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Abstract

This paper presents Deeper, a design for a decentralized exchange that enhances liquidity via reserve sharing. By doing this,

it addresses the problem of shallow liquidity in low trading volume token pairs. Shallow liquidity impairs the functioning

of on-chain markets by creating room for unwanted phenomena such as high slippage and sandwich attacks. Deeper solves

this by allowing liquidity providers of multiple trading pairs against a common token to share liquidity. This is achieved by

creating a common reserve pool for the shared token that is accessible by each trading pair. Independent from the shared

liquidity, providers are free to add liquidity to individual token pairs without any restriction. The trading between one token

pair does not affect the price of other token pairs even though the reserve of the shared token changes. The proposed design

is an extension of concentrated liquidity automated market maker DEXs that is simple enough to be implemented on smart

contracts. This is demonstrated by providing a template for a hook-based smart contract that adds our custom functionality

to Uniswap V4. Experiments on historical prices show that for a batch consisting of 8 trading pairs, Deeper enhances liquidity

by over 2.6–5.9×. The enhancement in liquidity can be increased further by increasing the participating tokens in the shared

pool. While providing shared liquidity, Liquidity Providers should be cautious of certain risks and pitfalls, which are described.

Overall, Deeper enables the creation of fair markets for low trading volume token pairs.
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Abstract
This paper presents DEEPER, a design for a decentralized exchange that enhances liquidity via reserve
sharing. By doing this, it addresses the problem of shallow liquidity in low trading volume token pairs.
Shallow liquidity impairs the functioning of on-chain markets by creating room for unwanted phenomena
such as high slippage and sandwich attacks. DEEPER solves this by allowing liquidity providers of multiple
trading pairs against a common token to share liquidity. This is achieved by creating a common reserve
pool for the shared token that is accessible by each trading pair. Independent from the shared liquidity,
providers are free to add liquidity to individual token pairs without any restriction. The trading between
one token pair does not affect the price of other token pairs even though the reserve of the shared token
changes. The proposed design is an extension of concentrated liquidity automated market maker DEXs that
is simple enough to be implemented on smart contracts. This is demonstrated by providing a template for
a hook-based smart contract that adds our custom functionality to UNISWAP V4. Experiments on historical
prices show that for a batch consisting of 8 trading pairs, DEEPER enhances liquidity by over 2.6–5.9×. The
enhancement in liquidity can be increased further by increasing the participating tokens in the shared pool.
While providing shared liquidity, Liquidity Providers should be cautious of certain risks and pitfalls, which
are described. Overall, DEEPER enables the creation of fair markets for low trading volume token pairs.
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1 INTRODUCTION

Blockchains are distributed ledger technologies where modifying the ledger state requires consensus among participants, also
known as miners, who maintain the chain. Bitcoin1 was the first public and permissionless blockchain to be resistant against
adversarial miners provided the majority of participants are honest. This introduced the concept of trustless payments where a
transfer is guaranteed regardless of the sender, receiver, or amount. Although Bitcoin was only limited to payments, Ethereum2

extended blockchain functionalities to arbitrary Turing-complete contracts known as smart contracts. The correct execution of
these contracts is based on a trustless execution model. This led to the onset of Decentralized Finance (DeFi)3 which removed
the need for centralized intermediaries thus eliminating central points of failure.

This trend of bringing decentralization and introducing trustlessness continues further in several other traditional technology
sectors. This includes revolutionizing research platforms with decentralized science4, gaming industry with game finance5, web
services with Web 3.06, supply chains7, as well as social engagement platforms8. One key aspect in designing a decentralized
system, including blockchains, is this of economic incentives9. These incentives align a distributed and unfamiliar group of
users towards a common goal. Such incentives are usually implemented as cryptocurrency tokens with each application having
its own token.

Apart from just providing incentives, cryptocurrency tokens can also serve many other diverse functionalities. Some of them
include providing utility in web applications, such as access to data storage or computing power10, governance rights in decen-
tralized autonomous organizations (DAOs) via voting11, reputation and identity score12, tokenization of real-world assets13,
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2 SINGH ET AL.

etc14. Since each of these tokens has either a limited or programmed supply, they obtain real-life economic value, and thus mar-
ketplaces, both centralized and decentralized, have been developed for trading them. Tokens are either traded on a Centralized
Exchange (CEX) that adopts the traditional Central Limit Order Book (CLOB) mechanism or a Decentralized Exchange (DEX)
running Automated Market Making (AMM) algorithms. In contrast with Centralized Exchanges, Decentralized Exchanges al-
low customers to have self-custody of their funds, eliminate insider activities, distribute protocol fees to market participants,
and ensure the solvency of the exchange15. That being said, certain challenges must be addressed in the realm of decentralized
exchanges to fully harness their potential benefits and ensure their widespread adoption.

In AMMs, Liquidity Providers (LPs) create a liquidity pool by depositing a pair of assets that other traders can swap from.
For every swap, the trader pays a fee, proportional to the swap amount, that goes to the LPs. Traders prefer an asset pair with
significant liquidity, i.e., higher asset reserves because otherwise, it can lead to unconventional price movements also known
as “slippage”. Evidently, higher slippage results in worse execution prices for large trades and also, the trading pair’s price
becomes vulnerable to manipulation as discussed in Section 3.1. Simultaneously, LPs are not incentivized to provide significant
asset reserves when the trading volume of a pair is very low since fewer fees will be distributed to them. Therefore, a new design
of a marketplace is needed where tokens with low trading volume also enjoy significant liquidity without incurring additional
costs to the LPs to acquire more token reserves.

Tackling the above issue, this paper presents DEEPER, a design for a decentralized exchange that allows LPs of multiple
tokens against a common currency to assemble and share their liquidity for that common currency. This allows LPs to achieve
the objective of providing higher liquidity without acquiring additional token reserves. DEEPER extends a concentrated liquidity
AMM16 by adding the functionality of shared reserve for the common currency in a batch of multiple trading pairs. Instead of
supplying individual currency liquidity for each token pair, LPs can create a single, deep pool of the currency reserve that can
be potentially accessed by any token pair. However, the first pair whose price reduces gets to access the shared pool and the
corresponding currency reserves are allocated to that pair. This is based on an algorithmic access mechanism which ensures
that the currency reserves in the shared pool never go negative. At the same time, sharing currency reserves is optional for
LPs and does not prevent them from providing concentrated liquidity for individual trading pairs. Unlike other multi-token
pool platforms such as BALANCER 17, DEEPER remains a sovereign AMM DEX. It does not depend on arbitrageurs to adjust
the price of a token when a trade is made between other tokens in the pool. Lastly, the design of DEEPER is kept simple
enough making it practical to implement on EVM-based smart contracts. To demonstrate this, we provide a template for a hook
contract which is a smart contract design methodology to extend execution functionalities in UNISWAP V4 18. The template
hook contract provisions shared liquidity on top of a concentrated liquidity AMM DEX.

To evaluate the added benefits and potential limitations of our design, we perform experiments on historic price movements
of low trading volume tokens. The results show that DEEPER can enhance the active liquidity for a trading pair, on an average,
by a factor of up to 5.9× when using a batch of 8 assets. In doing so, LPs do not need to provide any additional reserves of
tokens compared to the contemporary AMM design. At the same time, our model only requires between 16.8%–24.4% of the
amount of currency used in the traditional design to achieve similar levels of liquidity. However, the liquidity enhancement
reduces when the liquidity position is not altered for extended periods of time. We also study the relationship between the
average price gain of a trading pair and its liquidity enhancement. Results show that token pairs with large price drops can
consume a significant portion of currency reserves, thus leaving small room for liquidity enhancement in the other trading pairs
within the batch. Although the increase in liquidity can be enhanced further by increasing the number of pooled tokens in a
batch, LPs need to be cautious while picking the tokens for a batch. These pitfalls give room for further developments and
improvements in our design.

The paper is organized as follows: Section 2 gives preliminaries on AMMs and drawbacks of low liquidity, Section 3
describes problem statement and gives an overview of the solution, Section 4 presents the design of the DEEPER DEX including
a hook template, and comments on divergence loss for LPs, Section 5 describes the experimental setup and summary of results,
Section 6 elaborates on the applications and risks of our design, Section 7 discusses related work in this field and lastly, the
paper is concluded in Section 8.
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(b) Token reserves during liquidity provision.
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(c) Token reserves in concentrated liquidity.

F I G U R E 1 An illustration of token reserves in automated market makers during swap and liquidity provision.

2 BACKGROUND

2.1 Constant Product Automated Market Makers

Constant Product Automated Market Makers (CPAMM) was the first successful algorithmic market maker introduced by the
UNISWAP DEX19, which is governed by the constant product formula. In a nutshell, consider a trading pair consisting of tokens
Ta and Tb such that the price of Ta with respect to Tb is p. Then, the liquidity pool of the above pair has active token reserves
as a function of price comprising ra(p), and rb(p) units of Ta and Tb respectively, such that ra(p)rb(p) = L2, where L does not
depend on p. The constant L is called the liquidity of the pool. The marginal price p, i.e., the price for an infinitesimally small
trade, can be derived as:

p = –
drb

dra
= –

d
dra

(
L2

ra

)
=

L2

r2
a

=
rb

ra
(1)

This can be interpreted as the equivalent amount of Tb per unit amount of Ta in the reserves. The expression for token reserves
can therefore be derived as follows:

ra(p) =
√

ra(p)rb(p)

√
ra(p)
rb(p)

=
L
√

p

rb(p) =
√

ra(p)rb(p)

√
rb(p)
ra(p)

= L
√

p

(2)
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When a trader swaps ∆rb units of Tb at price p, then (1 – µ)∆rb is collected as liquidity fees for LPs, where µ ∈ [0, 1] and is
set close to 1. In return, the trader receives ∆ra units of Ta following the constant product rule, i.e.

(rb(p) + µ∆rb)(ra(p) – ∆ra) = L2 (3)

An illustration of token reserves before and after the swap for µ = 1 is shown in Figure 1a.
Furthermore, LPs can alter liquidity by adding or removing token reserves. If an LP provides ∆ra and ∆rb of Ta and Tb

respectively at price p, then the following needs to hold:

∆ra

∆rb
=

ra(p)
rb(p)

(4)

Here ∆ra, ∆rb should either be both positive (deposit) or negative (withdraw). The new liquidity L′ can now be calculated
as (ra(p) + ∆ra)(rb(p) + ∆rb) = (L′)2. Figure 1b gives an illustration of token reserves when liquidity increases in the pool.
Although in CPAMM liquidity does not change with the price of the tokens, this is not the case in concentrated liquidity AMM
as presented next.

2.2 Concentrated Liquidity AMM

Consider Figure 1c where the price of Ta increases from p0 to p1, Ta reserves reduce by ∆ra while Tb reserves increase by ∆rb.
In this price interval, only ∆ra of Ta and ∆rb of Tb are actively swapped while the rest of the reserves (marked with dashes)
remain inactive. This is the key idea behind Concentrated Liquidity AMMs (CLAMMs) where LPs can provide liquidity in a
price interval [p0, p1] by only supplying ∆ra units of Ta and ∆rb units of Tb. Meanwhile, the liquidity in CLAMM is the same
as CPAMM, i.e., L2 = ra(p)rb(p). When the price is outside the above price interval, the liquidity becomes inactive. Hence in
a CLAMM, ra(p), rb(p) are called virtual reserves. The real reserves of Ta, Tb at price p ∈ [p0, p1], denoted by r′a(p), r′b(p) can
therefore be calculated in terms of virtual reserves as follows:

r′a(p) = ra(p) – ra(p1) = L(
1
√

p
–

1
√

p1
)

r′b(p) = rb(p) – rb(p0) = L(
√

p –
√

p0)
(5)

We used the result from Equation 2 to derive the expressions for virtual reserves in terms of liquidity and price. Observe that
at the boundaries of the interval, i.e., p ∈ {p0, p1}, the real reserves consist of either only Ta or Tb. Alternatively, one can also
write the constant product equation in terms of real reserves r′a(p), r′b(p) as follows:

(r′a(p) + ra(p1))(r′b(p) + rb(p0)) = L2 (6)

As illustrated in Figure 2, Equation 6 (shown in solid orange) represents a translation of the original constant product curve
(shown in dashed green).

L remains constant within a price interval but can vary across intervals. Concentrated liquidity, therefore, allows LPs to add
arbitrary liquidity in different price intervals. Figure 3 shows an example liquidity profile by an LP across price intervals. The
liquidity at price p is denoted by L(p). Figure 4 presents the corresponding real reserves provided for each price interval. The
active price interval is marked with circled ticks and consists of both Ta and Tb reserves. The inactive price intervals consist of
only Ta or Tb for prices higher or lower than the current price.

2.3 Slippage

Slippage in an AMM is defined as the deviation between the realized price of a trade and the marginal price. As before, if a
trader swaps ∆rb units of Tb in exchange for ∆ra units of Ta at the initial exchange price of p, then the slippage of this trade is
defined as

S(∆rb, ra(p), rb(p)) =
∆rb/∆ra

p
– 1 (7)
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F I G U R E 2 An illustration of the constant product curve in a price interval of a concentrated liquidity AMM.

Price

L(p)

F I G U R E 3 An example liquidity distribution during a given interval.

For a CLAMM, ignoring trading fees and assuming that the price does not cross its tick during the swap, if the new marginal
price becomes p′, then ∆rb

∆ra
which is the execution price of the trade turns out to be

√
pp′. Thus, the above expression for

slippage can be written as: √
pp′

p
– 1 =

√
p′ –

√
p

√
p

=
L(
√

p′ –
√

p)
L
√

p
=

∆rb

L
√

p
(8)

Thus, given a trade size ∆rb and an initial AMM price p, the slippage is lower for a higher value of virtual liquidity L and
vice-versa. In other words, a pool with lower liquidity requires a smaller trade amount to cause the same amount of slippage.

3 WORK MOTIVATION

In this section, we explain the undesirable consequences caused by low liquidity and low volume of a trading pair. We then
give an overview of our solution and how it alleviates the problem of low liquidity.
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F I G U R E 4 Illustration of real reserves distribution of an LP in concentrated liquidity DEX.

3.1 Potential Consequences of Low liquidity: Sandwich Attacks

Low liquidity and high slippage pave the way for sandwich attacks in which an attacker manipulates the AMM price due to
slippage and ends up extracting value. On the other hand, the victim experiences a worse execution price. The attack procedure,
as given in Figure 5, occurs as follows: suppose User1 wants to purchase ∆ra,1 units of Ta (transaction k + 1 in the figure)
whose initial marginal price is p with respect to Tb on an AMM. User2 observes the transaction waiting in the public mempool.
User2 then sends two transactions right before and after the User1’s transaction (transactions k, k + 2 respectively). The former
transaction buys ∆ra,2 units of Ta while the latter transaction sells ∆ra,2 units of Ta. Let the execution price for the first and
second transaction be p2, p1 respectively while the new marginal price is p′, then p′ > p1 > p2 > p due to slippage. Let the
execution price of User2 in the third transaction be p′2, then p′ > p′2 > p2 due to slippage. Thus, User2 (the attacker) is profitable
if the profit from the first and third transaction exceeds their gas cost while User1 (the victim) gets a worse execution price
compared to a situation with no sandwich transactions. As discussed before, since the capital required to cause slippage is
low in pools with lower liquidity, lower liquidity pools are more vulnerable to such sandwich attacks. Thus, fair marketplaces
should ideally have high liquidity for trading pairs.

.

.

.

.

.

.

Txn k : Swap Tb for Ta Execution price = p2User2

Txn k+1 : Swap Tb for Ta

Txn k+2 : Swap Ta for Tb

User1

User2

Execution price = p1

Execution price = p’2

F I G U R E 5 Sequence of transactions during sandwich attacks.
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3.2 Capital Efficiency and Market Fairness during Low Trading Volume

As mentioned in Equation 3, the revenue of an LP comes from the trading fee that is charged as a constant fraction of the tokens
swapped. Problems arise when the trading volume of a token pair T /Tc (Tc is a highly liquid currency) is orders of magnitude
lower than other trading pairs. This can be caused due to the following unavoidable reasons:

• T is a newly launched token and its underlying utility has not gained traction among users;
• T has a seasonal utility (e.g., a DAO token used for voting in a protocol20, an access token for a real-world event8, or a

football club fan token);
• the overall market has low liquidity due to the high cost of acquiring capital, i.e. high borrowing rates;
• T targets a small niche of users (e.g., T represents an LP token of a UNISWAP V2 pool).

One or more of the above conditions leads to a lower trading volume of the T /Tc pair that causes the following cascading
consequences:

1. As lower trading volume leads to lower LP fees, this reduces the incentive for an LP to participate. Moreover, this exposes
them to the risk of an overall loss if their impermanent loss (as discussed later in Section 4.4) dominates the trading fees.
If the trading fee is set high enough to increase the LP’s incentives, it discourages the token users and traders including
arbitrageurs from trading T .

2. If the T /Tc pair ends up with low liquidity, then it is subject to unfavorable economic events of high volatility and high
slippage. As derived earlier, lower liquidity makes a trading pair vulnerable to price manipulations since low capital is now
required to manipulate reserve ratios and hence the prices. This opens room for DeFi attacks including sandwich attacks
as discussed in Section 3.1. These consequences can seriously damage the integrity of a platform whose operation relies
on the fairness of the token price, for example, when T represents a DAO or a voting token.

3. Despite their exposure to impermanent loss, if an LP provides deep liquidity to a low-volume trading pair, this approach
is not capital efficient. This is because the liquidity capital stays idle for the majority of the time and suffers opportunity
costs.

Expanding on the last point, with the explosion of DeFi and other ecosystems in blockchain and the reduced trust in CEXs,
it has become crucial for on-chain DEXs to sustain a fair market for thousands of token pairs21. Even if a token observes low
trading volume, this does not imply a lower significance of the token itself. Thus, it is important for its market price to remain
fair. This requires a mechanism that enhances the liquidity profile while consuming low input capital i.e., real reserves so that it
does not hurt the LPs economically. Furthermore, the solution design should be easily implementable on common blockchain
environments such as the Ethereum virtual machine or EVM.

3.3 Evaluation Metric

In this paper, we consider N trading pairs of tokens T0, T1 . . . TN–1 against a digital currency Tc with high liquidity (e.g., ETH).
We profile the liquidity on an AMM and the price of these trading pairs in a constant time interval I. Such a time interval gives
a finite range of prices that are processed. The price of the token at time t is denoted by p(t). The price of each Ti is divided into
intervals of uniform width. We assume that during I, no LP mints or withdraws their liquidity.

Let Li(p(t)) denote the liquidity profile for Ti at price p(t) at a given instance t. At t = 0, the total real reserves of Ti, Tc for the
pair i are denoted by r′i , r′i,c respectively. Suppose there are two LPs with their proposed liquidity profiles Li(p) and L′

i(p) with
respect to the price for each trading pair. Then for each pair, we compare the two profiles by calculating the metric zi as follows:

I · zi =
∫ I

0

Li(p(t))
L′

i(p(t))
dt (9)
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The above metric informs, on average, the enhancement in experienced liquidity when the liquidity profile is L(p) in comparison
to L′(p) for a trading pair i. The total initial real reserves for Tc provided collectively by the LPs equals:

r′total,c =
N–1∑
i=0

r′i,c (10)

Formally, our objective is to maximize the average increase in liquidity zi for each trading pair without changing the total initial
currency reserves r′total,c and token reserves r′i for Ti.

3.4 DEEPER Overview

DEEPER is a DEX design that allows LPs of different trading pairs against a common currency to gather and pool their
currencies to enhance the available liquidity of each of the trading pairs. Given a batch of N trading pairs Ti/Tc on DEEPER,
each pair gets real Tc reserve for liquidity provision in one of the two ways:

1. Individual reserves for concentrated liquidity in each price range (same as in CLAMM).
2. Shared reserves where an LP provides initial liquidity profiles for the inactive price intervals of each pair, and deposits a

lump sum Tc in the shared reserves pool accessible by all pairs.

Let R denote the amount of Tc in the shared pool at a given instance. During a given time interval, if the price of Ti increases
activating a thus far inactive higher price interval that consists of only Ti, then the accumulated Tc from the recently inactivated
interval is added to the shared reserves pool and R increases. Likewise, if the price of Ti decreases such that an inactive lower
price interval requiring only Tc becomes active, then those tokens are withdrawn from R and allocated to the newly activated
interval. The reserves allocation from the shared pool is designed such that the shared reserve pool never goes negative. In the
unlikely event of reducing Ti prices leading to a dried-up shared reserves pool, the individual concentrated liquidity provision
per token pair starts to dominate. This serves as a fail-safe mechanism when the price crash of one trading pair consumes
significant shared reserves.

4 PROTOCOL DESIGN

DEEPER is a CLAMM-based DEX design that allows LPs of several trading pairs with a common currency to come together
and share their currency reserves. This, however, does not prevent an LP from providing individual liquidity to just one pair.
Thus, for each asset pair Ti/Tc, we define two kinds of liquidity provisions: shared and individual. The shared liquidity provision
is explained below.

4.1 Shared Liquidity Provision

The total available shared reserves of Tc represented by R is split between busy reserves or Rb and available reserves or Ra so
that R = Ra + Rb.

The virtual liquidity profile, for shared liquidity provision, of a trading pair i is divided into intervals of prices of uniform
width. Each interval is mapped to an integer tick such that if an interval [p0, p1) has tick k, then p[k] = p0. Similarly, Li[k] and
r′i,c[k] represent the liquidity and the corresponding Tc reserves (either active or inactive) in tick k at a given instance. Let Ki

be the tick of the currently activated interval with Ki being its value at the beginning, i.e. t = 0 for each trading pair Ti/Tc. An
illustration of the ticks and token notation is presented in Figure 6

Liquidity provision using shared Tc reserves consists of the following specifications:

1. To provide shared Tc at t = 0, LPs need to (i) provide liquidity profile for each trading pair i, i.e. Li[k] ∀k ≤ Ki; (ii)
deposit r′i,c units of Tc reserves in accordance with the above liquidity profile for each i. For shared provision, we call Li

the skeleton liquidity profile because it will be used to calculate the actual liquidity of a price interval. Similarly, r′i,c are
called the skeleton Tc reserves. Since sharing LPs can only provide Tc reserves, the skeleton liquidity is positive in price
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F I G U R E 6 Illustration of skeleton liquidity, notation for tokens and ticks, and available reserves in the DEEPER protocol.

ticks that are less than the activated ticks and zero elsewhere. The skeleton liquidity in each interval remains constant
unless some LP mints or burns their shared liquidity.

2. The actual liquidity of pair i in the active price interval is denoted by Li and it remains constant when the price of Ti lies
within the active price interval. Swaps that do not change the price interval are executed based on CLAMM with Li as the
virtual liquidity of the active interval.

3. When the price of Ti decreases such that the tick transitions from Ki to Ki – 1 with the new interval having r′i,c[Ki – 1]
skeleton Tc reserves, the following events occur:

• The new active interval secures r′i,c[Ki – 1] units of Tc from the available reserves pool such that:

r′i,c[Ki – 1] = Ra(
r′i,c[Ki – 1]∑Ki–1

j=0 r′i,c[j]
) (11)

This is secured by reducing the available reserves pool and increasing the busy reserves pool. Since r′i,c[Ki –1] is always
a fraction of the available reserves Ra, it never goes negative after the operation. The actual liquidity can be derived
from real reserves using the relation in Equation 5.

• The token Ti in the tick Ki becomes inactive with its amount stored in memory and it reactivates in the future when the
tick transitions from Ki – 1 to Ki as discussed next.

4. When the price of Ti increases and the tick crosses from Ki to Ki + 1, then the accumulated Tc in the newly inactive tick Ki

is transferred from busy reserves to available reserves and any Ti reserves stored in the memory of tick Ki + 1 are released
in the tick.

Lastly, if the price of a pair Ti goes all the way down to tick 0, then this pair consumes all available shared Tc. In such a case,
individual reserves become dominant. The shared reserves, however, are restored when the price of this pair starts to increase.
Therefore, the available shared Tc can be potentially secured by any trading pair, and the first one to access it secures Tc while
the quota per price interval of every other pair reduces.
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4.2 Shared Liquidity Withdrawal & LP Fees

LPs can withdraw their shared Tc reserves at any point. In doing so, they receive the proportion of available reserves and any
inactive Ti that belongs to them, and the skeleton liquidity provided by them is removed for each pair. Further, any trading fee
that is accrued in a price interval is distributed amongst the LPs in proportion to their skeleton liquidity.

4.3 Individual Liquidity

An LP is free to provide individual liquidity in any price range by providing Ti or Tc or both depending on the active state of the
interval of interest. Since they cannot provide shared reserves for Ti for liquidity, individual liquidity is the only way to serve
this purpose.

4.4 Divergence Loss for Shared Liquidity Providers

Divergence loss is defined as the opportunity cost for an LP to provide token reserves as liquidity compared to just holding
them. In CPAMM and CLAMM, given an initial liquidity profile (for e.g., Figure 3), the divergence loss is a function of the
token price22. Since an LP can recover any accrued losses when Ti trades back at the initial price (when liquidity was provided),
divergence loss is not permanent. Therefore, it is also referred to as impermanent loss. In the case of DEEPER, however, the
divergence loss is not a function of just the token price, because the total Tc reserves owned by an LP depend on the relative
order of securing Tc from the shared reserves pool by the trading pairs. In other words, divergence loss is price path dependent.

However, the divergence loss still remains impermanent for an LP. This is described in the lemma below:

Lemma 1. The divergence loss of LPs providing shared reserves for Tc at price pi for a token Ti with respect to Tc at t = 0 and
subsequently withdrawing their liquidity at the same initial price for each token is zero and independent of any intermediary
price movements.

Proof. Suppose LPs provide a total R reserve of shared Tc and a skeleton liquidity profile Li at an initial price pi for each pair i.
Then, this profile is defined for the ticks less than the current active tick Ki for each pair. We prove that the shared reserve for
Tc equals R when the price of Ti becomes pi for all i.

When the current tick transitions from k to k – 1 and secures Tc from the shared pool, the amount of shared reserves secured
by tick k – 1 is stored in its memory which serves as its history. Eventually, when the tick transitions back from k – 1 to k, the
shared Tc that was withdrawn earlier is added back to the shared pool.

Therefore, when the final prices become the same as the initial prices, the initial and final active ticks become the same for
all the pairs. Therefore, any borrowed Tc from the shared reserve pool is released back. The LPs can now withdraw exactly the
initially supplied Tc from the shared pool. Any Tc or Ti that was supplied as part of individual liquidity remains the same since
individual liquidity reserves are a function of token prices. Since the LP can withdraw exactly the same amount of reserves that
they supplied initially and at the same initial price, the total divergence loss suffered is zero.

4.5 Smart Contract Friendliness and Hook Template

A smart contract23 is a Turing-complete program that is deployed on a blockchain. A blockchain account can asynchronously
trigger functions in these programs by paying gas fees that are charged per contract operation during a call. Therefore, an ideal
smart contract design performs the minimal amount of updates in the state (i.e., variables) of the contract during a function call.

Since DEEPER is an extension of a concentrated liquidity DEX, the protocol can be implemented as an augmentation to the
UNISWAP DEX using their hook design, which is provisioned in UNISWAP V4 18. A hook is a third-party smart contract with
developer-defined logic that is called by the core DEX contract during its call execution cycle. Developers can create custom
functions inside the hook contract to add functionalities in the call of the original contract. We give a template below for a
hook design that modifies the beforeSwap() and afterSwap() callback functions. These hook functions are called right
before and after the swap() function is executed as illustrated in Figure 7. A hook callback function returns back to the core
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Ti/Tc Pool Contract DEEPER Hook Contract

beforeSwap()

afterSwap()

addSharedLiquidity()

removeSharedLiquidity()

beforeSwap()

Swap()

afterSwap()

modifyPosition()

F I G U R E 7 An illustration of the hook template for shared liquidity.

contract after completing its execution. For a batch of N trading pairs, a common hook contract is used for each pool Ti/Tc as
explained below:

• Core contract: This is the concentrated liquidity contract in UNISWAP V4 that maintains pools for the trading pairs Ti/Tc

and performs swaps in each of them. swap() and modifyPosition() are external functions of this contract with the
former performing token swap and the latter allowing LPs to add or remove their liquidity positions. The hook callback
functions beforeSwap() and afterSwap() are executed before and after the swap() function and return back to the
core contract after completing execution.

• DEEPER Hook Contract: This contract manages the shared reserves for a batch and owns the shared reserves in the inactive
ticks i.e., r′i [j] ∀j > Ki and r′i,c[j] ∀j < Ki ∀i ∈ [0, N – 1] at all times. At the same time, the contract provisions the assets for
the active tick inside the core DEX contract and is the sole owner of this shared LP position. The hook contract keeps track
of the cumulative skeleton Tc below the active tick for each i and total available Tc or Ra. This allows it to calculate the
r′i,c for a range using Equation 11 when the price decreases and a tick is crossed. The actual liquidity of the current tick is
calculated using the linear relationship of L and r′i,c at the interval edge as shown in Equation 5. The amount of Ti is stored
for the ticks above the active tick.

• addSharedLiquidity(): This is an external function of the hook contract that is called by an LP to provide shared
liquidity. In doing so, an LP provides a skeleton liquidity profile and deposits the corresponding token reserves in the hook
contract for each pool in the batch. If the skeleton liquidity includes the active tick, the hook contract deposits the token
reserves in the core contract using the modifyPosition() function.

• removeSharedLiquidity(): This is an external function of the hook contract that is called by an LP to exit their
shared liquidity. In doing so, the hook contract removes the caller’s position in the active tick from the core contract using
the modifyPosition() function. Then, the caller receives their token reserves from both active and inactive (owned by
the hook contract) intervals along with the accrued fees, if any.

• beforeSwap(): This callback function is a part of the hook which is called before a swap is executed. If the swap is
exchanging Ti for Tc, it first determines the number of ticks decreased and adds liquidity using the modifyPosition()
external function. Similarly, if the swap is exchanging Tc for Ti, it first determines the number of ticks increased and adds
any previously accumulated Ti reserves in the higher ticks.

• afterSwap(): If the swap increases(decreases) the active tick, this callback function removes Tc(Ti) as part of the
inactive liquidity using modifyPosition() and updates Ra. It also performs fee accounting to manage fee distribution
among the sharing LPs and Ti accounting to update the assets in the inactive ticks.

• Individual liquidity: LPs willing to provide individual liquidity can do so by using the modifyPosition(), i.e.,
providing liquidity directly to the core contract instead of providing via the hook contract.
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(b) Batch of 5 assets.
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(c) Batch of 8 assets.

F I G U R E 8 Average liquidity boost for multiple batches. The x-axis represents the fraction of ETH compared to the indi-
vidual liquidity provision.

5 PROTOCOL EVALUATION

In this section, we evaluate the benefits of the DEEPER DEX and study the parameters that optimize them. Our experiments
attempt to answer the following questions:

1. What is the average increase in the experienced liquidity of our shared liquidity model compared to the individual liquidity
model?

2. What is the relationship between the shared liquidity boost and the number of trading pairs in a shared batch?
3. How can LPs optimize their enhanced liquidity by varying I?
4. What is the relationship between the price drop of a trading pair and the amount of shared reserves it consumes?
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F I G U R E 9 Liquidity increase for multiple values of I.

5.1 Methodology

For the purposes of this evaluation, we use the historical price data from the month of December 2022 of trading pairs from the
UNISWAP V3 DEX. Each of the trading pairs exhibits the following two properties: (i) they are traded against Wrapped ETH,
and (ii) had an average daily volume between $0-50k. Such a trading pair with a trading fee of 0.3% generates a total revenue of
$0-150 per day for all the LPs collectively. We create three batches each containing 3, 5, and 8 trading pairs. We use three time
periods of 1 day, 7 days, and 14 days for I during which the skeleton liquidity profiles remain constant. For a given token batch
and time period I, we simulate the liquidity environment by initializing liquidity between the minimum and maximum price
during that month. For the shared ETH, we input the skeleton liquidity profile and the corresponding ETH reserves for each
pair. The skeleton liquidity peaks at the start price and decays slightly from there. For prices above the start price, we initialize
individual liquidity by providing the asset token in each price interval. This liquidity decreases as price increases similar to
ETH. We also create, for comparison, a model where ETH is provided via individual liquidity with equal ETH allocation to
each pair.

5.2 Summary of Results

1. Liquidity boost: Figure 8a shows the average increase in liquidity (z in Equation 9) compared to the individual liquidity
provision for a batch consisting of 3 trading pairs and I set to 1 day. The x-axis represents the total amount of initial
ETH deposited as a fraction of the ETH used in the individual liquidity provision. The graph is plotted for three values
of ETH fractions: 1

3 , 2
3 , 1. We can observe that the shared liquidity is more than 80% of its individual counterpart while

costing only a third of ETH reserves. Moreover, the amount of initial ETH required reduces by 55.1%, 60.2%, and 60.9%
for the three trading pairs respectively to achieve the same average liquidity as in the individual model. When the initial
ETH reserves are increased so as to consume the same ETH as the individual model, the experienced liquidity increases
by 1.6×, 2.1×, 2.2× for the three trading pairs respectively. Therefore, DEEPER DEX significantly increases liquidity
without consuming any surplus asset reserves.

2. Batch size: Figures 8b, 8c illustrates the liquidity increase with respect to the ETH reserves used for a batch of size 5, and
8 assets respectively. For these batches, the cost of initial ETH reduces by 70.0–78.2% and 75.6–83.2% respectively to
achieve the same liquidity as the contemporary model. The corresponding average liquidity increase is between 2.2–3.3
and 2.6–5.9 respectively. This shows that as more trading pairs pool their ETH, the liquidity per pair increases while the
cost of ETH to achieve similar levels of liquidity decreases.

3. Variation with I: Figure 9 shows the liquidity boost averaged over all the trading pairs in a batch of 5 token pairs for
different values of I, i.e. 1 day, 7 days, and 14 days respectively. The key observation here is that the liquidity boost
decreases over longer values for I. This is because when a trading pair consumes the available ETH, there is less ETH left in
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F I G U R E 10 Second pair’s liquidity increase vs price drop in the first pair.

the shared pool for other pairs. This becomes dominant in longer time intervals in a market scenario with decreasing prices.
Therefore, LPs should either update their skeleton liquidity profiles more frequently or provide the skeleton liquidity over
a longer price range to observe high shared liquidity enhancement.

4. Liquidity boost vs. price drop: For this experiment, we simulate shared liquidity for multiple batches of two trading pairs
where each of the 8 trading pairs is paired with the remaining 7 and I is set to 14 days to represent a longer time period.
Figure 10 shows the liquidity boost in the second pair plotted against the price drop in the first pair. On the other hand,
Figure 11 shows the liquidity boost in the first pair plotted against the price drop in the first pair. To calculate the price
drop, we take the logarithm of the ratio calculated by dividing the price at the start of the month and the mean price over
14 days. Figure 10 shows that as the price drop in the first pair increases, the liquidity boost in the second pair generally
decreases. However, Figure 11 shows that a higher price drop in the first pair increases the same pair’s liquidity boost.
This aligns with the design of DEEPER where the trading pair with a falling price consumes available reserves. However,
this can be detrimental in scenarios where the price of one pair reduces drastically in comparison to other pairs in the
batch. For instance, pairs batched with BETA/WETH, which observed the highest logarithm price drop of 0.13, got a
boost between 0.93–1.24 with a mean boost of 1.08. On the other hand, the BETA/WETH itself observed a boost between
1.44–1.89 with a mean boost of 1.71. Thus, trading pairs with large price drops can consume most of the available reserves
while preventing a higher boost to other pairs in the batch.

6 DISCUSSION

Since DEEPER uses the sharing of currency reserves to enhance the average active liquidity, it does not require additional
capital from the LPs. Although on one hand, the liquidity boost increases with the number of tokens in the batch, it comes at
an added risk. As shown in Figure 10 & 11, a significant mean price drop in one token pair can lead to a skewed allocation of
available reserves. The security of a token batch is thus limited by the most vulnerable token in the batch since a significant
price drop in one token can consume most of the available reserves. The significant price drop can be due to numerous reasons
including hacks or failure of the underlying token protocol. Thus, LPs should only include tokens in a batch that they believe
are resilient and should generally avoid extremely large batch sizes or high-risk tokens.

One particular case where DEEPER adds significant value is when all the tokens in a batch stem from a single protocol while
simultaneously having a distinct face value for each one of them. For example, platforms such as CHILIZ 24 enable the creation
of numerous football club fan tokens. Although each token uses the same underlying technology of the CHILIZ platform, they
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F I G U R E 11 First pair’s liquidity increase vs price drop in the first pair.

represent separate teams. Therefore, a batch of such tokens shares a similar level of security which allows the creation of larger
batch sizes. Since there are many football clubs that are not popular and hence have low trading volume, DEEPER is an efficient
way to create fair marketplaces for them.

Another benefit of our design is the reduction in vulnerability of low-volume trading pairs to high slippage and attacks
leveraging it as explained in Section 3.1. Because DEEPER increases the average active liquidity of each trading pair by a
significant factor, it increases the cost of executing sandwich attacks as well as reduces slippage for a trade of similar size
compared to individual liquidity provision. Therefore, the benefit of uniting multiple low-volume tokens is reaped by each one
of them in the batch. Further, it should be noted that the applications of DEEPER are two-fold. First, it serves as a platform to
provide significant liquidity to token pairs with low trading volume. This is demonstrated by the high liquidity boost in Figure 8.
Second, for token pairs with a high trading volume, it significantly reduces the amount of currency required to observe similar
levels of liquidity. This is demonstrated by the reduction in the initial ETH required to observe similar levels of liquidity. In our
results for a batch of 3 trading pairs, the initial ETH reduction was at least 55% for each trading pair. Therefore, this property
can be leveraged by LPs to increase their capital efficiency for high-volume pairs.

7 RELATED WORK

DEEPER extends the design of concentrated liquidity AMMs, especially UNISWAP V3. Although, to our knowledge, there are
no platforms that enable liquidity sharing for currency tokens, certain platforms, as discussed below, have an implicit sharing
mechanism for token liquidity. Lastly, our design is inspired by Just in Time liquidity provision, which is an adversarial attack
to extract value from liquidity providers. In contrast, our design helps liquidity providers by increasing their capital efficiency.

7.1 Multi-token Automated Market Makers

Platforms such as BALANCER 25, and CURVE FINANCE 26 utilize a generalized invariant as opposed to the UNISWAP invariant
which only works for a pair of tokens. This extends the AMM functionality by allowing the creation of multi-token pools
with more than two tokens. A trader can then swap one token in exchange for another within the pool. Such a pool provides
shared liquidity provision, e.g., a pool consisting of Ta, Tb and ETH can be seen as Ta/ETH, Tb/ETH with shared ETH liquidity
provision. However, in such platforms, a transaction swapping one token impacts the price of other tokens. In the previous
example, if a trader buys Ta in exchange for ETH, such a transaction also increases the price of Tb with respect to ETH. As a
result, these platforms depend on arbitragers to maintain the price of the tokens after it changes during swaps. DEEPER, on the
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other hand, isolates the prices of the trading pairs in a batch, while at the same time allows sharing the ETH liquidity. Since
DEEPER doesn’t depend on arbitragers and other marketplaces to function, this makes it a sovereign platform.

7.2 Just in Time Liquidity

CLAMM platforms such as UNISWAP V3 allow LPs to provide liquidity in a narrow range of a single price tick. This can be
used by LPs to provide liquidity “just in time” (JIT) by front-running a swap transaction and then exiting their liquidity right
after the transaction27. Such a provision is capital efficient for the JIT LPs since they are only supplying liquidity in the active
price ranges while it is detrimental for passive LPs since they receive a lesser portion of fees28. DEEPER borrows from this
scheme since liquidity from the available reserves is provisioned to a token pair that requires it (after its price reduces). This,
however, is implemented as an algorithm and poses no cost in the form of transaction fees to LPs as opposed to JIT liquidity
provision where LPs pay transaction fees.

8 CONCLUSION AND FUTURE WORK

Tokens are a vital component of a well-functioning decentralized system. Therefore, it is important to establish efficient markets
for such tokens. With the proliferation of innovation in the applications of blockchain and distributed ledger technology, the
number of different kinds of tokens has increased substantially. One significant challenge to sustain fair markets for a variety of
tokens is to address low liquidity provisions for trading pairs on decentralized exchanges. Lower liquidity is observed especially
in token pairs with low trading volume resulting in unwanted price movements and manipulation attacks. On the other hand, low
trading volume can be caused by various unavoidable factors and does not necessarily indicate lower significance for the token.
This paper delves into this issue and presents DEEPER, a novel solution to enhance the average liquidity for a batch of low-
volume trading pairs against a common currency. This is done via a reserve-sharing mechanism for the common currency, which
does not incur additional costs to the liquidity providers of the trading pairs. The experimental results done on historic price
data of low volume tokens using DEEPER show that reserve sharing significantly enhances average liquidity. Subsequently, we
highlight the precautions that LPs should be aware of before providing liquidity in DEEPER. In conclusion, the shared reserve
allocation mechanism and simple design make DEEPER a practical solution to the problem of shallow liquidity provision in
low trading volume trading pairs.

Potential future work includes accounting for LP earnings from trading fees and impermanent loss while calculating the
common currency allocation to a trading pair’s pool.
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