ADC design shows
significant promise for use in implantable neural interfaces,



given its high input impedance, adaptive resistance, and energy
efficiency. Future work will explore more advanced calibration
techniques to optimize the performance of this design further.
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