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Abstract

Much of the global population now has some level of adaptive immunity to SARS-CoV-2 induced by exposure to the virus

(natural infection), vaccination, or a combination of both (hybrid immunity). Key questions that subsequently arise relate

to the duration and the level of protection an individual might expect based on their infection and vaccination history. A

multi-component composite correlate of risk (CoR) could inform individuals and stakeholders about protection and aid decision

making. This perspective evaluates the various elements that need to be accommodated in the development of an antibody-based

composite CoR for reinfection with SARS-CoV-2 or development of severe COVID-19, including variation in exposure dose,

transmission route, viral genetic variation, patient factors, and vaccination status. We provide an overview of antibody dynamics

to aid exploration of the specifics of SARS-CoV-2 antibody testing. We further discuss anti-SARS-CoV-2 immunoassays, sample

matrices, testing formats, frequency of sampling and the optimal time point for such sampling. Whilst the development of a

composite CoR is challenging, we provide our recommendations for each of these key areas and highlight areas that require

further work to be undertaken.

Introduction

The COVID-19 pandemic, caused by severe acute respiratory coronavirus 2 (SARS-CoV-2) led to unprece-
dented, accelerated vaccine development (1) and expansive roll-out programs (2,3). Much of the global
population now has some level of adaptive immunity to SARS-CoV-2 induced by exposure to the virus
(natural infection), vaccination, or a combination of both (hybrid immunity).

Natural infection induced by, and/or vaccination against, SARS-CoV-2 leads to the development of both
binding and neutralizing antibodies (nAbs) (4,5), and the induction of T-cell responses during active immune
reaction and clearance of infection (6). Key questions that subsequently arise relate to the duration and
the level of protection an individual might expect based on their infection and vaccination history. Studies
of those infected early in the pandemic documented that natural SARS-CoV-2 infection afforded some level
of protection against reinfection in most individuals, and that subsequent reinfections were typically less
severe than the primary episode (Table 1 ). However, SARS-CoV-2 has high rates of mutation and heavily
mutated variants have emerged (7). Most significant are the ‘variants of concern’ (VOCs) (8), and there is
now ample evidence that protection against reinfection with the B.1.1.529/21K (Omicron) variant (9,10) is
dramatically reduced compared with previous variants (Table 1 ).
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Any descriptor of immunity based on patient history will encompass a population of individuals with vastly
variable exposure to vaccines and viral variants with differing orders of immune challenge intensity. Unrecog-
nised ‘silent infections’, especially in Omicron-positive subjects with underlying immunity, further complicate
the assessment. Therefore derivation of potential immunity based on patient history requires assistance from
a surrogate composite score to inform about protection and to aid decision making.

Correlates of protection or risk

In vaccinology, a correlate of protection (CoP) reflects a statistical non-causal relationship between an im-
mune marker and protection after vaccination (11). Most accepted CoPs are based on antibody measurements
(12) and vary depending on the clinical endpoint, for example protection from (symptomatic) infection or
severe disease. In contrast, a correlate of risk (CoR) can be used as a measurement of an immunologic
parameter that is correlated with a study endpoint (13) and can predict a clinical endpoint in a specified
population with a defined future timeframe. Notably, antibody markers have been used as correlates of
immune function in clinical trials of SARS-CoV-2 vaccine efficacy (14-19), and for identifying the risk of
symptomatic infection by VOCs (20,21).

A CoR would likely comprise a measure of the immune component plus determinants that act to modify
such a measure (a multi-component composite CoR). In general, the immune component of a composite CoR
should be easily measured by widely available technologies that are amenable to automation, are scalable,
cost-efficient, and have a rapid turn-around time. Given the relative complexity, cost and pre-analytic
requirements for cellular immune response testing, the preferred candidate for the immune component of
a CoR would be detection of humoral immune response(s) (i.e. antibody). This perspective evaluates the
various elements that need to be accommodated in the development of an antibody-based composite CoR
for reinfection with SARS-CoV-2 or severe COVID-19.

A composite CoR: A brief summary of extrinsic viral and intrinsic
host elements that should be considered

Variation in exposure dose and transmission route

Viral load varies widely between infected individuals and over time (22), with viral emissions independent
of symptom severity (23). Exposure to SARS-CoV-2 is tempered by the use of personal protective measures
and, at the population level, adherence to public health measures that reduce exposure has been variable
(24,25), making assessment of exposure dose complex.

Controlled human infections to directly study the impact of viral inoculum and disease severity are contro-
versial (26), and only one human challenge trial of SARS-CoV-2 using a single low inoculum dose has been
reported to date (27). However, the initial infective dose of SARS-CoV-2 is thought to be associated with
disease severity (28-30), since relationships between dose and severity exist for many other viral infections
(30). Evidence from SARS-CoV-2 animal models suggests that the route of transmission similarly affects
disease severity (30,31).

Viral genetic variation

Risk reduction depends on the dominant variant in circulation. Continued evolution of SARS-CoV-2 can
lead to significant changes in viral transmission and impact reinfection rates (32). Mechanistically, the
receptor binding domain (RBD) within the viral spike (S) glycoprotein engages in initiation of infection
via interaction with the angiotensin converting enzyme-2 (ACE2) receptor (33). The RBD is a target for
many nAbs (33) and mutations are frequently located at the RBD–ACE2 interface (34). It is therefore
not surprising that changes to the viral epitope can reduce antibody binding (34), helping to drive immune
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escape from anti-RBD nAbs (35), decreasing previously generated protective immunity (36-38), and leading
to variant-specific risks of severe illness (39,40).

Patient factors

Patient differences impact susceptibility to reinfection and disease severity. The immune response declines
with increasing age (41,42), and age is the strongest predictor of SARS-CoV-2 infection–fatality ratio (43).
Older individuals have been shown to exhibit reduced binding antibody titers and neutralization following
vaccination (44-46). Pregnant women are also at high risk of severe outcomes (47). Similarly, immunocom-
promised or immunosuppressed individuals exhibit reduced immune responses to infection or an increased
risk of hospitalization (48-51). Other co-morbidities are frequently observed in those with severe COVID-19
(52).

Vaccination status

COVID-19 vaccines include recombinant subunit, nucleic acid, viral vector and whole virus vaccines, amongst
others, and some vaccines have been adapted for Omicron variants (53). The use of different vaccines,
combinations, the number of boosters received, the occurrence of natural infection, and combinations thereof,
trigger the immune system to varying degrees in depth, breadth or duration of response (21,54-66).

Following primary infection, severely ill patients exhibit higher binding and neutralizing antibody titers or
activity compared with individuals with mild disease (67-72). Persistence of nAbs has also been associated
with disease severity (73). In the event of reinfection, there is an implicit assumption that nAb titers
ameliorate severe COVID-19 (74,75). In brief, in infection-näıve individuals, post-vaccination antibody
titers (anti-S IgG and nAbs) correlate with higher vaccine efficacy (55), and post-vaccination anti-RBD
IgG and nAbs levels associate with protection against infection and symptomatic disease even during the
Omicron era (76) or inversely correlate with risk of death (anti-S IgG below 20th percentile) (77). Generally,
individuals with higher nAbs (levels or capacity) are considered increasingly protected from infection (78-80),
symptomatic reinfection (80-82), severe disease (81), or death (83) compared with individuals with lower
nAbs. There is evidence that neutralization capacity can be strain specific (84).

Summary

In summary, viral and host elements modify the risk of reinfection or development of severe COVID-19.
Although not described above, other relevant factors include whether an individual previously received
monoclonal antibodies (85) (but potentially not antiviral medication (86)), genetic predisposition (87-91),
and socioeconomic, air pollution, co-infection, microbiota, and frailty factors (reviewed in detail (31)).

A composite CoR: Antibody dynamics, serology in practice and
challenges, and expert recommendations

The antibody component of a composite CoR should be developed under defined conditions. To provide
insight into these conditions, an understanding of antibody dynamics is required.

SARS-CoV-2 antibody dynamics

Natural infection with SARS-CoV-2 elicits a diversity of antibodies including those targeting S and nucleo-
capsid (N) antigens (59,92) and the development of anti-RBD IgG antibodies is associated with improved
patient survival (93). A detailed systematic review of 66 studies investigated antibody responses (94). Col-
lectively, the evidence supports the induction of IgM production in the acute phase of natural infection (peak
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prevalence: 20 days) followed by IgA (peak prevalence: 23 days), IgG (peak prevalence: 25 days), and nAbs
(peak prevalence: 31 days) after symptom onset (94).

Serum IgG has the longest half-life compared with the relatively transient IgA or IgM (95). A longitudinal
analysis of 4558 individuals, measuring total anti-N antibodies, revealed that, whilst total antibodies begin
to decline after 90–100 days, they may persist for over 500 days after natural infection (96). Specifically
measuring nAb via plaque reduction neutralization test (PRNT) shows that infection yields a robust nAb
response in most individuals (67). Some studies report that anti-S antibodies show greater persistence than
anti-N antibodies (97,98).

Dramatic inductions of anti-S or anti-RBD IgG antibodies is indicative of vaccination (59,99,100). Primary
vaccination by some vaccines, (but not all (101)), or boosters generates high nAb titers (100,102,103) or
neutralizing responses (99). Notably, nAbs wane over time (21) with a half-life of 108 days (81) – although
the level of decay may be assay or variant dependent (102) – and multiple clinical factors affect the duration
of neutralization responses after primary vaccination (66).

Anti-SARS-CoV-2 antibody testing

Commercial high-throughput immunoassays

Numerous immunoassays for the detection of antibodies against SARS-CoV-2 are available, differing in the
immunoglobulin class detected, target viral antigen, format, and output (qualitative, [semi]-quantitative)
(reviewed in detail (104,105)).

Head-to-head comparisons from the pre-Omicron era reveal variable levels of performance between the assays
(106-110), caused by numerous technical factors including assay methodology, format and antibodies used,
timing of testing, and the targeted viral antigen. Comparison studies show that sensitivity for detecting prior
infection by different serologic assays changes over time (111). Commercial assays developed early during
the pandemic are based on ancestral/wild-type antigens. Subsequently, there is potential for differential
performance in the Omicron-era: in particular, S- and RBD-specific immunoassays have shown significantly
reduced performance (112-114), and decreased comparability of quantitative results (115).

Most common commercial immunoassays detect both binding and nAbs without differentiating between
them, however certain assays measuring IgG or total antibodies correlate well with neutralizing capacity
(14,78,116-122), acting as surrogates of neutralization. Cell-based virus neutralization tests can be used to
measure neutralizing capability, but these are typically not readily available in clinical laboratories due to
inherent test performance challenges associated with their methodology, time and cost (123).

Expert recommendations

Mature immune responses are dominated by IgG. Serologic assays that measure IgG or total antibodies (if
skewed towards IgG) that correlate with neutralizing activity and focus on anti-RBD should be used for the
serologic component of a composite CoR; anti-N antibodies are unlikely to be neutralizing as the N protein
is located within the viral envelope (59).

Assays should be adapted for accurate measurement of the modified antigen, if applicable. However, frequent
adaptation of assays is unlikely if several variants are circulating in parallel and due to regulatory require-
ments for assays. Therefore, studies are needed to determine assay applicability in the present conditions,
especially since RBD mutations frequently occur and recombinant versions of RBD or S are commonly used
in immunoassays (105). Accordingly, the upper and lower thresholds of any CoR may need modification.

External ring trials show poor comparability of assays from different manufacturers (124,125) and there are
significant challenges with the current binding antibody units (BAU) standardization, due to multiple fac-
tors, including different assay methods, antibody class(es) detected and target antigen used. Of note, BAU
reference materials were derived from UK convalescent individuals infected in 2020 (126) (pre-Omicron), and
there are vastly different BAU standardized values (Kroidl et al 2023, submitted). Antibody measurements
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should be harmonized across assays from different manufacturers, irrespective of the different epitopes utili-
zed, to reduce variability. To support this, there is an urgent need for external quality assessment, production
of robust traceable certified reference materials, standards for different variants, and improved documentati-
on of the methods on laboratory reports. Age-specific normalization of reference intervals in defined groups,
by means of z-log transformation and documentation in antibody passes, may further improve the compa-
rability of assays. Stakeholders should agree on minimum performance-based criteria to develop the gold
standard for CoR, allowing validation of secondary assays.

Finally, systemic cellular assays could provide a comprehensive profile of the immune response, especially
in immunocompromised and susceptible individuals who are not able to mount a robust antibody response.
Currently, they lack scientific evidence and their use in clinical practice still remains uncertain.

Sample matrices

Systemic anti-SARS-CoV-2 antibody testing can be performed on blood, plasma/serum, or dried blood
spots (DBS) (105,127,128); Wieser et al 2023, submitted). An advantage of whole blood or DBS collection
is the ease in obtaining the sample. Whilst many methodologies focus on systemic testing, infection with
SARS-CoV-2 or vaccination against COVID-19 induces mucosal antibodies (129,130), thus secretions such
as saliva offer another possibility. Antibody dynamics will differ depending on the material in question (131),
and sample types are subject to specific idiosyncrasies, such as additional pre-processing, that need to be
accounted for (132). Currently secretion-based testing is less suitable for a composite CoR as performance
is variable (133).

Expert recommendations

A composite CoR will likely be sample matrix-specific. Our preference is for plasma/serum, as this sample
matrix has the largest evidence base, shows the least variability, experiences less interference than whole
blood, and is consistent with CoRs established for other infectious diseases. DBS would be also possible, but
variability is high, and few laboratories have an established workflow.

Serologic testing formats

Formats include high-throughput automated enzyme immunoassay/ electrochemiluminescence
immunoassay/enzyme-linked immunosorbent assay (certified and used in central laboratories and hospitals),
point-of-care (POC) testing (used in emergencies and outpatients setting), and direct-to-consumer testing
(at-home use with online services). POC testing is gaining in popularity, but methodological variation
is higher (134) and any method that relies upon sampling from untrained individuals is less reliable for
(semi)quantitative measurements (135).

Expert recommendations

We recommend automated assays that are approved by location-specific regulatory agencies and performed
in certified and centralized laboratories. Home sampling/DBS would contribute to a reduction in clinician
workload, particularly in high-density residential facilities, but methods are not yet sufficiently robust. At
this time, there is no clear benefit in POC testing as urgent results are not critical.

Frequency of sampling and optimal time point

Considering antibody dynamics, several important questions arise: what is the optimal time point for measu-
rement; would the timing differ depending on the vaccine schedule, and/or the presence of previous infection
of a specified severity; should antibody levels be measured once or serially? Whilst single values can be
plotted into modelled curves showing decrease rates over time, serial measurements could further refine the
composite CoR. Only individuals with symptomatic disease or vaccination are known to stabilise the curve
— infections that are sufficiently mild to lack detection will impact the composite CoR model.

Expert recommendations

5
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As most individuals have experienced infection or vaccination, and titers are generally high and more stable
than with single exposures, sampling should be performed annually or less. Serologic evaluation should be
conducted more frequently in the elderly or immunocompromised than the general population (time interval
to be defined), depending on any underlying disease and/or treatment.

Discussion

A composite CoR would be helpful particularly for high-risk groups, such as solid organ transplant recipients
(136), and those in occupations with high risk of exposure to SARS-CoV-2. However, whether a composite
CoR would operate at the individual or population level is yet uncertain.

For health policymakers, a composite CoR could be useful for: 1) predicting the durability of protection,
supporting serosurveys to determine the protection levels of individuals and populations; 2) aiding decision-
making with regard to monitoring vaccination efficacy and identifying individuals who would benefit from
booster vaccinations; 3) evaluating the need for extra protection of vulnerable communities in the face of new
variants with low cross protection and less efficacious vaccines; 4) licensing new vaccines; and 5) developing
clear immunologic vaccine trial endpoints.

A previous systematic review by Perry and colleagues found mixed evidence for a serologic CoP, with the lack
of standardization between laboratory methodology, differing assay targets and sampling time points, and
the lack of information on the SARS-CoV-2 variant confounding interpretation (137). We have highlighted
various parameters that should be controlled for in any measure of risk, some of which will be challenging to
obtain (such as host genetics). Comparing different protection studies is also difficult as infectious pressure
in the observation time period is often uncertain as, in reality, community data are incomplete and the
number of oligosymptomatic infections is unclear. Of course, individual responses to infection and vaccination
with regards to antibody production will make long-term assessment difficult, intrinsic risk will vary by
age and protection will not be linear (122,138). All the variables previously described need to be thought
of in the general context of laboratory diagnostics, paying attention to sensitivity, specificity, reliability,
precision, dilution, linearity, robustness, stability, preanalytics, scalability (automation), cost-efficiency, In
Vitro Diagnostic Regulation certification, and the use of qualified standard and control materials. Laboratory
quality is essential for meaningful follow-up of quantitative antibody levels.

Whilst the development of a composite CoR is a sizeable task, steps can be taken to address this need. Studies
need to adapt to the requirements of new variants, controlling for patient settings (vaccination types, earlier
infections), and levels of disease severity. The emergence of VOCs means that a CoR will undoubtedly be
variant-specific and the timing of infections and vaccination, how variants impact disease severity, antibody
kinetics, and assay reactivity, must be respected. Frequently revisiting the data would be helpful as overall
epidemiology changes; since almost all epidemiologic population-based studies have ended, background data
is increasingly difficult to acquire, and this must be reversed. Whilst serologic testing has retreated from
the political agenda and public interest, there is still an obligation to broaden the scientific knowledge base,
and collect data to inform public health authorities, given that COVID-19 still causes a significant number
of deaths and there is a considerable population of those with post-acute sequelae of SARS-CoV-2 infection
(long COVID; (139)).

A composite CoR will differ depending on the clinical endpoint (12). Definitions of symptomatic or severe
disease are often not consistent across studies (81). Clinical outcomes must be precisely defined: an evaluation
of the primary endpoints of 19 clinical trials for severe COVID-19 revealed the complexity of this task,
reporting 12 different primary endpoints (140). In addition, the ideal timeframe for predictive ability is yet
to be determined.

Whilst we support the development of a composite CoR and serologic testing by high- quality controlled
assays, viruses such as influenza have significant strain variation and similar disease severity, so the import-
ance of a composite CoR for SARS-CoV-2 should be judged against other pathogens of interest. Assessment

6
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of cost-effectiveness will likely inform upon the need for a composite CoR.
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Table 1: Selection of peer-reviewed publications assessing reinfection or risk of severe COVID-19 after natural
infection (ordered by study end date, earliest to most recent)

Study Study Study

Outcome
measures
of
protection
or risk

Outcome
measures
of
protection
or risk

Outcome
measures
of
protection
or risk

Total size
(enrolled;
before
exclusions)

Time
period

Reported
lineage

Reported
outcome
measure
(protec-
tion, risk,
reinfection
rate)

Repeat
infection
outcome
(selected
compar-
isons,
terminol-
ogy as
reported)

Severe
COVID-19
outcome
(selected
compar-
isons,
terminol-
ogy as
reported)

Primary
publica-
tions

Primary
publica-
tions

Primary
publica-
tions

Primary
publica-
tions

Primary
publica-
tions

Primary
publica-
tions

Primary
publica-
tions
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Study Study Study

Outcome
measures
of
protection
or risk

Outcome
measures
of
protection
or risk

Outcome
measures
of
protection
or risk

Hansen et al.
2021 Non-
vaccinated
individuals
Denmark
(141)

˜ 4 million
individuals

Feb 26,
2020–Dec 31,
2020

None Protection Protection
against repeat
infection in
those11Derived
as 1- adjusted
relative risk.
The rates of
infection
during the
second surge
were compared
across those
with a positive
or negative
PCR test from
the first surge.
The calculated
the rate of
infection was
calculated as
the number of
individuals
with positive
PCR tests
during the
second surge
divided by the
cumulative
number of
person-days at
risk < 65
years: 80.5%
(95% CI
75.4–84.5) [?]
65 years:
47.1% (96% CI
24.7–62.8)

Not assessed
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Study Study Study

Outcome
measures
of
protection
or risk

Outcome
measures
of
protection
or risk

Outcome
measures
of
protection
or risk

Abu-Raddad
et al. 2021
Non-
vaccinated
individu-
als22Qatar
launched its
vaccination
campaign on
December 21,
2020, around
the time this
study was
concluded
(December 31,
2020), so very
few individuals
had been
vaccinated at
time of this
study. Qatar
(142)

192,984
individuals

April 16,
2020–Dec 31,
2020

None Protection Efficacy of
natural
infection
against
reinfec-
tion33Derived
as 1- the ratio
of the
incidence rate
of reinfection
in the
antibody-
positive cohort
to the
incidence rate
of infection in
the antibody-
negative
cohort. 95.2%
(95% CI:
94.1–96.0)

Not assessed
Of 129 cases
with good or
some evidence
of reinfection,
one reinfection
was severe,
two were
moderate, and
none were
critical or fatal

Hall et al.
2021 Non-
vaccinated and
vaccinated
individuals
UK (143)

30,625
individuals

June 18,
2020–Jan 11,
2021

Not specified
B.1.1.7

Risk Risk of
reinfection
caus-
ing44Derived
as 1- adjusted
incident rate
ratio.
COVID-19
symptoms:
aIRR 0.074
(95% CI
0.06–0.10) All
events
(COVID-19
symptoms,
other
symptoms,
asymp-
tomatic):
aIRR 0.159
(95% CI
0.13–0.19)

Not assessed
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Study Study Study

Outcome
measures
of
protection
or risk

Outcome
measures
of
protection
or risk

Outcome
measures
of
protection
or risk

Lumley et al.
2022 Non-
vaccinated and
vaccinated
individuals
UK (144)

13,109
individuals

March 27,
2020–Feb 28,
2021

Non-S-gene
target failure
B.1.1.7

Risk Risk of
PCR-positive
result
(symptomatic
or
asymptomatic)
in
Unvaccinated
seroposi-
tive55Compared
incidence in
each follow-up
group to
unvaccinated
seronegative
healthcare
workers.:
aIRR 0.02
(95% CI
0.01–0.18)

Not assessed
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Study Study Study

Outcome
measures
of
protection
or risk

Outcome
measures
of
protection
or risk

Outcome
measures
of
protection
or risk

Abu-Raddad
et al. 2021
Non-
vaccinated and
vaccinated
individuals
Qatar (145)

193,233
individuals

Before Nov 1,
2020–March 3,
2021

B.1.1.7
Variants of
unknown
status

Protection Efficacy of
natural
infection
against
reinfection
with66Derived
as 1- the ratio
of the
incidence rate
of reinfection
in the PCR-
confirmed (or
antibody-
positive)
cohort to the
incidence rate
of infection in
the antibody-
negative
cohort.
B.1.1.7, prior
PCR-
confirmed
infection:
97.5% (95% CI
95.7–98.6)
B.1.1.7, prior
antibody-
positive result:
97.0% (95% CI
92.5–98.7)
Unknown
variant, prior
PCR-
confirmed
infection:
92.2% (95%
CI: 90.6–93.5)
Unknown
variant, prior
antibody-
positive result:
94.2% (95%
CI: 91.8–96.0)

Not assessed
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Study Study Study

Outcome
measures
of
protection
or risk

Outcome
measures
of
protection
or risk

Outcome
measures
of
protection
or risk

Chemaitelly, H
et al. 2021
Unvaccinated
individuals
(146) Qatar

380,914
individuals

Before Jan 1,
2021–April 21,
202177This
timeframe
coincided with
the beginning
of the decline
of the B.1.1.7
wave and the
rapid
expansion of
the B.1.351
wave that
peaked early
April 2021.

B.1.351
B.1.1.7
Variants of
unknown
status

Protection Efficacy of
natural
infection
against
reinfection
with88Derived
as 1- the ratio
of the
incidence rate
of reinfection
in the cohort
of individuals
with a prior
PCR-
confirmed
infection to
the incidence
rate of
infection in
the antibody-
negative
cohort.
B.1.351:
92.3% (95%
CI: 90.3–93.8)
B.1.1.7: 97.6%
(95% CI
95.7–98.7)
Variants of
unknown
status: 87.9%
(95% CI:
84.7–90.5)

Not assessed
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Study Study Study

Outcome
measures
of
protection
or risk

Outcome
measures
of
protection
or risk

Outcome
measures
of
protection
or risk

Nordström et
al. 2022 Non-
vaccinated and
vaccinated
individuals
Sweden (147)

˜3.5 million
individuals (3
cohorts)

March 20,
2020–Sept 5,
2021

Alpha B.1.1.7
Beta B.1.351
Gamma P.1
Delta
B.1.617.2

Risk Risk of
reinfection in
those with
Natural immu-
nity99Calculated
vs no
immunity and
after 3 months
of follow-up.:
aHR 0.05 (95%
CI 0.05–0.05)
One-dose
hybrid immu-
nity1010Calculated
vs natural
immunity and
during the
first 2 months
of follow-up.:
aHR 0.42 (95%
CI 0.38–0.47)
One-dose
hybrid immu-
nity1111Calculated
vs natural
immunity and
after 2 months
of follow-up.:
aHR 0.55 (95%
CI 0.39–0.76)
Two-dose
hybrid
immunity,
over-
all1212Calculated
vs natural
immunity.:
aHR 0.34 (95%
CI 0.31–0.39)

Risk of
hospitalization
(HR)
Two-dose
hybrid immu-
nity1313Calculated
vs natural
immunity.:
0.10 (95% CI
0.04–0.22)
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Study Study Study

Outcome
measures
of
protection
or risk

Outcome
measures
of
protection
or risk

Outcome
measures
of
protection
or risk

Altarawneh et
al. 2022 Non-
vaccinated and
vaccinated
individuals
Qatar (148)

˜2.3 million
individuals

March 23,
2021–Nov 18,
2021

Alpha Beta
Delta Omicron

Protection Effectiveness
of previous
infection in
preventing
reinfection
with1414Derived
as 1- odds
ratio of prior
infection in
cases
(PCR-positive
persons with
variant
infection)
versus controls
(PCR-negative
persons))
Alpha: 90.2%
(95% CI
60.2–97.6)
Beta: 85.7%
(95% CI
75.8–to 91.7)
Delta: 92.0%
(95% CI
87.9–94.7)
Omicron:
56.0% (95% CI
50.6– 60.9)

Effectiveness
of previous
infection in
preventing
severe, critical
or fatal disease
caused by
Alpha: 69.4%
(95% CI
-143.6–96.2)
Beta: 88.0%
(95% CI
50.7–97.1)
Delta: 100%
(95% CI
43.3–100)
Omicron:
87.8% (95% CI
47.5–97.1)
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Study Study Study

Outcome
measures
of
protection
or risk

Outcome
measures
of
protection
or risk

Outcome
measures
of
protection
or risk

Pulliam et al.
2022 Non-
vaccinated and
vaccinated
individuals
South Africa
(149)

˜2.9 million
individuals

March 4,
2020–Jan 31,
2022

Beta (B.1.351)
Delta
(B.1.617.2)
Omicron
(B.1.1.529)1515Period
of Omicron
emergence:
November 1,
2021 to
November 30,
2021.

Risk Risk of
reinfection
dur-
ing1616Estimated
relative hazard
ratios for
reinfection
during
specified wave
versus primary
infection
during the first
wave. Wave 2
(Beta-driven)
versus Wave 1:
relative HR
0.71 (95% CI
0.60–0.85)
Wave 3
(Delta-driven)
versus Wave 1:
relative HR
0.54 (95% CI
0.45–0.64)
Wave 4
(Omicron-
driven) versus
Wave 1:
relative 1.70
(95% CI
1.44–2.04)

Not assessed
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Study Study Study

Outcome
measures
of
protection
or risk

Outcome
measures
of
protection
or risk

Outcome
measures
of
protection
or risk

Guedes et al.
2023 Non-
vaccinated and
vaccinated
individuals
Brazil (150)

25,750
real-time
RT-PCR tests
performed

March 10,
2020–March
20, 2022

Pre-VOC
Gamma Delta
Omicron

Reinfection
rate

Reinfection
rate during the
Omicron
variant period:
1717Calcu-
lated as
number of
reinfection
cases before
and after the
Omicron
variant
considering
the total
accumulated
number of
SARS-CoV-2
infections in
both periods.
Before 0.8% vs
after 4.3%;
p<0.001

Not assessed
281/281
reinfections
were mild

27



P
os

te
d

on
7

S
ep

20
23

—
C

C
-B

Y
4.

0
—

h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
69

41
20

08
.8

32
34

7
34

/v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
as

n
ot

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

at
a

m
ay

b
e

p
re

li
m

in
ar

y.

Study Study Study

Outcome
measures
of
protection
or risk

Outcome
measures
of
protection
or risk

Outcome
measures
of
protection
or risk

Chemaitelly et
al. 2022 (151)
Unvaccinated
individuals
Qatar

Up to 3.3
million
individuals

Feb 28, 2020–
June 5,
20221818Three
individual
studies
(pre-Omicron
reinfection,
Omicron
reinfection,
COVID-19
severity
reinfection)
spanning
different time
periods.

Pre-Omicron
(ancestral,
Alpha, Beta,
Delta)
Omicron
(BA.1, BA.2,
BA.4, BA.5)

Protection Effectiveness
of
pre-Omicron
primary infec-
tion1919Derived
as 1-adjusted
hazard ratio,
where the
hazard ratio
compared
incidence of
infection in
both cohorts.
Incidence rate
of infection in
each cohort
defined as the
number of
identified
infections
divided by the
number of
person-weeks
contributed by
all individuals
in the cohort.
Against
pre-Omicron
reinfection:
85.5% (95%
CI:
84.8–86.2%)
Effectiveness
peaked at
90.5% (95% CI
88.4–92.3%) in
the 7th month
after the
primary
infection,
waning to
˜70% by the
16th month
Against
Omicron
reinfection:
38.1% (95% CI
36.3–39.8%),
declining with
time since
primary
infection

Effectiveness
of
pre-Omicron
primary infec-
tion2020Cox
regression
analysis.
Severity,
criticality, and
fatality defined
as per WHO
guidelines.
Against severe,
critical or fatal
COVID-19 due
to Omicron
reinfection:
88.6% (95% CI
70.9–95.5)
Against
severe, critical,
or fatal
COVID-19
reinfection
(irrespective of
the variant of
primary
infection or
reinfection):
97.3% (95% CI
94.9–98.6)
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Study Study Study

Outcome
measures
of
protection
or risk

Outcome
measures
of
protection
or risk

Outcome
measures
of
protection
or risk

Bowe et al.
2022 Non-
vaccinated and
vaccinated
individuals
USA (152)

˜ 5.8 million
individuals

March 1,
2020–June 25,
2022

Pre-Delta
Delta Omicron

Risk Not assessed Risk of all-
cause mortality
(HR)2121Calculated
for reinfection
vs no
reinfection.
2.17 (95% CI
1.93–2.45)
Risk of
hospitalization
(HR) 3.32
(95% CI
3.13–3.51)

Yang et al.
2023 Non-
vaccinated and
vaccinated
individuals
Malaysia (153)

482 individuals Jan 31,
2022–Jul 31,
20222222The
Omicron-
dominant
period in
Malaysia was
estimated to
start from
early February
2022.

Non-Omicron
Omicron

Risk Risk of
reinfection in
those with
Pre-Omicron
natural infec-
tion2323Calculated
vs Omicron-
dominant
period.: aHR
0.41 (95% CI
0.27–0.62)

Not assessed

Meta-
analyses
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Study Study Study

Outcome
measures
of
protection
or risk

Outcome
measures
of
protection
or risk

Outcome
measures
of
protection
or risk

Stein et al
2023. Global
systematic
review and
meta-analysis
of 65 studies
from 19
countries (154)

Various Up to Sept 31,
2022

Ancestral
Mixed Alpha
(B.1.1.7) Beta
(B.1.351)
Delta
(B.1.617.2)
Omicron BA.1
variants

Protection Pooled
estimate of
protection
from past
infection (with
various
variants)
against
reinfection
with
Ancestral:
84.9 (95% UI
72.8–91.8)
Alpha: 90.0%
(95% UI
54.8–98.4)
Beta: 85.7%
(95% UI
83.4–87.7)
Delta: 82.0
(95% UI
63.5–91.9)
Omicron
BA.1: 45.3%
(95% UI
17.3–76.1)

Pooled
estimate of
protection
against severe
disease caused
by Ancestral:
78.1% (95% UI
34.4–96.5)
Alpha: 79.6%
(95% UI
43.3–95.3)
Beta: 88%
(95% UI 50.7–
97.1)2424Single
study. Delta:
97.2% (95% UI
85.2–99.6)
Omicron
BA.1: 81.9%
(95% UI
73.8–88.0)

aRR, adjusted risk ratio; aIRR, adjusted incidence risk ratio; aHR, adjusted hazard ratio; CI, confidence
interval; HR, hazard ratio; OR, odds ratio; PES, effectiveness of prior infection in preventing reinfection;
real-time RT-PCR, real-time reverse transcription polymerase chain reaction; UI, uncertainty interval.
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