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Abstract

In this paper, we investigate the the existence and stability of non-trivial steady state solutions of a class of chemotaxis models

with zero-flux boundary conditions and Dirichlet boundary conditions on one-dimensional bounded interval. By using upper-

lower solution and the monotone iteration scheme method, we get the existence of the steady-state solution of the chemotaxis

model. Moreover, by adopting the “inverse derivative” technique and the weighted energy method to obtain the stability of the

steady-state solution of this chemotaxis model.
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STABILITY OF STEADY-STATE SOLUTIONS OF A CLASS OF KELLER-SEGEL
MODELS WITH MIXED BOUNDARY CONDITIONS

ZEFU FENG, JING JIA, AND SHOUMING ZHOU

ABSTRACT. In this paper, we investigate the the existence and stability of non-trivial steady state solutions
of a class of chemotaxis models with zero-flux boundary conditions and Dirichlet boundary conditions
on one-dimensional bounded interval. By using upper-lower solution and the monotone iteration scheme
method, we get the existence of the steady-state solution of the chemotaxis model. Moreover, by adopting
the “inverse derivative” technique and the weighted energy method to obtain the stability of the steady-state
solution of this chemotaxis model.

1. INTRODUCTION

Chemotaxis phenomenon is an essential and basic property of the living cells which responses to
the environments changes, it describes a directional movement of the cells to the gradient of chemical
concentrations, such as aggregation of bacteria, slime mould formation, fish pigmentation, tumor an-
giogenesis, blood vessel formation, wound healing/inflammation, and cancer metastasis[2, 3, 33]. The
chemotaxis model was first proposed by Patlak [18] when studying the random motion of particles, and
later Keller and Segel [19] proposed a chemotaxis model when studying amoeba aggregation effects.
The general mathematical Keller-Segel model reads as:{

ut = ∆u−∇ · (u∇φ(w)), x ∈ Ω,

wt = D∆w + g(u,w), x ∈ Ω,
(1.1)

where u and w represent the bacterial density and oxygen concentration at position x and time t, respec-
tively. The constant D > 0 represent the chemical diffusion coefficient. The functional φ(w) is called
the chemotaxis sensitivity function accounting for the signal response mechanism and the reaction term
g(u,w) is the chemical kinetics (growth and degradation). The chemotactic sensitivity function φ(w)

usually has two prototypes: φ(w) = lnw (logarithmic sensitivity) and φ(w) = w (linear sensitivity).
Logarithmic sensitivity was originally used in [19], based on Weber-Fechner’s law (the sensory response
to stimuli is logarithmic), and it has various biological applications (cf. [9, 16, 21]). The reaction func-
tion usually can be chosen as g(u,w) = uγwm with nonnegative constant parameters γ ≥ 1 and m ≥ 0,
when γ = 1 and for any 0 ≤ m ≤ 1, the existence of the traveling wave solution of (1.1) for logarithmic
sensitivity was reported in [17, 30, 34]. The stability of the travel wavefront (m = 1) was investigated in
[6, 7, 23, 24, 25, 29]. The instability of pulsation waves (m = 0) was studied in [8, 26] and the stability
of boundary layers (see [14, 15]). We also refer to [10, 31, 32] for the global existence and large-time
behavior of solution to (1.1) with γ = m = 1 and linear sensitivity under the Neumman boundary con-
ditions ∂νu|∂Ω = ∂νw|∂Ω = 0. When the physical boundary conditions, namely, the zero-flux boundary
condition and Dirichlet boundary condition are imposed to cell density u and chemical concentration w
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(see also the experiment in [1]):

∂νu− u∂νw = 0, w = w∗, x ∈ ∂Ω, (1.2)

where ν is the outward unit normal vector of ∂Ω and w∗ > 0 represents the boundary date of w on the
∂Ω. Until very recently, significant progress has been made for (1.1)-(1.2), the authors of [5] showed
that under the boundary conditions (1.2) and the parametric restrictions γ = 1, m ≥ 0 and χ > |m− 1|,
system (1.1)-(1.2) with φ(w) = lnw generates the so-called boundary spike layer (BSL) solutions that
exist on the half-line:[0,∞) under smallness assumptions on the initial perturbations. When γ = 1,
m = 1 and φ(w) = w, Braukhoff and Lankeit in [4] proved the stationary solution under the no-
flux boundary conditions for u and the physically meaningful condition for w in bounded domain Ω ⊂
Rn, n ≥ 1. Later, Lee et.al [20] proved the existence and uniqueness of the steady-state solution of
equations (1.1)-(1.2) in space Ω ⊂ Rn(n ≥ 1); in [35], Winkler consider the existence of globally weak
solutions in one-dimensional bounded interval; later, Hong and Wang [13] improved the result of [20]
to obtain the asymptotic stability of the steady-state solution in the bounded domain Ω = (0, 1). When
γ > 1, m = 0, we refer the readers to [36, 12] where the global existence and large time behavior of the
one dimensional Cauchy problem solution of equation and dynamic boundary condition problem were
proved, respectively. In [11], the author also extended the result [5] to the case 1 < γ < 2 on the half
line. However, the stability of steady-state solution to (1.1)-(1.2) with linear sensitivity function is a
open problem, which has more biological significance. Motivated by the ideas of [20] and [13], we are
devoted to investigating the following system of reaction-diffusion-advection equations:

ut = uxx − χ(uwx)x, in I,
wt = Dwxx − uγ , in I,
(u,w)(x, 0) = (u0, w0)(x), in I,

(1.3)

with physical mixed boundary condition

(ux − χuwx)|x=0,1 = 0, w(0, t) = w(1, t) = w∗. (1.4)

where (x, t) ∈ I × R+ and 1 < γ ≤ 2.
With the zero-flux boundary condition (1.4) on u, by integrating the first equation (1.3), we immedi-

ately find that the cell mass is preserved in time, namely :∫
I
u(x, t)dx =

∫
I
u0(x)dx := M,

where M > 0 denotes the initial cell mass. Then the stationary solution (ū, w̄) of (1.3) subject to
boundary condition satisfies

ūxx − χ(ūw̄x)x = 0, x ∈ I,
Dw̄xx − ūγ = 0, x ∈ I,∫
I ū(x, t)dx = M,

(ūx − χūw̄x)|x=0,1 = 0, w̄|x=0,1 = w∗.

(1.5)

The goal of this paper is twofold. First, we can use a similar method as in [20] to prove the existence of
the classical solution to equation (1.5). The second goal of this paper is to show the nonlinear stability
of the stationary solution (ū, w̄), we can show that the system (1.3) with (1.4) admits a unique solution
(u,w) satisfying:

||(u,w)− (ū, w̄)||L∞ → 0 as t→∞.
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The rationale underlining the studies of such a model is that monomials are the building blocks of gen-
uinely nonlinear functions. Hence, the study of the model will help shed light on how to advance fun-
damental research of chemotaxis models with nonlinear rates of chemical production/consumption. Our
intention of this paper is to continue exploring the mathematical properties of the model by investigating
the existence and stability of steady state solutions under the same boundary conditions as specified in
(1.4).

The rest of this paper is organized as follows: In Sec. 2, we state our main results on the existence
and stability of stationary solution to the (1.3)– (1.4). Then we prove the existence results and stability
results in Sec. 3.

Notations. Throughout the paper, we denote by L∞, L2, H1
0 and Hk the standard function spaces

L∞(I), L2(I), H1
0 (I) and Hk(I) , respectively. We denote Ī by the closure of I and by C a generic

time-independent constant which may take different values in different places. In the sequel, we often
omit I without ambiguity.

2. MAIN RESULTS

In this section, we introduce the existence of the stationary solution of the equation (1.5) and state
our main results on the stability of stationary solutions. The first results on the existence of steady state
solutions are stated below.

Theorem 2.1. For any M ∈ (0,∞), the system (1.5) admits a unique classical non-constant solution
(ū, w̄) ∈ C1(Ī) ∩ C∞(I) such that

ū =
M∫

I e
χw̄dx

eχw̄, ū > 0, 0 < w̄ ≤ w∗ for any x ∈ Ī. (2.1)

The second result is the nonlinear local stability of stationary solutions obtained in Theorem 2.1 for
the initial-boundary value problem (1.3)-(1.4) as time goes to infinity.

Theorem 2.2. Suppose that u0 ∈ H1 and w0 ∈ H2 with u0 ≥ 0, w0 ≥ 0 such that
∫
I u0dx = M . Let

(ū, w̄) be the stationary solution given in Theorem 2.1 with
∫
I ūdx = M and define

ϕ0(x) =

∫ x

0
(u0(y)− ū(y))dy.

Then there exists a constant δ0 > 0 such that if

||ϕ0||2H2 + ||w0 − w̄||2H2 ≤ δ0,

then the initial-boundary value problem (1.3)–(1.4) admits a unique global solution (u,w) satisfying

u ∈ C([0,∞);H1) ∩ L2([0,∞);H2), w ∈ C([0,∞);H2) ∩ L2([0,∞);H3),

and the following large time behavior:

||(u− ū, w − w̄)(·, t)||L∞ → 0. (2.2)
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3. EXISTENCE AND STABILITY FOR THE CASE D > 0

3.1. Existence of stationary solution. In this section,we first prove the existence of steady state of
(1.5). We start the proof by considering the following auxiliary problem{

Dw̄κ,xx = (κMeχw̄κ)γ , x ∈ I,
w̄κ = w∗, x = 0, 1,

(3.1)

where κ is an arbitrary positive constant. Since w∗ > 0, by maximal principle we have

0 ≤ w̄κ ≤ w∗, x ∈ I.

Then it is not difficult to see that w̄κ = w∗ is a super-solution of (3.1), while w̄κ = 0 provides a sub-
solution. Therefore, following the standard monotone iteration scheme and the fact that f(x) = ex is
increasing function for x positive, we immediately know that (3.1) has a unique classical solution w̄κ
satisfying

0 ≤ w̄κ ≤ w∗.
Now we claim that there exists κm such that

κm

∫
I
eχw̄κmdx = 1. (3.2)

We postpone the proof of (3.2) in lemma 3.1. Using this claim we can easily see that w̄ = w̄κm is a
solution of (1.5).

In order to prove the claim (3.2), we give the following lemma.

Lemma 3.1. Let κ1 ≥ κ2 > 0 and w̄κi , i = 1, 2 be the solutions of (3.1) with κ = κi, i = 1, 2

respectively. Then

0 ≤ w̄κ2 − w̄κ1 ≤
((

κ1

κ2

)γ
− 1

)
eγχw∗

γχ
. (3.3)

Moreover, there exists a constant κm such that

κm

∫
I
eχw̄κmdx = 1. (3.4)

Proof. The left-hand side inequality follows from the standard comparison theorem directly. We only
prove the inequality for the right-hand side. Due to the fact κ1 ≥ κ2 > 0 and w̄κ1 > 0, it’s easy to see
that

D (w̄κ1,xx − w̄κ2,xx) =
(
κ1Meχw̄κ1

)γ − (κ2Meχw̄κ2
)γ

= (κ2M)γ
(
eγχw̄κ1 − eγχw̄κ2

)
+ ((κ1M)γ − (κ2M)γ) eγχw̄κ1

≤ (κ2M)γF (γχw̄κ1 , γχw̄κ2)(γχw̄κ1 − γχw̄κ2)

+ ((κ1M)γ − (κ2M)γ) eγχw∗

(3.5)

where

F (a, b) =


ea−eb
a−b , if a 6= b,

ea, if a = b.

From the fact
0 < w̄κ1 ≤ w̄κ2 ≤ w∗, (3.6)

we have
1 < F (γχw̄κ1 , γχw̄κ2) ≤ eγχw∗ . (3.7)
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By (3.5) and (3.7), we have

w̄κ2 − w̄κ1 ≤
((κ1M)γ − (κ2M)γ) eγχw̄κ1

(κ2M)γF (γχw̄κ1 , γχw̄κ2)γχ

≤
((

κ1

κ2

)γ
− 1

)
eγχw∗

γχ
.

Thus, we prove the right-hand side of (3.3). It implies that the continuity of w̄κ with respect to κ. On the
other hand, we have

lim
κ→0+

κ

∫
I
eχw̄κdx = 0 and lim

κ→∞
κ

∫
I
eχw̄κdx =∞.

Then we can find κm such that κm
∫
I e

χw̄κmdx = 1 and it completes the proof of lemma 3.1. �

3.2. Nonlinear asymptotic stability. In this section, we shall focus on attention to investigate the glob-
al well-posedness and stability of the steady state of (1.3)-(1.4) for D > 0 by the method of energy
estimates when the initial data (u0, w0) is a small perturbation of (ū, w̄). Before proceeding, we present
an well-known inequality that will be frequently used in the sequel.

Lemma 3.2. (cf.[27]). For any f ∈ H1(I), there exists a constant c1 > 0 such that

||f ||L∞ ≤ c1(||f ||
1
2

L2 ||fx||
1
2

L2 + ||f ||L2). (3.8)

Furthermore, if f ∈ H1
0 (I), then it holds that

||f ||L∞ ≤ c2||f ||
1
2

L2 ||fx||
1
2

L2 and ||f ||L∞ ≤ c3||fx||L2 (3.9)

for some constants c2, c3 > 0.

3.2.1. Reformulation of the problem. Now let us use energy methods and anti-derivatives technique to
prove Theorem 2.2. Integrating the equation (1.5)1 over (0, x), we obtain that the stationary solution
(ū, w̄) satisfies 

ūx − χ(ūw̄)x = 0,

Dw̄xx − ūγ = 0,

w̄(0) = w̄(1) = w∗.

(3.10)

With the zero-flux boundary condition of u in (1.4), which combined with the facts
∫
I ūdx =

∫
I u0dx =

M implies that ∫
I
(u(x, t)− ū(x))dx = 0

for any t ≥ 0. This enables us to define anti-derivatives of the perturbed functions and more importantly,
carry out stability analysis in the framework of Sobolev spaces. Define

ϕ(x, t) =

∫ x

0
(u(y, t)− ū(y))dy, ψ = w − w̄,

which implies
u = ϕx + ū, w = ψ + w̄. (3.11)

Substituting (3.11) into (1.3), by integrating the first resulting equation with the spatial variable from 0

to x, then using (3.10), we can show that:{
ϕt = ϕxx − χ(ϕxψx + ūψx + ϕxw̄x),

ψt = Dψxx + ūγ − (ϕx + ū)γ ,
(3.12)
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with the initial data

(ϕ,ψ)(x, 0) = (ϕ0, ψ0) =

(∫ x

0
(u0(y)− ū(y))dy, w0 − w̄

)
(3.13)

and the boundary conditions
(ϕ,ψ)(0, t) = (ϕ,ψ)(1, t) = 0. (3.14)

By standard approaches, such as iteration scheme and fixed point theorems (cf. [22, 28]), one can prove
the local existence of solutions to the initial-boundary value problem (3.12)-(3.14). To simplify the
presentation, we only record the result here without producing the proof. Precisely, for any T > 0, if we
define

X(0, T ) := {(ϕ,ψ)|ϕ ∈ C([0, T ];H1
0 ∩H2) ∩ L2([0, T ];H3),

ψ ∈ C([0, T ];H1
0 ∩H2) ∩ L2([0, T ];H3)}

and denote
N(T ) := sup

0≤t≤T
(||ϕ||2H2 + ||ψ||2H2),

then we have the following local existence result.

Proposition 3.3. (Local existence). Let ϕ0 ∈ H1
0 ∩H2 and ψ0 ∈ H1

0 ∩H2 such that

ϕ0,x + ū ≥ 0, ψ0 + w̄ ≥ 0

for any x ∈ I. Then there exists a positive constant T0 depending on N0,ū and w̄ such that the initial-
boundary value problem (3.12)-(3.14) admits a unique solution (ϕ,ψ) ∈ X(0, T0) satisfying N(T0) ≤
2N(0) and

ϕx + ū ≥ 0, ψ + w̄ ≥ 0

for any (x, t) ∈ I × [0, T0).

Next, we shall derive the a priori estimates of the local solution, in order to extend it to a global one
and to study the stability of stationary solutions to the initial-boundary value problem (1.3)-(1.4).

Proposition 3.4. Assume the conditions of Proposition 3.3 hold. Then there exists a positive constant
δ1, such that if ||ϕ0||2H2 + ||ψ0||2H2 ≤ δ1, then the problem (3.12)-(3.14) admits a unique global solution
(ϕ,ψ) ∈ X(0,∞) which satisfies that for all t ≥ 0,

||ϕ(·, t)||2H2 + ||ψ(·, t)||2H2 +

∫ t

0

(
||ϕ||2H3 + ||ψ||2H3 + ||ϕτ ||2H1 + ||ψτ ||2H1

)
dτ ≤ CN2(0). (3.15)

for some constants C > 0 independent of t ∈ (0,∞).

By the local existence result and the standard continuation argument, to prove the Proposition 3.4, we
only need to prove the requisite a priori estimates below.

Proposition 3.5. (A priori estimates). For any T > 0 and any solution (ϕ,ψ) ∈ X(0, T ) to the problem
(3.12)-(3.14) with (ϕ0, ψ0) ∈ H1

0 ∩H2 , there exists a suitably small δ2 > 0 independent of T such that
if ||ϕ||2H2 + ||ψ||2H2 ≤ δ2, then (ϕ,ψ) satisfies (3.15) for any t ∈ [0, T ].

Before proceeding to the estimate of (ϕ,ψ), we collect some technical lemmas, which will often be
used in the proof of Proposition 3.5.
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Lemma 3.6. Let (ū, w̄) be the stationary solution of (1.3), (1.4) stated in Proposition 2.1. Then it holds
that

0 < C−1
1 ≤ ū, w̄ ≤ C1 (3.16)

for some constant C1 > 0, and that

Dw̄2
x ≤

2

γχ
ūγ . (3.17)

Proof. According to Proposition 3.3, it is trivial to obtain (3.16) by comparison principle, so we only
need to prove (3.17). For any x ∈ Ī, when 0 < w̄(x) ≤ w∗ there exists an x0 ∈ (0, 1) such that

0 < w̄(x0) = min
x∈Ī

w̄(x) and w̄x(x0) = 0.

Multiplying the second equation in (1.5) by w̄x, and integrating the resulting equation from x0 to x, we
get

D

2
w̄2
x =

∫ x

x0

ūγw̄ydy =

∫ w̄(x)

w̄(x0)
ūγdw̄ = λγ

∫ w̄(x)

w̄(x0)
eγχsds ≤ λγ

∫ w̄(x)

0
eγχsds

with λ = M∫
I e

χw̄dx
, where we have used the following identity

ū =
M∫

I e
χw̄dx

eχw̄ =: λeχw̄ (3.18)

from (2.1). Thanks to (3.18),we can get
D

2
w̄2
x ≤

1

γχ
λγ
(
eγχw̄ − 1

)
≤ 1

γχ
λγeγχw̄ =

1

γχ
ūγ .

The proof is completed. �

Lemma 3.7 ([36]). For any a ≥ −1 and 1 < γ < 2, it holds that

(a+ 1)γ − 1− γa ≤ a2.

Lemma 3.8 ([36]). For any a ≥ 0 and 0 < γ < 1, it holds that

|aγ − 1| ≤ |a− 1|.

In the following part, we will consider the global existence of (3.12)-(3.14). Let us begin with the
estimate of the zeroth and first order frequencies of the perturbation.

Lemma 3.9. For any solution (ϕ,ψ) ∈ X(0, T ) to the problem (3.12)-(3.14) satisfying N(t) � 1, it
holds that∫

I

ϕ2

ū
+ ū1−γψ2dx+

∫ t

0

(
||ψ||2L2 + ||ϕx||2L2 + ||ψx||2L2

)
dτ ≤ C

(
||ϕ0||2L2 + ||ψ0||2L2

)
(3.19)

for any t ∈ [0, T ], where C > 0 is a constant independent of t.

Proof. We Multiply the first equation in (3.12) by γ ϕū , then integrating by parts with respect to x, we can
show that

γ

2

d

dt

∫
I

ϕ2

ū
dx+ γ

∫
I

ϕ2
x

ū
dx

= −γ
∫
I
ϕϕx

[(
1

ū

)
x

+ χ
w̄x
ū

]
dx− γχ

∫
I

ϕϕxψx
ū

dx− γχ
∫
I
ϕψxdx. (3.20)
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By using (3.10), we can show that(
1

ū

)
x

+ χ
w̄x
ū

= − 1

ū2
(ūx − χūw̄x) = 0,

thus we get

−γ
∫
I
ϕϕx

[(
1

ū

)
x

+ χ
w̄x
ū

]
dx = 0. (3.21)

Using the fact that ‖ϕ‖L∞ ≤ N(t) and the Cauchy-Schwarz inequality, we can show that

γχ

∫
I

ϕϕxψx
ū

dx ≤ C||ϕ||L∞ ||ψx||L2 ||ϕx||L2 ≤ CN(t)(||ϕx||2L2 + ||ψx||2L2). (3.22)

Substituting (3.21) and (3.22) into (3.20), we have

γ

2

d

dt

∫
I

ϕ2

ū
dx+ γ

∫
I

ϕ2
x

ū
dx ≤ −γχ

∫
I
ϕψxdx+ CN(t)(||ϕx||2L2 + ||ψx||2L2). (3.23)

We Multiply the first equation in (3.12) by χū1−γψ and then integrating by parts with respect to x, we
get

χ

2

d

dt

∫
I
ū1−γψ2dx+ χD

∫
I
ū1−γψ2

xdx =− χD
∫
I
(ū1−γ)xψψxdx

− χ
∫
I
ūψ
[(ϕx

ū
+ 1
)γ
− 1− γϕx

ū

]
dx

− γχ
∫
I
ψϕxdx,

(3.24)

For the first term on the right hand side of (3.24), by (3.14) and then integrating by parts, we can show
that

−χD
∫
I

(
ū1−γ)

x
ψψxdx =

1

2
χD

∫
I

(
ū1−γ)

xx
ψ2dx, (3.25)

by (3.10), (3.16) and (3.17), we have

Dχ

2

(
ū1−γ)

xx
= −Dχ

2
γ(1− γ)ū−γ−1ū2

x +
Dχ

2
(1− γ)ū−γ ūxx

=
Dχ

2
(1− γ)2ū1−γχ2w̄2

x +
Dχ

2
(1− γ)ū1−γχw̄xx

≤ [
(1− γ)2

γ
+

1− γ
2

]χ2ū

Hence, when 1 < γ ≤ 2, we update (3.25) as

−χD
∫
I

(
ū1−γ)

x
ψψxdx ≤

(
(1− γ)2

γ
+

1− γ
2

)
χ2

∫
I
ūψ2dx := −K

∫
I
ūψ2dx, (3.26)

where K > 0 when 1 < γ < 2 and K = 0 when γ = 2. For the second term on the right hand side of
(3.24), using (3.9), (3.16), Lemma3.7 and the Hölder inequality, we have

−χ
∫
I
ūψ
[(ϕx

ū
+ 1
)γ
− 1− γϕx

ū

]
dx ≤ C||ψ||L∞ ||ϕx||2L2 ≤ CN(t)||ϕx||2L2 , (3.27)
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then substituting (3.26) and (3.27) into (3.24), we get
χ

2

d

dt

∫
I
ū1−γψ2dx+Dχ

∫
I
ū1−γψ2

xdx+K
∫
I
ūψ2dx

≤ −γχ
∫
I
ψϕxdx+ CN(t)||ϕx||2L2 .

(3.28)

Adding (3.28) to (3.23), we can show that

1

2

d

dt

∫
I
γ
ϕ2

ū
+ χū1−γψ2dx+

∫
I
Kūψ2 + γ

ϕ2
x

ū
+Dχū1−γψ2

xdx ≤ CN(t)(||ϕx||2L2 + ||ψx||2L2).

By (3.16), we obtain

1

2
min{γ, χ} d

dt

∫
I

ϕ2

ū
+ ū1−γψ2dx+ min{C1K,

γ

C1
, DχC1−γ

1 }
∫
I
ψ2 + ϕ2

x + ψ2
xdx

≤ CN(t)(||ϕx||2L2 + ||ψx||2L2),

which implies that

d

dt

∫
I

ϕ2

ū
+ ū1−γψ2dx+ β

(
||ψ||2L2 + ||ϕx||2L2 + ||ψx||2L2

)
≤ 0 (3.29)

with

CN(t) ≤
min{ γC1

, DχC1−γ
1 , C1K}

2 min{γ, χ}
=:

β

2
.

Integrating (3.29) over (0, t), we get (3.19) and hence completes the proof of the lemma. �

We are ready to derive the estimate on ϕx and ψx in the next lemma.

Lemma 3.10. For any solution (ϕ,ψ) ∈ X(0, T ) to the problem (3.12)-(3.14) satisfying N(t) � 1, it
holds that for any t ∈ [0, T ] that

||ϕx||2L2 + ||ψx||2L2 +

∫ t

0
||ϕτ ||2L2 + ||ψτ ||2L2dτ ≤ C

(
||ϕ0||2H1 + ||ψ0||2H1

)
. (3.30)

.

Proof. Multiplying the first equation of (3.12) by ϕt, then integrating by parts, we can show that
1

2

d

dt

∫
I
ϕ2
xdx+

∫
I
ϕ2
tdx = −χ

∫
I
ūϕtψxdx− χ

∫
I
w̄xϕtϕxdx− χ

∫
I
ϕtϕxψxdx, (3.31)

Using (3.16), (3.17) and the Cauchy-Schwarz inequality, we have

−χ
∫
I
w̄xϕtϕxdx ≤ χ||w̄x||L∞ ||ϕt||L2 ||ϕx||L2 ≤ ε||ϕt||2L2 + Cε||ϕx||2L2 (3.32)

and
−χ
∫
I
ūϕtψxdx ≤ χ||ū||L∞ ||ϕt||L2 ||ψx||L2 ≤ ε||ϕt||2L2 + Cε||ψx||2L2 , (3.33)

for any ε > 0. Using ‖ϕx‖L∞ ≤ N(t) and the Cauchy-Schwarz inequality, we can show that

−χ
∫
I
ϕtϕxψxdx ≤ χ||ϕx||L∞ ||ϕt||L2 ||ψx||L2 ≤ CN(t)

(
||ϕt||2L2 + ||ψx||2L2

)
. (3.34)

Then we substitute (3.32)-(3.34) into (3.31), by choosing ε suitably small and letting N(t) small enough
such that

CN(t) ≤ 1

4
,
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we obtain
d

dt

∫
I
ϕ2
xdx+

∫
I
ϕ2
tdx ≤ C||ψx||2L2 . (3.35)

Using (3.19) and integrating by parts, we update (3.35) as

||ϕx||2L2 +

∫ t

0
||ϕτ ||2L2dτ ≤ ||ϕ0,x||2L2 + C

∫ t

0
||ψx||2L2dτ

≤ ||ϕ0,x||2L2 + C
(
||ϕ0||2L2 + ||ψ0||2L2

)
≤ C

(
||ϕ0||2H1 + ||ψ0||2L2

)
.

(3.36)

Multiplying the second equation of (3.12) by ψt and then integrating the resultant equation with respect
to x, we can show that

1

2

d

dt
D

∫
I
ψ2
xdx+

∫
I
ψ2
t dx = −

∫
I
ūγψt

[(ϕx
ū

+ 1
)γ
− 1− γϕx

ū

]
dx− γ

∫
I
ūγ−1ψtϕxdx. (3.37)

For the two terms on the right side of (3.37), by (3.9), (3.16), Lemma 3.7 and the Cauchy-Schwarz
inequality, we can show that

−
∫
I
ūγψt

[(ϕx
ū

+ 1
)γ
− 1− γϕx

ū

]
dx ≤

∫
I
ūγ−2|ψt|ϕ2

xdx

≤ C||ϕx||L∞ ||ψt||L2 ||ϕx||L2

≤ CN(t)(||ψt||2L2 + ||ϕx||2L2)

and

−γ
∫
I
ūγ−1ψtϕxdx ≤ γ||ūγ−1||L∞ ||ψt||L2 ||ϕx||L2 ≤ C||ψt||L2 ||ϕx||L2

≤ ε||ψt||2L2 + Cε||ϕx||2L2

for any ε > 0. Choosing ε and N(t) small enough, we thus update (3.37) as

D
d

dt

∫
I
ψ2
xdx+

∫
I
ψ2
t dx ≤ (CN(t) + Cε)||ϕx||2L2 . (3.38)

Using (3.19) and integration by parts, for any t ∈ [0, T ], it implies that

D

∫
I
ψ2
xdx+

∫ t

0
||ψτ ||2L2dτ ≤ ||ψ0,x||2L2 + (CN(t) + Cε)

∫ t

0
||ϕx||2L2dτ

≤ C||ψ0,x||2L2 + C
(
||ϕ0||2L2 + ||ψ0||2L2

)
,

thus

||ψx||2L2 +

∫ t

0
||ψτ ||2L2dτ ≤ C

(
||ϕ0||2L2 + ||ψ0||2H1

)
. (3.39)

Adding (3.39) to (3.36), we complete the proof of Lemma 3.9. �

In the following, we establish the estimates of the second order derivatives of (ϕ,ψ).

Lemma 3.11. Let (ϕ,ψ) ∈ X(0, T ) be a solution to the initial-boundary value problem (3.12)-(3.14)
and assume the conditions of Lemma3.9 hold. Then it holds for any t ∈ [0, T ] that

||ϕxx||2L2 + ||ψxx||2L2 +

∫ t

0

∫
I
ϕ2
xxx + ψ2

xxxdxdτ (3.40)

≤ C(‖ϕ0‖2H2 + ‖ψ0‖2H2) (3.41)
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.

Proof. By differentiating (3.12) with respect to t to get{
ϕtt = ϕxxt − χ(w̄xϕxt + ūψxt + ϕxtψx + ϕxψxt),

ψtt = Dψxxt − γ(ϕx + ū)γ−1ϕxt.
(3.42)

Multiplying the first equation in (3.42) by ϕt and the second one by ψt, then integrate by parts over I,
and adding the results to show that

1

2

d

dt

∫
I
ϕ2
t + ψ2

t dx+

∫
I
ϕ2
xt +Dψ2

xtdx =

− χ
∫
I
w̄xϕtϕxtdx− χ

∫
I
ūϕtψxtdx− χ

∫
I
ϕtϕxtψxdx− χ

∫
I
ϕtϕxψxtdx

− γ
∫
I
(ϕx + ū)γ−1ψtϕxtdx, (3.43)

where we have used (3.14) to get ϕt(0, t) = ϕt(1, t) = 0. Now, we estimate the right hand side of (3.43).
Using (3.16), (3.17) and the Cauchy-Schwarz inequality, we can show that

−χ
∫
I
w̄xϕtϕxtdx− χ

∫
I
ūϕtψxtdx ≤ Cε||ϕt||2L2 + ε

(
||ϕxt||2L2 + ||ψxt||2L2

)
(3.44)

for any ε > 0. Again, by using ‖ϕx‖L∞ , ‖ψx‖L∞ ≤ N(t) and the Cauchy-Schwarz inequality, we have

−χ
∫
I
ϕtϕxtψxdx− χ

∫
I
ϕtϕxψxtdx ≤ χ||ψx||L∞ ||ϕt||L2 ||ϕxt||L2 + χ||ϕx||L∞ ||ϕt||L2 ||ψxt||L2

≤ CN(t)(||ϕt||2L2 + ||ϕxt||2L2 + ||ψxt||2L2).

(3.45)

For the last term on the right hand side of (3.43), using (3.9), Lemma 3.8 and the Cauchy-Schwarz
inequality we can show that

−γ
∫
I
(ϕx + ū)γ−1ψtϕxtdx = −γ

∫
I
ūγ−1(

ϕx
ū

+ 1)γ−1ψtϕxtdx

≤ γ
∫
I
ūγ−1|(ϕx

ū
+ 1)γ−1 − 1||ψt||ϕxt|dx+ γ

∫
I
ūγ−1|ψt||ϕxt|dx

≤ γ
∫
I
ūγ−2|ϕx||ψt||ϕxt|dx+ γ

∫
I
ūγ−1|ψt||ϕxt|dx

≤ C||ϕx||L∞ ||ψt||L2 ||ϕxt||L2 + Cε||ψt||2L2 + ε||ϕxt||2L2

≤ CN(t)
(
||ψt||2L2 + ||ϕxt||2L2

)
+ Cε||ψt||2L2 + ε||ϕxt||2L2

≤ (Cε + CN(t))||ψt||2L2 + (ε+ CN(t))||ϕxt||2L2 . (3.46)

Substituting (3.44)-(3.46) into (3.43), we update (3.43) as

1

2

d

dt

∫
I
ϕ2
t + ψ2

t dx+

∫
I
ϕ2
xt +Dψ2

xtdx

≤ (Cε + CN(t))
(
||ϕt||2L2 + ||ψt||2L2

)
+ (ε+ CN(t))

(
||ϕxt||2L2 + ||ψxt||2L2

)
.

Then we choose ε and δ small enough such that

ε+ CN(t) ≤ 1

2
, (3.47)
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thus

d

dt

∫
I
ϕ2
t + ψ2

t dx+

∫
I
ϕ2
xt +Dψ2

xtdx ≤ (Cε + Cδ)
(
||ϕt||2L2 + ||ψt||2L2

)
. (3.48)

Combine (3.39), (3.36) and (3.48), we can show that∫
I
ϕ2
t + ψ2

t dx+

∫ t

0

∫
I
ϕ2
xτ + ψ2

xτdxdτ

≤ C
∫
I

(
ϕ2

0,xx + ϕ2
0,x + ψ2

0,xx + ψ2
0,x + ϕ4

0,x + ψ4
0,x

)
dx

+ (ε+ CN(t))

∫ t

0
||ϕτ ||2L2 + ||ψτ ||2L2dτ

≤ C
(
||ϕ0,x||2H1 + ||ψ0,x||2H1 +

(
||ϕ0,x||2L2 + ||ψ0,x||2L2

)2)
+ C

(
||ϕ0||2H1 + ||ψ0||2H1

)
,

(3.49)

where we have used the following inequality∫
I
ϕ2
tdx|t=0 ≤ C

∫
I

(
ϕ2

0,xx + ϕ2
0,x + ψ2

0,x + ϕ2
0,xψ

2
0,x

)
dx

≤ C
∫
I

(
ϕ2

0,xx + ϕ2
0,x + ψ2

0,x + ϕ4
0,x + ψ4

0,x

)
dx

(3.50)

and ∫
I
ψ2
t dx|t=0 ≤

∫
I
(Dψ2

0,xx + ūγ − (ϕ0,x + ū)γ)2dx

≤ C
∫
I
ψ2

0,xxdx+ C

∫
I

((ϕ0,x + ū)γ − ūγ)2 dx

≤ C
∫
I
ψ2

0,xxdx+ C

∫
I

(
γūγ−1ϕ0,x + ◦(ϕ0,x)

)2
dx

≤ C
(
||ψ0,xx||2L2 + ||ϕ0,x||2L2

)
,

(3.51)

in which we have also used ϕt|t=0 = ϕ0,xx − χ(ϕ0,xψ0,x + ūψ0,x + w̄xϕ0,x) and ψt|t=0 = Dψ0,xx +

ūγ − (ϕ0,x + ū)γ from (3.12). For the first equation in (3.12) and using the Cauchy-Schwarz inequality,
we get from (3.8), (3.16) and (3.17) that∫

I
ϕ2
xxdx ≤ C

∫
I

(
ϕ2
t + ϕ2

x + ψ2
x

)
dx+ χ||ϕx||2L∞

∫
I
ψ2
xdx

≤ C
∫
I

(
ϕ2
t + ϕ2

x + ψ2
x

)
dx+ C

(
||ϕx||L2 ||ϕxx||L2 + ||ϕx||2L2

) ∫
I
ψ2
xdx

≤ C
∫
I

(
ϕ2
t + ϕ2

x + ψ2
x

)
dx+

1

2
||ϕxx||2L2 + C||ϕx||2L2

(
||ψx||2L2 + ||ψx||4L2

)
,

thus ∫
I
ϕ2
xxdx ≤ C

∫
I

(
ϕ2
t + ϕ2

x + ψ2
x

)
dx. (3.52)



STATIONARY SOLUTION OF A CHEMOTAXIS MODEL 13

This together with (3.19), (3.36), (3.39) and (3.49) can obtain that∫
I
ϕ2
xxdx ≤ C

(
||ϕ0,x||2H1 + ||ψ0,x||2H1 +

(
||ϕ0,x||2L2 + ||ψ0,x||2L2

)2)
+ C

(
||ϕ0||2H1 + ||ψ0||2H1

)
+ C

(
||ϕ0||2H1 + ||ψ0||2L2

) (
||ϕ0||2L2 + ||ψ0||2H1 +

(
||ϕ0||2L2 + ||ψ0||2H1

)2)
≤ C

(
||ϕ0,x||2H1 + ||ψ0,x||2H1 +

(
||ϕ0,x||2L2 + ||ψ0,x||2L2

)2)
+ C

(
||ϕ0||2H1 + ||ψ0||2H1

) (
1 + ||ϕ0||2L2 + ||ψ0||2H1 +

(
||ϕ0||2L2 + ||ψ0||2H1

)2)
≤ C

(
||ϕ0,x||2H1 + ||ψ0,x||2H1 +

(
||ϕ0,x||2L2 + ||ψ0,x||2L2

)2)
+ C

(
||ϕ0||2H1 + ||ψ0||2H1

) (
1 + ||ϕ0||2L2 + ||ψ0||2H1

)2
(3.53)

and∫ t

0

∫
I
ϕ2
xxdxdτ ≤ C

∫ t

0

∫
I

(
ϕ2
τ + ϕ2

x + ψ2
x

)
dxdτ + C

∫ t

0
||ϕx||2L2

(
||ψx||2L2 + ||ψx||4L2

)
dτ

≤ C
∫ t

0

∫
I

(
ϕ2
τ + ϕ2

x + ψ2
x

)
dxdτ + C sup

τ∈[0,t]

(
||ψx||2L2 + ||ψx||4L2

) ∫ t

0
||ϕx||2L2dτ

≤ C
(
||ϕ0||2H1 + ||ψ0||2L2

)
+ C

(
||ϕ0||2L2 + ||ψ0||2H1 +

(
||ϕ0||2L2 + ||ψ0||2H1

)2) (||ϕ0||2L2 + ||ψ0||2L2

)
≤ C

(
1 + ||ϕ0||2L2 + ||ψ0||2H1 +

(
||ϕ0||2L2 + ||ψ0||2H1

)2) (||ϕ0||2H1 + ||ψ0||2L2

)
≤ C

(
1 + ||ϕ0||2L2 + ||ψ0||2H1

)2 (||ϕ0||2H1 + ||ψ0||2L2

)
.

(3.54)

By using the same method and utilizing (3.14), (3.19), (3.36), (3.39), (3.49) and the second equation in
(3.12), we obtain ∫

I
ψ2
xxdx =

1

D2

∫
I

(ψt − ūγ + (ϕx + ū)γ)2 dx

≤ C
∫
I
ψ2
t dx+ C

∫
I

((ϕx + ū)γ − ūγ)2 dx

≤ C
∫
I
ψ2
t dx+ C

∫
I

(
γūγ−1ϕx + ◦(ϕx)

)2
dx

≤ C
∫
I
ψ2
t dx+ C

∫
I
ϕ2
xdx (3.55)

and ∫ t

0

∫
I
ψ2
xxdxdτ ≤ C

∫ t

0
||ψτ ||2L2dτ + C

∫ t

0
||ϕx||2L2dτ

≤ C
(
||ϕ0||2L2 + ||ψ0||2H1

)
+ C

(
||ϕ0||2L2 + ||ψ0||2L2

)
≤ C

(
||ϕ0||2L2 + ||ψ0||2H1

)
. (3.56)
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Combine (3.49), (3.53) and (3.55), we get

||ϕxx||2L2 + ||ψxx||2L2 +

∫ t

0

∫
I
ϕ2
xτ + ψ2

xτdxdτ

≤ C
(
||ϕ0,x||2H1 + ||ψ0,x||2H1 +

(
||ϕ0,x||2L2 + ||ψ0,x||2L2

)2)
+ C

(
||ϕ0||2H1 + ||ψ0||2H1

) (
1 + ||ϕ0||2L2 + ||ψ0||2H1

)2
+ C

(
||ϕ0||2H1 + ||ψ0||2H1

)
≤ ‖ϕ0‖2H2 + ‖ψ0‖2H2 . (3.57)

Next we differentiate the first equation in (3.12) with respect to x to obtain

ϕxxx = ϕxt + χ(w̄xxϕx + w̄xϕxx + ūxψx + ūψxx + ϕxxψx + ϕxψxx),

then we combine (3.16), (3.17), (3.19), (3.54) and (3.57) the Sobolev inequality (3.8) to show that∫ t

0

∫
I
ϕ2
xxxdxdτ ≤ C

(
||ϕ0||2H2 + ||ψ0||2H2

)
. (3.58)

Similarly, using (3.9), (3.16), (3.17), (3.19), (3.54) and (3.57) we have∫ t

0

∫
I
ψ2
xxxdxdτ ≤ C

(
||ϕ0||2H2 + ||ψ0||2H2

)
. (3.59)

Combining (3.54), (3.56), (3.57), (3.58) and (3.59), we then get (3.40) and complete the proof of Lemma
3.11. �

Utilizing the a priori estimates established in §3.2, the global well-posedness of the initial and bound-
ary value problem (3.12)–(3.14) can be proved by combining Proposition 3.3 and standard continuation
argument. To complete the proof of Theorem 2.2, it remains to derive the energy estimates leading to the
long-time behavior of the solution.

3.3. Long time behavior. In this section, we are ready to prove (2.2).
Step 1. To prove the convergence of the zeroth order frequency of the perturbation, we note that under
the conditions of Theorem 2.2, Lemma 3.9 implies(

‖ϕx(t)‖2L2 + ‖ψ‖2L2 + ‖ψx(t)‖2L2

)
∈ L1(0,∞). (3.60)

Applying the arguments in the proof of Lemma 3.9 to (3.29), Lemma 3.10 to (3.35) and (3.38), we can
show that ∣∣∣∣ d

dt

(
‖ϕx(t)‖2L2 + ‖ψ(t)‖2L2 + ‖ψx(t)‖2L2

)∣∣∣∣ ≤ C(‖ϕx‖2H1 + ‖ψx‖2H1

)
. (3.61)

Integrating (3.61) with respect to time and applying Lemmas 3.9–3.10 yield

d

dt

(
‖ϕx(t)‖2L2 + ‖ψx(t)‖2L2

)
∈ L1(0,∞). (3.62)

Since a positive function f(t) ∈W 1,1(0,∞) converges to zero as t→∞, (3.60) and (3.62) imply(
‖ϕx(t)‖2L2 + ‖ψ(t)‖2L2 + ‖ψx(t)‖2L2

)
→ 0 as t→∞. (3.63)

Since ψ = w − w̄ and (ϕx, ψx) = (u− ū, wx − w̄x), it follows from (3.63) that(
‖(u− ū)(t)‖2L2 + ‖(w − w̄)(t)‖2H1

)
→ 0 as t→∞. (3.64)
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Step 2. To show the convergence of the first order spatial derivative of the perturbation, we first note
that Lemma3.10 imply that (

‖ϕt‖2L2 + ‖ψt‖2L2

)
∈ L1(0,∞). (3.65)

Moreover, applying the arguments in the proof of Lemma 3.11 to (3.48), we can show that∣∣∣∣ d

dt

(
‖ϕt(t)‖2L2 + ‖ψt(t)‖2L2

)∣∣∣∣
≤ C

(
‖ϕt‖2H1 + ‖ψt‖2H1

)
. (3.66)

Integrating (3.66) with respect to time and applying Lemmas 3.10–3.11, we obtain
d

dt

(
‖ϕt(t)‖2L2 + ‖ψt(t)‖2L2

)
∈ L1(0,∞). (3.67)

It follows from (3.65) and (3.67) that(
‖ϕt(t)‖2L2 + ‖ψt(t)‖2L2

)
→ 0 as t→∞. (3.68)

As a direct consequence of (3.52), (3.63) and (3.68), we have

‖ϕxx(t)‖2L2 → 0 as t→∞, (3.69)

which implies

‖(ux − ūx)(t)‖2L2 → 0 as t→∞. (3.70)

which, together with (3.48), (3.63) and (3.68), implies

‖ψxx(t)‖2L2 → 0 as t→∞. (3.71)

It then follows that

‖(wxx − w̄xx)(t)‖2L2 → 0 as t→∞. (3.72)

This finishes the proof of Theorem 2.2.
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sité de Paris-Sud, Orsay, 1978. Publications Mathématiques d’Orsay, No. 78-02.
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