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Abstract

In this article we discuss Sobolev spaces on canonical Banach spaces. The completeness of the Sobolev spaces is discussed in

these settings. The Hilbert structure of the Sobolev spaces is also discussed. Finally, in application, we discuss the Fourier

transform and its relevance for Sobolev spaces on canonical Banach spaces.
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1. Introduction and preliminaries

Sobolev spaces, or spaces of weakly differentiable functions, so called Sobolev spaces, play an

important role in modern analysis. Since their discovery by Sergei Sobolev in the 1930’s, they

have become the basis for the study of many subjects, such as partial differential equations and

calculus of variatons. The general idea of our study is to make use of metrical analysis while taking

into account the presence of a linear structure. The theory of Sobolev spaces on metric measure

spaces is quite developed now. For a detailed treatment and for references to the literature on

the subject, one may refer to the cite [4] by J. Heinonen, [11] by P. Hajlasz and P. Koskela, and

[5] by J. Heinonen, P. Koskela, N. Shanmugalingam, and J.T. Tyson. T. L. Gill et al. in [2] had

constructed the corresponding version of Lebesgue measure for every Banach space with an S-basis.

A general theory of distributions on canonical Banach spaces, the Schwartz space, and the Fourier

transform on canonical Banach spaces are discussed.

In this article, we have developed Sobolev spaces over uniformly convex spaces. The completeness

of the Sobolev spaces is discussed in these settings. The Hilbert spaces and the structure of the

Sobolev spaces are also discussed. Finally, we extend the Fourier transform to Sk,2(B), where B

is a canonical Banach space. Throughout the article, we will refer to M as the class of measurable

functions on B.

If B is a Banach space with S-basis and B′ is its dual space, then S-basis is defined as follows:

Definition 1.1. [2, Definition 2.36] A sequence (en) ∈ B is called a Schauder basis (S-basis) for

B if ||en||B = 1 and for each x ∈ B, there is a unique sequence (xn) of scalars such that

x = lim
k→∞

k∑
n=1

xnen =

∞∑
n=1

xnen.

We can find from the definition of a Schauder basis that, for any sequence (xn) of scalars

associated with a x ∈ B, lim
n→∞

xn = 0.

1
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Before delving into our concept, consider the virtual approach of the Lebesgue measure on R∞

as follows:

In certain, if I0 = [−12 ,
1
2 ]ℵ0 , the Lebesgue measure µ∞ must satisfy µ∞(I0) = 1. When B(Rn) is

Borel σ-algebra for Rn and I = [−12 ,
1
2 ] and An = A× In, Bn = B × In the nth order box sets in

Rn, then

(1) An ∪Bn = (A ∪B)× In
(2) An ∪Bn = (A ∪B)× In
(3) Bn = B × In.

Under the condition RnI = Rn × In with B(RnI), the Borel σ-algebra for RnI the topology for RnI
can be defined as Tn =

{
U × In : U is open in Rn

}
. This gives, µ∞(.) is measure on B(RnI),

equivalent to n-dimensional Lebesgue measure on RnI . For detailed about µ∞(.) on R∞I one can

follow [2, 3, 8].

Let us assume Jk = [− 1
2In(k+1) ,

1
2In(k+1) ] and Jn = Π∞k=n+1Jk, J = Π∞k=1Jk. If {ek} be an

S-basis for B and let x =
∑∞
n=1 xnen. Recalling that Pn(x) =

∑n
k=1 xnek and define Qnx =

(x1, x2, .., xn), we define BnJ by

BnJ = {Qn(x) : x ∈ B} × Jn

with norm

||(xk)||BnJ = max
1≤k≤n

||
k∑
i=1

xiei|| = max
1≤k≤n

||Pn(x)||B .

Since BnJ ⊂ B
n+1
J we set B∞J =

⋃∞
n=1B

n
J . We define BJ by

BJ = {(x1, x2, ..) :

∞∑
k=1

xkek ∈ B} ⊂ B∞J

and define a norm on BJ by

||x||BJ = sup
n
||Pn(x)||B = |||x|||B .(1)

Let B(B∞J ) be the smallest σ−algebra containing B∞J and define

B(BJ) = B(B∞J ) ∩BJ . Using the [2, Theorem 1.61] we can find,

|||x|||B = sup
n
||

n∑
k=1

xkek||B(2)

is an equivalent norm on B. When B carries the equivalent norm (2), the operator T : (B, |||.|||B)→
(BJ , ||.||BJ ) defined by T (x) = (xk) is an isometric isomorphism from B onto BJ . BJ is called

canonical representation of B (see [2, page 67]). This means that every Banach space B with an

S-basis has a natural embedding in R∞I . In under the isometric isomorphism from B to BJ , in our

work, we use the canonical Banach spaces BJ . For simplicity of the notation, we write BJ by B.

The σ-algebra generated by B and associated with B(BJ) is

BJ(B) =
{
T−1(A) : A ∈ B(BJ)

}
= T−1

{
B(BJ)

}
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Definition 1.2. [2, Definition 2.42] Define vk, γk on A ∈ B(R) by vk(A) = µ(A)
µ(Jk)

, γk(A) =
µ(A∩Jk)
µ(Jk)

for elementary sets A = Π∞k=1Bk, A ∈ B(BnJ ), define vnJ by:

vnJ(A) = Πn
k=1vk(Ak)×Π∞k=n+1γk(Bk).

If B is a Banach space with an S-basis and A ∈ BJ(B). We define µB(A) = vJ(T (A)) for

A ∈ BJ(B) and vJ(B) = lim
n→∞

vnJ (B) for all B ∈ B(BJ).

1.1. The integrable functions over B. Here, we will discuss the nature of the integrable func-

tions over B. Since BJ ⊂ R∞I , it suffices to discuss functions on R∞I . Consider x = (x1, x2, ..) ∈
R∞I , In = Π∞k=n+1[−12 ,

1
2 ], hn(x) = ⊗∞k=n+1χI(xk), where χI is the characteristic function for the

interval I = [−12 ,
1
2 ].

Let Mn represent the class of measurable functions on Rn. If x ∈ R∞I and fn ∈ Mn, let

x = (xi)
n
i=1, x̂ = (xi)

∞
i=n+1, then f(x) = fn(x)⊗ hn(x̂) and

Mn
I =

{
f(x) : f(x) = fn(x)⊗ hn(x̂, x ∈ R∞I

}
.

Definition 1.3. [2, Definition 2.47] A function f : R∞I → R is said to be measurable if there is a

sequence {fn ∈Mn
I } such that lim

n→∞
fn(x)→ f(x) µ∞-a.e.

Since µ∞ restricted to B(RnI) is equivalent to µn. Recalling µ∞ in R∞I is not unique. Also,

the family {Jn} ensures that every Banach space with an S-basis can be embedded as a closed

subspace of BJ in R∞I .

Definition 1.4. [2, Definition 2.55] Let f : B → [0,∞] be a measurable function and let µB

be constructed using the family {Jk}. If {sn} ⊂ M is a increasing family of non negative simple

functions with sn ∈Mn
J , for each n and lim

n→∞
sn(x) = f(x), µB - a.e., the integral of f over B by∫

B

f(x)dµB = lim
n→∞

∫
B

[
sn(x)Πn

i=1µ(Ji)

]
dµB(x).

Hence, µB restricted to B(BnJ ) is equivalent to µn. We denote µB as the canonical version of

Lebesgue measure associated with B.

1.2. Lp spaces. We recall let B be a Banach space with an S-basis and let L1(B̂) =
⋃∞
n=1 L

1(Bk)

and C0(B̂) =
⋃∞
n=1 C0(Bn).

We say that a measurable function f ∈ L1(B) if there exists a Cauchy-sequence {fm} ⊂ L1(B̂),

such that

lim
m→∞

∫
B

∣∣∣∣fm(x)− f(x)

∣∣∣∣dµB(x) = 0.

Definition 1.5. [2, Def 2.65] Let B be a Banach space with an S-basis, let Lp(B̂) =
⋃∞
n=1 L

p(Bk)

and C0(B̂) =
⋃∞
n=1 C0(Bn).

(1) We say that a measurable function f ∈ Lp(B) if there exists a Cauchy-sequence {fm} ⊂
Lp(B̂), such that

lim
m→∞

∫
B

∣∣∣∣fm(x)− f(x)

∣∣∣∣pdµB(x) = 0.

(2) We say that a measurable function f ∈ C0(B), the space of continuous functions that vanish

at infinity, if there exists a Cauchy sequence {fm} ⊂ C0(B̂), such that lim
m→∞

sup
x∈B

∣∣fm(x)−

f(x)
∣∣ = 0.
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2. Test Functions and weak derivatives

In this section, we will look at the test functions and weak derivatives of B. The relationship

between the test function spaces and Lp(B) will be established.

Recalling in the set theory, for two sets A and B, A ⊂⊂ B means that the closure of A is a

relatively compact subset of B. For example:

(0,∞) ⊂ R but (0,∞) ** R, where as (0, 1) ⊂ R and (0, 1) ⊂⊂ R.

Let Cc(B
n
J ) be the class of continuous functions on BnJ which vanish outside the compact sets. We

say that a measurable function f ∈ Cc(B∞J ), if there exists a Cauchy sequence {fn} ⊂
∞⋃
n=1

Cc(B
n
J ) =

Cc(B̂
∞
J ) such that lim

n→∞
||fn − f ||∞ = 0. We define C0(B∞J ), the continuous functions that vanish

at ∞, and C∞0 (B∞J ) the compactly supported smooth functions.

Let Nα0 be the set of all multi-index infinite tuples α = (α1, α2, ..) with αi ∈ N and all but a

finite number of entries are zero.

We define the operator Dα and Dα by

Dα = Π∞k=1

∂αk

∂xiαk

and

Dα = Π∞k=1

(
1

2πi

∂

∂xk

)αk
Definition 2.1. We define the set of test functions (or C∞c -functions with compact support on B

as

Dt(B) =
{
φ ∈ C∞c (B) : supp(φ) =

{
x : φ(x) 6= 0

}
⊆ B is compact.

}
We will say a measurable function f ∈ Dt(B) if and only if there exists a sequence of functions

{fm} ∈ Dt(B̂) =
∞⋃
n=1

Bt(B
n) and a compact set K ⊂ B, which contains the support of f − fm, for

all m, and Dαfm → Dαf uniformly on K, for every multi-index α ∈ Nα0 .
We call supp(φ) the support of φ. The topology of Dt(B) will be the compact sequential limit

topology. We denote D′t(B) as the dual space of Dt(B) in our work. The space of distributions

on B is the set of all continuous linear functionals T ∈ D′t(B), the dual space of Dt(B). A family

of distributions Ti ⊂ D′t(B) is said to converge to T ∈ D′t(B) if Ti(phi) converge to T (φ) for every

φ ∈ Dt(B).

Definition 2.2. [2, Definition 2.84] If α is a multi-index and u, v ∈ L1
loc(B), v is the αth weak

partial derivative of u provided that∫
B

u(Dαφ)dµB = (−1)|α|
∫
B

φvdµB

for all functions φ ∈ C∞c (B).

If B ⊂ R∞I is an open and ε > 0. Let ∂B is the boundary of B. We will write

Bε =

{
x ∈ B : dist(x, ∂B) > ε

}
.

Lemma 2.3. The space of test functions Dt(B) is dense in Lp(B) for 1 ≤ p <∞.
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Proof. Let f ∈ Lp(B). Let us define a mollifier fε =
∫
B
θε(x− y)f(y)dµB(y) where θε(x) = 1

ε θ(
x
ε )

and

θ(x) =


c. exp

((
|x|2 − 1

)−1)
for |x| < 1,

0 for |x| ≥ 1.

Now, the property of mollifiers gives fε ∈ C∞(Bε) and fε → f a.e. as ε → 0. Let us assume an

open set V ⊂ B and another open set W so that V ⊂⊂W ⊂⊂ B. Then,

|fε(x)| =
∣∣∣∣ ∫
Bε

θε(x− y)f(y)dµB(y)

∣∣∣∣
≤
∫
Bε

θ
1− 1

p
ε (x− y)θ

1
p
ε (x− y)|f(y)|dµB(y)

≤
(∫

Bε

θε(x− y)dµB(y)

)1− 1
p
(∫

Bε

θε(x− y)|f(y)|pdµB(y)

) 1
p

Since
∫
Bε
θε(x− y)dµB(y) = 1 so,∫

V

|fε(x)|pdµB(x) ≤
∫
V

(∫
Bε

θε(x− y)|f(y)|pdµB(y)

)
dµB(x)

≤
∫
W

|f(y)|p
(∫

By,ε

θε(x− y)dµB(x)

)
dµB(y)

=

∫
W

|f(y)|pdµB(y)

provided ε→ 0. So, ||fε||Lp(V ) ≤ ||f ||Lp(W ). So, for 1 ≤ p <∞, fε → f in Lp(B). Hence, Dt(B) is

dense in Lp(B) for 1 ≤ p <∞. �

Lemma 2.4. C∞0 (B′) is dense in Lp(B′).

Proof. Taking φ ∈ C∞0 (B′), φ ≥ 0 and
∫
B′
φdµB = 1. Define φε(x) = ε−1φ(xε ). If f ∈ Lp(B′) with

compact support then φε ∗ f has compact support is of the class C∞(B′) and φε ∗ f converges to

f in Lp(B′). �

Theorem 2.5. (Fundamental lemma of the Calculus of variations) If f ∈ L1
loc(B) satisfies∫

B
fφdµB = 0 for every φ ∈ C∞0 (B), then f = 0 a.e. in B.

Proof. Let v1 ∈ L1
loc(B) and v2 ∈ L1

loc(B) be weak αth partial derivatives of u, then∫
B

uDαφdµB = (−1)|α|
∫
B

v1φdµB

= (−1)|α|
∫
B

v2φdµB

for every φ ∈ C∞0 (B). We have,∫
B

(v1 − v2)φdµB = 0 for every φ ∈ C∞0 (B).

Let B′ is open and B
′

is a compact subset of B. Since C∞0 (B′) is dense in Lp(B′), then there

exists a sequence of functions (φi) in C∞0 (B′) such that |φi| ≤ α in B′ and φi → sgn(v1 − v2) a.e.
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in B′ as i → ∞. Now from dominated convergence theorem, with the majorant |(v1 − v2)φi| ≤
2(|v1|+ |v2|) ∈ L1(B′), gives

0 = lim
i→∞

∫
B′

(v1 − v2)φidµB

=

∫
B′

lim
i→∞

(v1 − v2)φidµB

=

∫
B′

(v1 − v2)sgn(v1 − v2)dµB

=

∫
B′
|v1 − v2|dµB .

This implies that v1 = v2 a.e. in B′ for every B′ ⊂ B. Thus v1 = v2 a.e. in B.

Consequently, if f ∈ L1
loc(B) satisfies

∫
B
fφdµB = 0 for every φ ∈ C∞0 (B) then f = 0 a.e. in

B. �

Definition 2.6. [2, Definition 2.87] A function f ∈ C∞(B) is called a Schwartz function, or

f ∈ S(B), iff, for all multi-indices α and β in Nα0 , the seminorm ρα,β(f) is finite, where

ρα,β(f) = sup
x∈B
|xαDβf(x)|.

S(B) (respectively S(B′)) is a Fréchet space, which is dense in C0(B). The test function space

Dt(B) is subspace of S(B) so from the Lemma 2.3, S(B) is dense in Lp(B).

3. Sobolev space on canonical Banach spaces

In this section, we discuss Sobolev space Sk,p(B) on canonical Banach space B. Since,

Sk,p(BnJ ) ⊂ Sk,p(Bn+1
J ), so we can assume Sk,p(B̂) =

⋃∞
n=1 S

k,p(Bk).

We say that a measurable function f ∈ Sk,p(B) if there exists a Cauchy sequence {fm} ⊂
Sk,p(B̂) such that ∑

|α|≤k

lim
m→∞

∫
B

∣∣∣∣Dαfm(x)−Dαf(x)

∣∣∣∣pdµB(x) = 0.

Thus the Sobolev space Sk,p(B) consists of those functions of Lp(B) that have weak partial deriva-

tives upto order k and they belong to Lp(B). Equivalently, we can state the following definition.

Definition 3.1. The Sobolev space Sk,p(B) consists of function f ∈ Lp(B) suct that for every

multi-iindex α with |α| ≤ k, the weak derivative Dαf exists and Dαf ∈ Lp(B). Thus

Sk,p(B) =

{
f ∈ Lp(B) : Dαf ∈ Lp(B) : |α| ≤ k

}
In our setting, we will find the Sobolev space norm.

Proposition 3.2. The expression
∑
|α|≤k

||Dαf ||Lp(B), 1 ≤ p ≤ ∞ is a norm on Sk,p(B).

Proof. To prove the expression is a norm, we need the following:
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(1) The expression ∑
|α|≤k

||Dαf ||Lp(B) = 0

⇒ ||Dαf ||Lp(B) = 0

⇒ ||f ||Lp(B) = 0 a.e.

⇒ f = 0 a.e. in B.

Now, if f = 0 ∈ L1
loc(B) a.e. in B. Now from the [2, Definition 2.84] we have∫

B

f(Dαφ)dµB = (−1)|α|
∫
B

φgdµB = 0

for all φ ∈ C∞c (B), g is in the dual space D′t(B) of Dt(B) with g ∈ L1
loc(B). Now from the

Theorem 2.5, Dαf = 0 a.e. in B for all α, |α| ≤ k.
(2) Clearly, ||αf ||Sk,p(B) = |α|||f ||Sk,p(B), α ∈ R.
(3) For the triangle inequality for 1 ≤ p < ∞, using the elementary inequality (a + b)α ≤

aα + bα, a, b ≥ 0, 0 < α ≤ 1 and Minkowski inequality we have

||f + g||Sk,p(B) =

( ∑
|α|≤k

||Dαf +Dαg||pLp(B)

) 1
p

≤
( ∑
|α|≤k

(
||Dαf ||Lp(B) + ||Dαg||Lp(B)

)p) 1
p

≤
( ∑
|α|≤k

||Dαf ||pLp(B)

) 1
p

+

( ∑
|α|≤k

||Dαg||pLp(B)

) 1
p

.

�

We denote this norm as ||f ||Sk,p(B) =
∑
|α|≤k

||Dαf ||Lp(B), 1 ≤ p ≤ ∞.

Theorem 3.3. The Sobolev space

(
Sk,p(B), ||.||Sk,p(B)

)
is a Banach space for 1 ≤ p ≤ ∞.

Proof. Let (fi) be a Cauchy sequence in Sk,p(B). Since,

||Dαfi −Dαfj ||Lp(B) ≤ ||fi − fj ||Sk,p(B), |α| ≤ k.

So, Dαfi → fα ∈ Lp(B). Again,∫
B

fDαφdµB = lim
i→∞

∫
B

fiD
αφdµB

= lim
i→∞

(−1)|α|
∫
B

DαfiφdµB

= (−1)|α|
∫
B

fαφdµB

for every φ ∈ C∞0 (B).

Case 1 For 1 < p <∞, let φ ∈ C∞0 (B). Using Holder’s inequality we have∣∣∣∣ ∫
B

fiD
αφdµB −

∫
B

fDαφdµB

∣∣∣∣ =

∣∣∣∣ ∫
B

(fi − f)DαφdµB

∣∣∣∣
≤ ||fi − f ||Lp(B)||Dαφ||Lp′ (B) → 0.
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So, Dαf = fα, |α| ≤ k.
Hence, ||Dαfi −Dαf ||Lp(B) → 0 gives ||fi − f ||Sk,p(B) → 0. Therefore, fi → f in Sk,p(B).

Case 2 For p = 1, p =∞, the proof is very straight, so we have omitted. �

Lemma 3.4. The space of test functions Dt(B) is dense in Sk,p(B) for 1 ≤ p <∞.

Proof. The proof is similar to the proof of the Lemma (2.3), so we omit the proof. �

Proposition 3.5. S(B) is dense in Sk,p(B).

Proof. It is well known that S(B) is dense in C0(B). So, there exists a Cauchy sequence {fm} ⊂
C0(B̂) such that

lim
m→∞

sup
x∈B
|fm(x)− f(x)| = 0.

Now,

lim
m→∞

|Dαfm(x)−Dαf(x)| = 0

if and only if {fm} ⊂ Sk,p(B̂). So,∑
|α|≤k

lim
m→∞

∫
B

|Dαfm(x)−Dαf(x)|pdµB(x) = 0.

Hence, f ∈ Sk,p(B). Consequently, S(B) is dense in Sk,p(B). �

Corollary 3.6. S(B′) is dense in Sk,p(B′).

Definition 3.7. (1) The Sobolev space Sk,2(B) consists of functions u ∈ L2(B) such that for

every multi-index α with |α| ≤ k, the weak derivative Dαu exists and Dαu ∈ L2(B). Thus

Sk,2(B) =
{
u ∈ L2(B) : Dαu ∈ L2(B), |α| ≤ k

}
.

(2) We assume the inner product on Sk,p(B) as:〈
f | g

〉
Sk,2

=
∑
|α|≤m

〈
D(α)f | D(α)g

〉
L2(3)

Hk,2(B) = Ck(B) ∩ Sk,2(B),

where the closure is with respect to the norm induced by < . | . >Sk,2 .
(3) Hk,2

0 (B) = Dt(B), with respect to the induced norm on Sk,2.

Theorem 3.8. Sk,2(B) is a Hilbert space with the inner product (3).

Proposition 3.9. (1) S(B′) is dense in Sk,2(B).

(2) S(B′) is dense in Sk,2(B′).

4. The Transform on Sobolev space of canonical Banach spaces

In this section we study the Fourier transform when the Sobolev space is on B, a canonical space

with an S-basis. In the case of finite dimensional Euclidean space, it is very natural framework.

We consider for the case of infinite dimensional. We define the Fourier transform as follows:
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Definition 4.1. For each f ∈ L1(B), we define

Fr(f)(y) = f̂(y) =

∫
B

e−2πixyf(x)dµB(x)(4)

where x ∈ B and y ∈ B′ and the notation xy for the scalar product of x with y. The operator Fr

is called the Fourier transform.

Theorem 4.2. Let f ∈ L1(B). Then Fr(f) ∈ C0(B′).

Proof. Let f ∈ L1(B). To prove Fr ∈ C0(B′), let (τn) be a sequence in B′ with τn → τ. Using the

continuity of exp(x) or exp(y) and the scalar product we obtain

|e−ixτn − e−ixτ | → 0, ∀ x ∈ B, y ∈ B′

or

|e−iyτn − e−iyτ | → 0 ∀ x ∈ B, y ∈ B′.

Now from the Definition (4) of the Fourier transform and using dominated convergence, we have

|Fr(τn)− Fr(τ)| ≤
∫
B

|f(x)||e−ixyτn − e−ixyτ |dµB(x)→ 0.

Since the L1-function dominates the integrand, Fr(f) is continuous and vanishes at infinity. Hence,

Fr(f) ∈ C0(B′). �

Proposition 4.3. If f ∈ S(B), then Fr(f) ∈ S(B).

Proof. Let f ∈ S(B). Now,

Dα(Frf)(x) =
∂α

∂xα

∫
B

f(x)e−2πixydµB(x)

= (−i)|α|
∫
B

f(x)xαe−2πixydµB(x)

= (−i)|α|Fr(xαf)(x).

When we allow differentiation into the integral sign in second step, the dominated convergence

theorem gives xαf ∈ S(B). So, Fr(f) ∈ C∞(B). Let P (x) be a polynomial, using Leibnitz formula

and Closed graph theorem, f(x)→ P (x)f(x), f(x)→ xαDβf(x) are continuous linear mapping of

S(B) into S(B). Let Ŝ(B′) be the set of all f̂(y) = Fr(f)(y) for f ∈ S(B), then Fr(Pf)(y) ∈ Ŝ(B′).

It is easy to see Fr is surjective, Ŝ(B′) = S(B′) and F−1r is continuous. Since, S(B) is dense

in L1(B), so that every f ∈ L1(B) is the limit of a sequence {fn} in S(B). Hence, for every

f ∈ S(B), f̂ ∈ S(B′) ⊂ C0(B′). Consequently, f̂ ∈ S(B). �

Theorem 4.4. The mapping Fr : S(B) → S(B′) extends to a continous linear isometry of U :

Sk,2(B)→ Sk,2(B′) satisfying the following∫
B

|Dαf(x)|2dµB(x) =

∫
B

|Dαf̂(y)|2dµB(y).(5)

Proof. To prove the Equation 5, we have∫
B

f(x)g(x)dµB(x) =

∫
B

g(x)

{∫
B′
f̂(y)e2πixydµB′(y)

}
dµB(x)

=

∫
B′
f̂(y)

{∫
B

g(x)e2πixydµB(x)

}
dµB′(y)
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So,
∫
B
f(x)g(x)dµB(x) =

∫
B′
f̂(y)ĝ(y)dµB′(y). Again, f(x) ∈ S(B) then using Leibnitz formula

and closed graph theorem, the transform f(x) → Dαf(x) are continous linear mapping of S(B)

into S(B). Taking f = g,∫
B

|Dαf(x)|2dµB(x) =

∫
B

|Dαf̂(y)|2dµB(y).

It is known from the Proposition 3.9, that S(B) is dense in Sk,2(B) and S(B) is dense in Sk,2(B′).

We see the Definition (4) of the Fourier transform, relative to the Sk,2 metric, the mapping Fr :

f → f̂ is a linear isometry of S(B) ⊂ Sk,2(B) onto S(B′) ⊂ Sk,2(B′). It is now follows that Fr has

a unique extension U = Fr; U : Sk,2(B)→ Sk,2(B′). �

Theorem 4.5. Fr(f) is bijective and isometric with respect to ||.||2 on subspace S(B) of L2(B)

and (inversion) {Fr(f)}−1 : S(B′)→ S(B) is also continuous.

Lemma 4.6. Let f ∈ S(B) then (
FrFrf

)
(x) = f(−x) ∀ x ∈ B.

Proof. Let f ∈ S(B) then Fr(f) ∈ S(B). Using Fubini’s theorem, we have∫
B

Fr(f)(x)g(x)dµB(x) =

∫
B

∫
B′
f(y)g(x)e−2πixydµB(x)dµB′(y)

=

∫
B

f(x)Fr(g)(x)dµB(x).

As xy → f(y)g(x)e−2πixy is integrable. Let g(x) = e−2πixy0γ(ax) with y0 ∈ B′ and a > 0. Then,

(Frg)(y) =

∫
B

e−2πixy0γ(ax)dµB(x)

= (Frγa)(y + y0).

Now, ∫
B

Fr(f)(x)e−2πixy0γ(ax)dµB(x) =

∫
B

f(x)(Fr(g))(x)dµB(x)

=

∫
B

f(x)
1

an
Fr(γ)

(
x+ y0
a

)
dµB(x)

=

∫
B

f(au− y0)γ(u)dµB(u), where u =
x+ y0
a

.

When a→ 0, using dominated convergence theorem
(
FrFr(f)

)
(x)→ f(−x) ∀ x ∈ B. �

Since, S(B) is dense in L2(B) so we can extend Fr to an isometric operator on L2(B). The

Theorem 4.5 implies the following Theorem.

Theorem 4.7. Fr : L2(B)→ L2(B′) is isometric and〈
Fr(f) | Fr(g)

〉
L2(B)

=
〈
f | g

〉
L2(B′)

, ∀ f ∈ L2(B), g ∈ L2(B′).

Proof. The Lemma 4.6, gives (
F−1r f

)
(x) =

(
F 2
r (Frf)

)
(x)

= (Frf)(−x).
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So, we obtain ∫
B

Fr(f)Fr(g)(x)dµB(x) =

∫
B

f(x)
(
Fr(Fr(g)

)
(x)dµB(x).

Hence, 〈
Fr(f) | Fr(g)

〉
L2(B)

=
〈
f | g

〉
L2(B′)

∀ f ∈ L2(B), g ∈ L2(B′).

�

Finally, S(B) is dense in Sk,2(B), encourage us to extend Fr to an isometric operator on

Sk,2(B) as follows:

Theorem 4.8. Fr : Sk,p(B)→ Sk,p(B′) is isometric and〈
Fr(f) | Fr(g)

〉
Sk,p(B)

=
〈
f | g

〉
Sk,p(B′)

∀ f ∈ Sk,p(B), g ∈ Sk,p(B′).

Proof. The proof is similar to the proof of the theorem 4.7, so we have omitted it. �

Next we shall illustrate with an example.

Example 4.9. Consider a Schwartz function f(x) = e−x
2

.

The Frf(ξ) = e
−ξ2
2 = f(ξ) and Fr(e

− x22 ) = 1
an f( ξa ) for a > 0 with fa(x) = f(ax). Using

the Lemma 4.6, F 2
r is the reflection. The Theorem 4.7 gives ||Frf ||2 = ||f ||2 for all f ∈ S(B).

Since, S(B) is dense in Sk,2(B), so f(x) = e−
x2

2 ∈ Sk,2(B). Finally, using the Theorem 4.8,

||Frf ||Sk,p(B) = ||f ||Sk,p(B).
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