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We present some existence and localization results for periodic solutions of impulsive first-order coupled non-linear systems of

two equations, without requiring periodicity for the nonlinearities. The arguments are based on Schauder’s Fixed Point Theorem
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1 Introduction

We study the following first-order coupled nonlinear system,{
z′(t) = f (t, z(t), w(t))
w′(t) = g (t, z(t), w(t))

, (1)
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a.e. t in [0, T ], T > 0, and the f, g : [0, T ] × R2 → R L1-Carathéodory functions,
with the periodic boundary conditions

z(0) = z(T ),
w(0) = w(T ),

(2)

subject to impulses given by

∆z(tk) = Ik(tk, z(tk), w(tk)),
∆w(τl) = Jl(τl, z(τl), w(τl)),

(3)

with k = 1, ..., n − 1, l = 1, ...,m − 1, n > 2, m > 2, ∆z(tk) = z(t+k ) − z(t−k ),
∆w(τl) = w(τ+l )−w(τ−l ), Ik, Jl ∈ C([0, T ]×R2,R), and the time instants tk, τl such
that 0 = t0 < t1 < ... < tn−1 < tn = T and 0 = τ0 < τ1 < ... < τm−1 < τm = T ,
where

u(t−k ) = lim
t→t−k

u(t) and u(t+k ) = lim
t→t+k

u(t).

The study of non-linear systems is well documented and widely found in the
literature, in the fields of Ecology [1], Biology [2], Celestial Mechanics [3], Neuro-
science [4], among others. In particular, the search for periodic solutions in such
systems arises, for example, in [5, 6, 7, 8, 9].

The complexity of non-linear systems can increase when their evolution is
described by sudden changes, that is, impulses, [10, 11, 12, 13, 14], especially
when they are state-dependent [15, 16, 17].

Moreover, when the nonlinearities are non-periodic, the search for periodic
solutions in impulsive non-linear systems is presented as a greater challenge. We
present a method to overcome this hurdle.

Our method consists of proving the existence of at least a periodic solution of an
impulsive first-order non-linear coupled system, with non-periodic nonlinearities,
in the interval [0, T ] and localizing it in a strip bounded by a lower and an upper
solution. In this problem, both the system nonlinearities and the impulses have
explicit time and variable dependence.

Following a translation technique suggested in [18], we obtain the existence and
the localization of an impulsive periodic solution. In such method, for C1 lower
and upper functions, there is a change of sign in the nonlinearities (see Definition
4). However, with less regularity (PC1 lower and upper functions, as in Definition
9), the change of sign in the nonlinearities can be overcome in the presence of
well-ordered lower and upper solutions.

So, for impulsive first-order coupled systems, some novelties are obtained: 1)
sufficient conditions for the existence of periodic solutions are given, even when

2



the nonlinearities have no periodicity at all; 2) lower and upper solutions do not
need to be well-ordered; 3) the sum of all jumps must be null (so the problem
must have more than one instant of impulse); 4) there exist non-negative periodic
impulsive solutions despite the eventual change of sign in the nonlinearities.

The main results require some monotonicity relations in the nonlinearities and
in the impulsive bounding functions. Furthermore, results on equi-regulated func-
tions are essential to deal with the discontinuities at the instants of impulse. A
similar problem is studied in [19, 20, 21], and with similar techniques in [18, 22].

As an example, we apply this method to a variant of a Wilson-Cowan system
of strongly coupled neurons [23], using one of the most commonly used activation
functions in neural networks [24] as the impulsive function, defined in certain time
instants.

This work is organized as follows. In Section 2 we present the required defini-
tions and auxiliary theorems. Section 3 contains one of the main results, together
with the respective proof of the existence and localization of at least one solution of
problem (1), (2), (3), together with an numerical example. In Section 4 we adapt
the solvability conditions of Section 3 by allowing the sign of the nonlinearities to
remain constant and, for the effect, recovering the order of the upper and lower
solutions. In Section 5 we present a numerical result by applying our technique to
a variant of a Wilson-Cowan system of strongly coupled neurons.

2 Definitions

In this work we consider the space of piecewise continuous functions in [0, T ],
(PC[0, T ])2 , with the norm ∥(z, w)∥ = max {∥z∥ , ∥w∥}, with ∥u∥ = supt∈[0,T ] |u(t)|.
So, (PC[0, T ])2 is a Banach space.

We consider G as the space of regulated functions [25],

G = {u : u(t−) ∈ R, ∀t ∈ (0, T ], u(s+) ∈ R, ∀s ∈ [0, T )}.

A main result for regulated functions is given by Theorem 1:

Theorem 1. [26] A given subset B of the space G of regulated functions is relatively
compact if and only if

• B is the set of equi-regulated functions, i.e. for every ϵ > 0 there is a division
ξ0 < · · · < ξp of the interval [0, T ] such that, for every v ∈ B, j ∈ {1, . . . , p}
and every t, s ∈ (ξj−1, ξj) we have |v(t)− v(s)| < ϵ;

• the set {v(t) : v ∈ B} ⊂ R is bounded for each t ∈ [0, T ].
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Define the set D = {ξ1, . . . , ξp−1} such that 0 = ξ0 < ξ1 < · · · < ξp−1 < ξp = T .
Let PCD be the space of piecewise continuous functions on [0, T ], given by

PCD := {u ∈ C([0, T ]\D) : u(t−k ) = u(tk), u(t
+
k ) ∈ R}.

Define

Dz = {t1, . . . , tn}
Dw = {τ1, . . . , τm}

(4)

as the sets of instants of impulse of functions z and w, respectively.
It is clear that PCDz [0, T ] × PCDw [0, T ], endowed with the norm ∥ · ∥, is a

Banach space.
The relation between equi-regulation and compactness on PCD is based on

Theorem 1:

Corollary 2. [26] A subset B of the space PCD is relatively compact if and only
if:

• for a given t ∈ [0, T ], the set {u(t) : u ∈ B} ⊂ R is bounded;

• the set {u(t) : u ∈ B} is equi-regulated.

The nonlinearities in (1) are assumed to be L1-Carathéodory functions, i.e.,

Definition 3. A function h : [0, T ]× R2 → R, is a L1-Carathéodory if it verifies

(i) for each (y1, y2) ∈ R2, t 7→ h(t, y1, y2) is measurable on [0, T ];

(ii) for almost every t ∈ [0, T ], (y1, y2) 7→ h(t, y1, y2) is continuous in R2;

(iii) for each L > 0, there exists a positive function ψL ∈ L1[0, T ], such that, for
max {∥yi∥ , i = 1, 2} < L,

|h(t, y1, y2)| ≤ ψL(t), a.e. t ∈ [0, T ]. (5)

Our method consists of localizing existing solutions of (1), (2), (3) using bound-
ing functions with translations. Because the upper bound is shifted towards its
maximum and the lower bound is shifted towards its minimum, there is no re-
quirement for the order of the upper and lower solutions, as stated by Definition
4:
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Definition 4. Consider the C1-functions αi, βi : [0, T ] → R, i = 1, 2. The func-
tions (α1, α2) are lower solutions of the periodic problem (1), (2), (3) if{

α′
1(t) ≤ f

(
t, α0

1(t), α
0
2(t)

)
α′
2(t) ≤ g

(
t, α0

1(t), α
0
2(t)

) , (6)

with
α0
i (t) := αi(t)− ∥αi∥ , i = 1, 2, (7)

with
αi(0) ≤ αi(T ), i = 1, 2, (8)

and {
∆α1(tk) > Ik(tk, α

0
1(tk), α

0
2(tk))

∆α2(τl) > Jl(τl, α
0
1(τl), α

0
2(τl))

. (9)

The functions (β1, β2) are upper solutions of the periodic problem (1), (2), (3) if{
β′1(t) ≥ f

(
t, β01(t), β

0
2(t)

)
β′2(t) ≥ g

(
t, β01(t), β

0
2(t)

) , (10)

with
β0i (t) := βi(t) + ∥βi∥ , i = 1, 2,

with
βi(0) ≥ βi(T ), i = 1, 2, (11)

and {
∆β1(tk) < Ik(tk, β

0
1(tk), β

0
2(tk))

∆β2(τl) < Jl(τl, β
0
1(τl), β

0
2(τl))

.

The existence tool is the well known Schauder’s Fixed Point Theorem:

Theorem 5. [27] Let Y be a nonempty, closed, bounded and convex subset of a
Banach space X, and suppose that P : Y → Y is a compact operator. Then P as
at least one fixed point in Y .
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3 Existence and localization theorem

Our main result consists of a proof of the existence of at least one solution for
problem (1), (2), (3), as well as its respective localization within a strip, bounded
by upper and lower solutions under the conditions of Definition 4. We present the
following theorem:

Theorem 6. Let (α1, α2) and (β1, β2) be lower and upper solutions of (1), (2),
(3), respectively.
Assume that f, g are L1-Carathéodory functions on the set

{(t, y1, y2) ∈ [0, T ]× R2 : α0
1(t) ≤ y1 ≤ β01(t), α

0
2(t) ≤ y2 ≤ β02(t)},

with
f(t, y1, α

0
2(t)) ≤ f(t, y1, y2) ≤ f(t, y1, β

0
2(t)), (12)

for fixed t ∈ [0, T ], y1 ∈ R, and α0
2(t) ≤ y2 ≤ β02(t), and with

g(t, α0
1(t), y2) ≤ g(t, y1, y2) ≤ g(t, β01(t), y2),

for fixed t ∈ [0, T ], y2 ∈ R, and α0
1(t) ≤ y1 ≤ β01(t).

Assume that the impulse functions Ik and Jl verify

Ik(tk, y1, α
0
2) ≥ Ik(tk, y1, y2) ≥ Ik(tk, y1, β

0
2), (13)

for some fixed k ∈ {1, . . . n− 1}, y1 ∈ R, and α0
2(t) ≤ y2 ≤ β02(t), and that

n−1∑
k=1

Ik(tk, y1, y2) = 0. (14)

Assume that the impulse functions Jl verify

Jl(τl, α
0
1, y2) ≥ Jl(τl, y1, y2) ≥ Jl(τl, β

0
1 , y2),

for some fixed l ∈ {1, . . .m− 1}, y2 ∈ R and α0
1(t) ≤ y1 ≤ β01(t), and that

m−1∑
l=1

Jl(τl, y1, y2) = 0. (15)

Then, problem (1), (2), (3) has, at least, a solution (z, w) ∈ (PC1[0, T ])2 such
that

α0
1(t) ≤ z(t) ≤ β01(t),

α0
2(t) ≤ w(t) ≤ β02(t),∀t ∈ [0, T ].
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Remark 7. Conditions (14) and (15) imply, respectively, that n > 2 and m > 2.

Proof. For i = 1, 2, define the continuous functions δ0i : [0, T ]× R, given by

δ01(t, z) =


α0
1(t) if z < α0

1(t)
z if α0

1(t) ≤ z ≤ β01(t)
β01(t) if z > β01(t)

and

δ02(t, w) =


α0
2(t) if w < α0

2(t)
w if α0

2(t) ≤ w ≤ β02(t)
β02(t) if w > β02(t)

,

(16)

and consider the modified problem, composed by{
z′(t) + z(t) = f

(
t, δ01(t, z(t)), δ

0
2(t, w(t))

)
+ δ01(t, z(t)), t ̸= tk,

w′(t) + w(t) = g
(
t, δ01(t, z(t)), δ

0
2(t, w(t))

)
+ δ02(t, w(t)), t ̸= τl,

(17)

together with the boundary conditions (2) and the truncated impulse conditions,

∆z(tk) = Ik(tk, δ
0
1(tk, z(tk)), δ

0
2(tk, w(tk))),

∆w(τl) = Jl(τl, δ
0
1(τl, z(τl)), δ

0
2(τl, w(τl))).

(18)

Step 1: Integral form of the problem (17), (2), (18).

The integral form of (17), (2) considering the impulses (18) is given by

z(t) =
∑

k:t>tk

Ik(tk, δ
0
1 , δ

0
2)+

+ e−t
( e−T

1− e−T

∫ T

0
esq1(s, δ

0
1 , δ

0
2) ds+

∫ t

0
esq1(s, δ

0
1 , δ

0
2) ds

)
w(t) =

∑
l:t>τl

Jl(τl, δ
0
1 , δ

0
2)+

+ e−t
( e−T

1− e−T

∫ T

0
esq2(s, δ

0
1 , δ

0
2) ds+

∫ t

0
esq2(s, δ

0
1 , δ

0
2) ds

)
,

(19)

where

Ik(tk, δ
0
1 , δ

0
2) = Ik(tk, δ

0
1(tk, z(tk)), δ

0
2(tk, w(tk))),

Jl(τl, δ
0
1 , δ

0
2) = Jl(τl, δ

0
1(τl, z(τl)), δ

0
2(τl, w(τl))),
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and
q1(s, δ

0
1 , δ

0
2) := f(s, δ01(s, z(s)), δ

0
2(s, w(s))) + δ01(s, z(s)),

q2(s, δ
0
1 , δ

0
2) := g(s, δ01(s, z(s)), δ

0
2(s, w(s))) + δ02(s, w(s)).

Define the operator T : (PC[0, T ])2 → (PC[0, T ])2 such that

T (z, w)(t) = (T1(z, w)(t), T2(z, w)(t)), (20)

with 

T1(z, w)(t) =
∑

k:t>tk

Ik(tk, δ
0
1 , δ

0
2)+

+ e−t
( e−T

1− e−T

∫ T

0
esq1(s, δ

0
1 , δ

0
2) ds+

∫ t

0
esq1(s, δ

0
1 , δ

0
2) ds

)
T2(z, w)(t) =

∑
l:t>τl

Jl(τl, δ
0
1 , δ

0
2)+

+ e−t
( e−T

1− e−T

∫ T

0
esq2(s, δ

0
1 , δ

0
2) ds+

∫ t

0
esq2(s, δ

0
1 , δ

0
2) ds

)
.

(21)

The norm of the operator T , defined in (20), is given by

∥T (z, w)∥ = max
{
∥T1(z, w)∥, ∥T2(z, w)∥

}
=

max
{

sup
t∈[0,T ]

|T1(z, w)(t)|, sup
t∈[0,T ]

|T2(z, w)(t)|
}
.

(22)

Step 2: T has a fixed point.

The conditions for Theorem 5 require the existence of a nonempty, bounded,
closed and convex subset B ⊂ (PC[0, T ])2 such that TB ⊂ B.

As f, g are L1-Carathéodory functions, by Definition 3, there are positive
L1[0, T ] functions ψiL, i = 1, 2, such that

|f(t, δ01(t, z), δ02(t, w))| ≤ ψ1L(t)
|g(t, δ01(t, z), δ02(t, w))| ≤ ψ2L(t)

, a.e. t ∈ [0, T ] (23)

with
L := max{|α0

1(t)|, |α0
2(t)|, β01(t), β02(t)}. (24)

We may thus consider the closed ball of radius K,

B := {(z, w) ∈ (PC[0, T ])2 : ∥(z, w)∥ ≤ K}, (25)
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with K given by

K = max

{
MI(n− 1) + eT

1−e−T

( ∫ T
0 (ψ1L(s) ds+ LT

)
,

MJ(m− 1) + eT

1−e−T

( ∫ T
0 (ψ2L(s) ds+ LT

) }
, (26)

and
MI := max

1≤k≤n−1
{|Ik(tk, δ01(tk, z(tk)), δ02(tk, w(tk)))|},

MJ := max
1≤l≤m−1

{|Jl(τl, δ01(τl, z(τl)), δ02(τl, w(τl)))|}.

For t ∈ [0, T ],

|T1(z, w)(t)| =

=

∣∣∣∣ ∑
k:t>tk

Ik(tk, δ
0
1 , δ

0
2) + e−t

( e−T

1− e−T

∫ T

0
esq1(s, δ

0
1 , δ

0
2) ds+

∫ t

0
esq1(s, δ

0
1 , δ

0
2) ds

)∣∣∣∣
≤

∣∣∣∣ ∑
k:t>tk

Ik(tk, δ
0
1 , δ

0
2)

∣∣∣∣+ ∣∣∣∣e−t
( e−T

1− e−T

∫ T

0
esq1(s, δ

0
1 , δ

0
2) ds+

∫ t

0
esq1(s, δ

0
1 , δ

0
2) ds

)∣∣∣∣
≤

∑
k:t>tk

∣∣∣∣Ik(tk, δ01 , δ02)∣∣∣∣+ ∣∣∣∣( e−T

1− e−T

∫ T

0
esq1(s, δ

0
1 , δ

0
2) ds+

∫ t

0
esq1(s, δ

0
1 , δ

0
2) ds

)∣∣∣∣
≤

∑
k:t>tk

MI +

∣∣∣∣ 1

1− e−T

∫ T

0
esq1(s, δ

0
1 , δ

0
2) ds

∣∣∣∣
≤MI(n− 1) +

eT

1− e−T

∣∣∣∣ ∫ T

0
q1(s, δ

0
1 , δ

0
2) ds

∣∣∣∣
≤MI(n− 1) +

eT

1− e−T

∫ T

0
|q1(s, δ01 , δ02)| ds

≤MI(n− 1) +
eT

1− e−T

(∫ T

0
|f(s, δ01 , δ02)|ds+ LT

)
≤MI(n− 1) +

eT

1− e−T

(∫ T

0
ψ1L(s)ds+ LT

)
.

From (26), we have

|T1(z, w)(t)| ≤MI(n− 1) +
eT

1− e−T

(∫ T

0
(ψ1L(s) ds+ LT

)
≤ K, ∀t ∈ [0, T ].

Similarly,

|T2(z, w)(t)| ≤MJ(m− 1) +
eT

1− e−T

(∫ T

0
(ψ2L(s) ds+ LT

)
≤ K, ∀t ∈ [0, T ].
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Since T1 and T2 are uniformly bounded, so is T and, by (25) and (26), TB ⊆ B.
Consider a, b, with a < b, without loss of generality, and let [a, b] ⊆ (tk, tk+1)

for some k ∈ {0, . . . , n− 1}.
Then,

|T1(z, w)(a)− T1(z, w)(b)| =

=

∣∣∣∣∣ ∑
k:a>tk

Ik(tk, δ
0
1(tk, z(tk)), δ

0
2(tk, w(tk)))+

+ e−a
( e−T

1− e−T

∫ T

0
esq1(s, δ

0
1 , δ

0
2) ds+

∫ a

0
esq1(s, δ

0
1 , δ

0
2) ds

)
−

−
∑

k:b>tk

Ik(tk, δ
0
1(tk, z(tk)), δ

0
2(tk, w(tk)))−

− e−b
( e−T

1− e−T

∫ T

0
esq1(s, δ

0
1 , δ

0
2) ds+

∫ b

0
esq1(s, δ

0
1 , δ

0
2) ds

)∣∣∣∣∣ =
=

∣∣∣∣∣(e−a − e−b
)( e−T

1− e−T

∫ T

0
esq1(s, δ

0
1 , δ

0
2) ds+

∫ a

0
esq1(s, δ

0
1 , δ

0
2) ds

)
−

− e−b

∫ b

a
esq1(s, δ

0
1 , δ

0
2) ds

∣∣∣∣∣ −−−→a→b
0,

(27)

proving that T1 is equi-regulated.
Similarly, |T2(z, w)(a)− T2(z, w)(b)| −−−→

a→b
0. Therefore, T is equi-regulated.

By Corollary 2, T is relatively compact. Then, by Theorem 5, T has a fixed
point (z∗(t), w∗(t)) ∈ (PC[0, T ])2, which is solution of (17), (2), (18).

Step 3: The pair (z∗(t), w∗(t)), solution of (17), (2), (18), is a solution of the
initial problem, (1), (2), (3).

To prove that (z∗, w∗) ∈ (PC[0, T ])2 is a solution of the original problem (1),
(2), (3) it is enough to prove that

α0
1(t) ≤ z∗(t) ≤ β01(t), α0

2(t) ≤ w∗(t) ≤ β02(t), ∀t ∈ [0, T ]. (28)

In the first inequality, suppose, by contradiction, that there exists t ∈ [0, T ]
such that

z∗(t) < α0
1(t),

and define
inf

t∈[0,T ]
(z∗ − α0

1)(t) := z∗(t0)− α0
1(t0) < 0. (29)
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We now consider different cases for t0.
If t0 ∈]tk, tk+1[ for some k ∈ {0, . . . , n}, then, by (29)

(z∗ − α0
1)

′(t0) = 0. (30)

However, by (29), (12) and (6),

(z∗)′(t0) = f(t0, δ
0
1(t0, z

∗(t0)), δ
0
2(t0, w(t0))) + δ01(t0, z

∗(t0))− z∗(t0)

= f(t0, α
0
1(t0), δ

0
2(t0, w(t0))) + α0

1(t0)− z∗(t0)

> f(t0, α
0
1(t0), δ

0
2(t0, w(t0)))

≥ f(t0, α
0
1(t0), α

0
2(t0))

≥ α1
′(t0),

contradicting (30).
If t0 = tk for some k ∈ {1, . . . , n−1}, then either t0 = t+k or t0 = t−k . If t0 = t+k ,

then t0 ∈]tk, tk+1[, so the previous reasoning must be applied. If, instead, t0 = t−k ,
then we consider

min
t∈[0,T ]

(z∗ − α0
1)(t) := z∗(t0)− α0

1(t0) < 0, (31)

and thus, the impulse on tk is necessarily non-negative. By (31), (7), (18), (13)
and (9) the following contradiction holds,

0 ≤ ∆(z∗ − α0
1)(tk)

= Ik(tk, δ
0
1(tk, z

∗(tk)), δ
0
2(tk, w(tk)))−∆α0

1(tk)

= Ik(tk, α
0
1(tk), δ

0
2(tk, w(tk)))−∆α0

1(tk)

= Ik(tk, α
0
1(tk), δ

0
2(tk, w(tk)))−∆α1(tk)

≤ Ik(tk, α
0
1(tk), α

0
2(tk))−∆α1(tk) < 0.

(32)

Finally, if t0 = 0, we can consider (31). By (2), (7) and (8), then

z∗(0)− α0
1(0) =z

∗(T )− (α1(0)− ∥α∥)
=z∗(T )− α1(0) + ∥α∥
≥z∗(T )− α1(T ) + ∥α∥
=z∗(T )− (α1(T )− ∥α∥)
=z∗(T )− α0

1(T ).

Then, by (31),
z∗(0)− α0

1(0) = z∗(T )− α0
1(T ),

11



and
(z∗)′(T )− (α1)

′(T ) ≤ 0. (33)

Then, by (31), (12) and (6), the following contradiction with 33 holds,

(z∗)′(T ) = f(T, δ01(T, z
∗(T )), δ02(T,w(T ))) + δ01(T, z

∗(T ))− z∗(T )

= f(T, α0
1(T ), δ

0
2(T,w(T ))) + α0

1(T )− z∗(T )

> f(T, α0
1(T ), δ

0
2(T,w(T )))

≥ f(T, α0
1(T ), α

0
2(T ))

≥ α′
1(T ).

Therefore, z∗(t) ≥ α0
1(t), ∀t ∈ [0, T ].

The same arguments can be applied to prove the other inequalities in (28).

Example 8. Consider the following system, for t ∈ [0, 1],{
z′(t) = a1z

3(t) + a2w(t) + a3t, a2 > 0,

w′(t) = b1w
3(t) + b2z(t) + b3t, b2 > 0,

(34)

together with the periodic boundary conditions (2), and the impulse conditions{
∆z(tk) = Sϵ1(c1z(tk)− c2w(tk) + c3)− 1/2, c2 > 0,

∆w(τl) = Sϵ2(−d1z(τl) + d2w(τl) + d3)− 1/2, d1 > 0,
(35)

where S : R → R+ is the sigmoid function, defined as

Sϵ(x) =
1

1 + e−ϵx
, ϵ > 0. (36)

As a numerical example, we consider the normalized period, T = 1, and the
parameter set,

a1 = −5 a2 = 0.1 a3 = 2
b1 = −0.5 b2 = 1 b3 = 10
c1 = 6 c2 = 2 c3 = 1 ϵ1 > 0
d1 = 3 d2 = 6 d3 = 1 ϵ2 > 0

and we shall consider impulses at t1 = 1/2, t2 = 3/4 and τl = 1/3, τ2 = 2/3, that
is, we shall consider the problem{

z′(t) = −5z3(t) + 0.1w(t) + 2t
w′(t) = −0.5w3(t) + z(t) + 10t

, (37)
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together with the boundary conditions

z(0) = z(1)

w(0) = w(1)
(38)

and the impulses
∆x1(t1) = Sϵ1(6x1(t1)− 2x2(t1) + 1)− 1/2, ϵ1 > 0
∆x1(t2) = Sϵ1(6x1(t2)− 2x2(t2) + 1)− 1/2, ϵ1 > 0

∆x2(τ1) = Sϵ2(−3x1(τ1) + 6x2(τ1) + 1)− 1/2, ϵ2 > 0
∆x2(τ2) = Sϵ2(−3x1(τ2) + 6x2(τ2) + 1)− 1/2, ϵ2 > 0

, (39)

It is clear that (37), (38), (39) is a particular case of problem (1), (2), (3),
with {

f(t, z(t), w(t)) = −5z3(t) + 0.1w(t) + 2t
g(t, z(t), w(t)) = −0.5w3(t) + z(t) + 10t

,

and 
I1(t1, x1(t1), x2(t1)) = Sϵ1(6x1(t1)− 2x2(t1) + 1)− 1/2
I2(t2, x1(t2), x2(t2)) = Sϵ1(6x1(t2)− 2x2(t2) + 1)− 1/2
J1(τ1, x1(τ1), x2(τ1)) = Sϵ2(−3x1(τ1) + 6x2(τ1) + 1)− 1/2
J2(τ2, x1(τ2), x2(τ2)) = Sϵ2(−3x1(τ2) + 6x2(τ2) + 1)− 1/2

.

The functions αi, βi : [0, 1] → R, i = 1, 2, given by

α1(t) = t, α2(t) = 2t− 1,

β1(t) = 1− t, β2(t) = 2− t.

are, respectively, lower and upper solutions of problem (37), (38), (39), according
to Definition 4, with

α0
1(t) = t− 1, α0

2(t) = 2t− 2,

β01(t) = 2− t, β02(t) = 4− t.

We observe that the inequalities required by Definition 4 are verified on the
interval [0, 1] for the nonlinearities,

1 = α′
1(t) ≤ f

(
t, α0

1(t), α
0
2(t)

)
= −5t3 + 15t2 − 12.80t+ 4.8,

2 = α′
2(t) ≤ g

(
t, α0

1(t), α
0
2(t)

)
= −4t3 + 12t2 − t+ 3,

−1 = β′1(t) ≥ f
(
t, β01(t), β

0
2(t)

)
= 5t3 − 30t2 + 61.90t− 39.6,

−1 = β′2(t) ≥ g
(
t, β01(t), β

0
2(t)

)
= 0.5t3 − 6t2 + 33t+ 34.
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As for the impulses, we notice that, for ϵ > 0, given a function u(t), the
following monotonicity relations hold,

Sϵ(u(t))− 1/2 > 0 ⇒ u(t) > 0,

Sϵ(u(t))− 1/2 < 0 ⇒ u(t) < 0.

Therefore, in order to verify the inequalities of Definition 4, i.e.,

0 = ∆α1(t1) > I1
(
t1, α

0
1(t1), α

0
2(t1)

)
,

0 = ∆α1(t2) > I2
(
t2, α

0
1(t2), α

0
2(t2)

)
,

0 = ∆α2(τ1) > J1
(
τ1, α

0
1(τ1), α

0
2(τ1)

)
,

0 = ∆α2(τ2) > J2
(
τ2, α

0
1(τ2), α

0
2(τ2)

)
,

0 = ∆β1(t1) < I1
(
t1, β

0
1(t1), β

0
2(t1)

)
,

0 = ∆β1(t2) < I2
(
t2, β

0
1(t2), β

0
2(t2)

)
,

0 = ∆β2(τ1) < J1
(
τ1, β

0
1(τ1), β

0
2(τ1)

)
,

0 = ∆β2(τ2) < J2
(
τ2, β

0
1(τ2), β

0
2(τ2)

)
,

we only need to show that, for every ϵi > 0,

c1α
0
1(t1)− c2α

0
2(t1) + c3 = −2 < 0,

c1α
0
1(t2)− c2α

0
2(t2) + c3 = −3/2 < 0,

−d1α0
1(τ1) + d2α

0
2(τ1) + d3 = −10/3 < 0,

−d1α0
1(τ2) + d2α

0
2(τ2) + d3 = −8/3 < 0,

c1β
0
1(t1)− c2β

0
2(t1) + c3 = 1/2 > 0,

c1β
0
1(t2)− c2β

0
2(t2) + c3 = 1/4 > 0,

−d1β01(τ1) + d2β
0
2(τ1) + d3 = 2 > 0,

−d1β01(τ2) + d2β
0
2(τ2) + d3 = 2 > 0.

As all the assumptions of Theorem 6 are verified, then there is at least a non-
trivial periodic solution (x∗1, x

∗
2) of problem (37), (38), (39), moreover,

t− 1 ≤ x∗1(t) ≤ 2− t,
2t− 2,≤ x∗2(t) ≤ 4− t,

, ∀t ∈ [0, 1],

Although αi(t) and βi(t) are not necessarily well ordered, the order is recovered
with the translations, as shown in Figure 1.
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Figure 1: (x∗
1, x

∗
2)-solution localization, in [0, 1].

4 Ordered lower and upper solutions and sign

of nonlinearities

In Section 3, Theorem 6 localizes an existing solution of problem (1), (2), (3)
in a strip bounded by upper and lower solutions with translations, α0

i (t) ≤ 0 and
β0i (t) ≥ 0 (see Definition 4). However, the differential inequalities (6) and (10),
together with the boundary conditions (8) and (11), require the change of sign in
the nonlinearities.

In this section, it is required less regularity to lower and upper solutions. How-
ever, it is necessary to impose an order relation between them, αi(t) ≤ βi(t), i =
1, 2, in order to define a method that does not require the sign of the nonlinearities
to change.

Definition 9. Consider the PC1-functions αi, βi : [0, T ] → R, i = 1, 2. The
functions (α1, α2) are lower solutions of the periodic problem (1), (2), (3) if{

α′
1(t) ≤ f (t, α1(t), α2(t))
α′
2(t) ≤ g (t, α1(t), α2(t))

, (40)

with
αi(0) ≤ αi(T ), i = 1, 2, (41)

and {
∆α1(tk) > Ik(tk, α1(tk), α2(tk))
∆α2(τl) > Jl(τl, α1(τl), α2(τl))

. (42)

The functions (β1, β2) are upper solutions of the periodic problem (1), (2), (3) if{
β′1(t) ≥ f (t, β1(t), β2(t))
β′2(t) ≥ g (t, β1(t), β2(t))

, (43)
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with
βi(0) ≥ βi(T ), i = 1, 2,

and {
∆β1(tk) < Ik(tk, β1(tk), β2(tk))
∆β2(τl) < Jl(τl, β1(τl), β2(τl))

.

Theorem 10. Let (α1, α2) and (β1, β2) be lower and upper solutions of (1), (2),
(3), respectively, according to Definition 9, such that

αi(t) ≤ βi(t), i = 1, 2, ∀t ∈ [0, T ],

Assume that f, g are L1-Carathéodory functions on the set

{(t, y1, y2) ∈ [0, T ]× R2 : α1(t) ≤ y1 ≤ β1(t), α2(t) ≤ y2 ≤ β2(t)},

with
f(t, y1, α2(t)) ≤ f(t, y1, y2) ≤ f(t, y1, β2(t)), (44)

for fixed t ∈ [0, T ], y1 ∈ R, and α2(t) ≤ y2 ≤ β2(t), and with

g(t, α1(t), y2) ≤ g(t, y1, y2) ≤ g(t, β1(t), y2),

for fixed t ∈ [0, T ], y2 ∈ R, and α1(t) ≤ y1 ≤ β1(t).
Assume that the impulse functions Ik and Jl verify

Ik(tk, y1, α2) ≥ Ik(tk, y1, y2) ≥ Ik(tk, y1, β2), (45)

for some fixed k ∈ {1, . . . n− 1}, y1 ∈ R, and α2(t) ≤ y2 ≤ β2(t), and that

n−1∑
k=1

Ik(tk, y1, y2) = 0.

Assume that the impulse functions Jl verify

Jl(τl, α1, y2) ≥ Jl(τl, y1, y2) ≥ Jl(τl, β1, y2),

for some fixed l ∈ {1, . . .m− 1}, y2 ∈ R and α1(t) ≤ y1 ≤ β1(t), and that

m−1∑
l=1

Jl(τl, y1, y2) = 0.

Then, problem (1), (2), (3) has, at least, a solution (z, w) ∈
(
PC1[0, T ]

)
)2 such

that

α1(t) ≤ z(t) ≤ β1(t),

α2(t) ≤ w(t) ≤ β2(t),∀t ∈ [0, T ].
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Proof. For i = 1, 2, define the continuous functions δi : [0, T ]× R, given by

δ1(t, z) =


α1(t) if z < α1(t)
z if α1(t) ≤ z ≤ β1(t)

β1(t) if z > β1(t)

and

δ2(t, w) =


α2(t) if w < α2(t)
w if α2(t) ≤ w ≤ β2(t)

β2(t) if w > β2(t)
,

(46)

and consider the modified problem, composed by{
z′(t) + z(t) = f (t, δ1(t, z(t)), δ2(t, w(t))) + δ1(t, z(t)), t ̸= tk,
w′(t) + w(t) = g (t, δ1(t, z(t)), δ2(t, w(t))) + δ2(t, w(t)), t ̸= τl,

(47)

together with the boundary conditions (2) and the truncated impulse conditions,

∆z(tk) = Ik(tk, δ1(tk, z(tk)), δ2(tk, w(tk))),
∆w(τl) = Jl(τl, δ1(τl, z(τl)), δ2(τl, w(τl))).

(48)

Problem (47), (2), (48) can be addressed using the arguments for the proof
of Theorem 6. The corresponding operator has a fixed point (z̄, w̄). The delicate
step, however, is to show that (z̄, w̄) is a solution of (47), (2), (48), such that

α1(t) ≤ z̄(t) ≤ β1(t), α2(t) ≤ w̄(t) ≤ β2(t), ∀t ∈ [0, T ]. (49)

In the first inequality, suppose, by contradiction, that there exists t ∈ [0, T ]
such that

z̄(t) < α1(t),

and define
inf

t∈[0,T ]
(z̄ − α1)(t) := z̄(t0)− α1(t0) < 0. (50)

We now consider different cases for t0.
If t0 ∈]tk, tk+1[ for some k ∈ {0, . . . , n}, then, by (50)

(z̄ − α1)
′(t0) = 0. (51)

However, by (50), (44) and (40),

(z̄)′(t0) = f(t0, δ1(t0, z̄(t0)), δ2(t0, w(t0))) + δ1(t0, z̄(t0))− z̄(t0)

= f(t0, α1(t0), δ2(t0, w(t0))) + α1(t0)− z̄(t0)

> f(t0, α1(t0), δ2(t0, w(t0)))

≥ f(t0, α1(t0), α2(t0))

≥ α1
′(t0),
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contradicting (51).
If t0 = tk for some k ∈ {1, . . . , n−1}, then either t0 = t+k or t0 = t−k . If t0 = t+k ,

then t0 ∈]tk, tk+1[, so the previous reasoning must be applied. If, instead, t0 = t−k ,
then we consider

min
t∈[0,T ]

(z̄ − α1)(t) := z̄(t0)− α1(t0) < 0, (52)

and thus, the impulse on tk is necessarily non-negative. By (52), (48), (45) and
(42) the following contradiction holds,

0 ≤ ∆(z̄ − α1)(tk)

= Ik(tk, δ1(tk, z̄(tk)), δ2(tk, w(tk)))−∆α1(tk)

= Ik(tk, α1(tk), δ2(tk, w(tk)))−∆α1(tk)

= Ik(tk, α1(tk), δ2(tk, w(tk)))−∆α1(tk)

≤ Ik(tk, α1(tk), α2(tk))−∆α1(tk) < 0.

(53)

Finally, if t0 = 0, we can consider (52). By (2) and (41), then

z̄(0)− α1(0) =z̄(T )− α1(0) ≥ z̄(T )− α1(T ).

Then, by (52),
z̄(0)− α1(0) = z̄(T )− α1(T ),

and
(z̄)′(T )− (α1)

′(T ) ≤ 0. (54)

Then, by (52), (44) and (40), the following contradiction with 54 holds,

(z̄)′(T ) = f(T, δ1(T, z̄(T )), δ2(T,w(T ))) + δ1(T, z̄(T ))− z̄(T )

= f(T, α1(T ), δ2(T,w(T ))) + α1(T )− z̄(T )

> f(T, α1(T ), δ2(T,w(T )))

≥ f(T, α1(T ), α2(T ))

≥ α′
1(T ).

Therefore, z̄(t) ≥ α1(t), ∀t ∈ [0, T ].
The same arguments can be applied to prove the other inequalities in (49).
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5 Application to a system of two strongly

connected Wilson-Cowan neural oscillators

In the work [23] the authors study the dynamics, synchronization and control
of chaos in a system of strongly connected Wilson-Cowan neural oscillators, and
present the respective mathematical model,

x′i(t) = −ϕixi(t) + S
(
ρi +

n∑
j=1

θijxj

)
,

xi ∈ R, i, j = 1, . . . , n, ϕi ≥ 0,

(55)

where ϕi is the internal decay rate of the ith neuron, ρi, θij are the input parameters
of the activation function S : R → R+ of neuron i, acting on coupled neuron j.
From the list of most commonly used activation functions suggested in [24], we
choose S(x) = tanh(x).

Motivated by these works, we adapted (55) to a system of two neurons with
the following form, {

x′1(t) = −a1x1(t) + ea2x2(t) + a3t

x′2(t) = −b1x2(t) + eb2x1(t) + b3t
, (56)

with αi > 0, βi > 0, i = 1, 2, together with the periodic boundary conditions

xi(0) = xi(T ), i = 1, 2, (57)

and the impulses given by{
∆x1(tk) = tanh(c1x1(tk)− c2x2(tk) + c3)
∆x2(τl) = tanh(−d1x1(τl) + d2x2(τl) + d3)

, (58)

with c2 > 0, d1 > 0.
The quantity xi denotes the activation state of the ith neuron, a1, b1 the re-

spective internal decay rate, a2, b2 are the weights of the non-linear components,
and a3t, b3t are the time-dependent external inputs, with a3, b3 ∈ R.

The quantities ∆xi denote the instantaneous jumps of the ith neuron at the re-
spective instants of impulse, modelled by the function S, together with the weights
of each variables, where c1, d2, c3, d3 ∈ R.

As a numerical example, we consider the normalized period, T = 1, and the
parameter set,

a1 = 0.1 a2 = 0.2 a3 = −0.5
b1 = 0.1 b2 = 0.1 b3 = 0.1
c1 = 5 c2 = 5 c3 = −3
d1 = 0.5 d2 = 1.5 d3 = −5
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and we shall consider impulses at t1 = 1/3, t2 = 2/3, and τl = 1/4, τ2 = 1/2,
τ3 = 3/4. In short, we consider the numerical problem{

x′1(t) = −0.1x1(t) + e0.2x2(t) − 0.5t

x′2(t) = −0.1x2(t) + e0.1x1(t) + 0.1t
, (59)

together with the boundary conditions

xi(0) = xi(1), (60)

and the impulses
∆x1(t1) = tanh(5x1(t1)− 5x2(t1)− 3)
∆x1(t2) = tanh(5x1(t2)− 5x2(t2)− 3)

∆x2(τ1) = tanh(−0.5x1(τ1) + 1.5x2(τ1)− 5)
∆x2(τ2) = tanh(−0.5x1(τ2) + 1.5x2(τ2)− 5)
∆x2(τ3) = tanh(−0.5x1(τ3) + 1.5x2(τ3)− 5).

(61)

It is clear that (59), (60), (61) is a particular case of problem (1), (2), (3), with{
f(t, x1(t), x2(t)) = −0.1x1(t) + e0.2x2(t) − 0.5t

g(t, x1(t), x2(t)) = −0.1x2(t) + e0.1x1(t) + 0.1t
,

and 
I1(t1, x1(t1), x2(t1)) = tanh(5x1(t1)− 5x2(t1)− 3)
I2(t2, x1(t2), x2(t2)) = tanh(5x1(t2)− 5x2(t2)− 3)

J1(τ1, x1(τ1), x2(τ1)) = tanh(−0.5x1(τ1) + 1.5x2(τ1)− 5)
J2(τ2, x1(τ2), x2(τ2)) = tanh(−0.5x1(τ2) + 1.5x2(τ2)− 5)
J3(τ3, x1(τ3), x2(τ3)) = tanh(−0.5x1(τ3) + 1.5x2(τ3)− 5).

The functions αi, βi : [0, 1] → R, i = 1, 2, given by

α1(t) =


−t+ 1/3, 0 ≤ t ≤ 1/3
−t+ 1, 1/3 < t ≤ 2/3

−t+ 5/3, 2/3 < t ≤ 1
β1(t) =


4t+ 5, 0 ≤ t ≤ 1/3
4t+ 3, 1/3 < t ≤ 2/3
4t+ 1, 2/3 < t ≤ 1

,

α2(t) =


−t+ 1/4, 0 ≤ t ≤ 1/4
−t+ 3/4, 1/4 < t ≤ 1/2
−t+ 5/4, 1/2 < t ≤ 3/4
−t+ 7/4, 3/4 < t ≤ 1

, β2(t) =


3t+ 5, 0 ≤ t ≤ 1/4
3t+ 4, 1/4 < t ≤ 1/2
3t+ 3, 1/2 < t ≤ 3/4
3t+ 2, 3/4 < t ≤ 1

,

are, respectively, lower and upper solutions of problem (59), (60), (61), according
to Definition 9. In fact, the four differential inequalities (equations (40), (43)) are
verified in the interval [0, 1], as shown in Figure 3.
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As for the impulses, we verify the inequalities of Definition 9,

2/3 = ∆α1(t1) > I1 (t1, α1(t1), α2(t1)) = −0.999923,

2/3 = ∆α1(t2) > I2 (t2, α1(t2), α2(t2)) = −0.999593,

1/2 = ∆α2(τ1) > J1 (τ1, α1(τ1), α2(τ1)) = −0.999916,

1/2 = ∆α2(τ2) > J2 (τ2, α1(τ2), α2(τ2)) = −0.999883,

1/2 = ∆α2(τ3) > J3 (τ3, α1(τ3), α2(τ3)) = −0.999837,

−2 = ∆β1(t1) < I1 (t1, β1(t1), β2(t1)) = 0.998694,

−2 = ∆β1(t2) < I2 (t2, β1(t2), β2(t2)) = 0.321513,

−1 = ∆β2(τ1) < J1 (τ1, β1(τ1), β2(τ1)) = 0.5546,

−1 = ∆β2(τ2) < J2 (τ2, β1(τ2), β2(τ2)) = 0.635149,

−1 = ∆β2(τ3) < J3 (τ3, β1(τ3), β2(τ3)) = 0.703906,

As all the assumptions of Theorem 10 are verified, then there is at least a non-
trivial non-negative periodic solution (x∗1, x

∗
2) of problem (59), (60), (61), moreover,

α1(t) ≤ x∗1(t) ≤ β1(t),
α2(t),≤ x∗2(t) ≤ β2(t),

,∀t ∈ [0, 1],

as shown in Figure 2.

Figure 2: (x∗
1, x

∗
2)-solution localization, in [0, 1].

6 Conclusions

In the literature, the lower and upper solutions are typically well-ordered, that
is, the lower function lies below the upper one, and some monotonicity conditions
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α′
1(t) ≤ f(t, α1(t), α2(t)) β′1(t) ≥ f(t, β1(t), β2(t))

α′
2(t) ≤ g(t, α1(t), α2(t)) β′2(t) ≥ g(t, β1(t), β2(t))

Figure 3: Relation between the nonlinearities and the lower and upper solu-
tions.

are imposed to the nonlinearities. In this work, we overcome both restrictions, in
order to ease the search for functions that verify the required properties of lower
and upper solutions. We overcome the first restriction by applying a translation
such that, regardless of the order relation between the lower and upper solutions,
the shifted functions are always well-ordered.

The existence result of Section 3 obligates the nonlinearities to change sign in
the interval [0, T ]. We overcome that restriction by requiring less regularity to the
lower and upper functions in Section 4, but recovering a relation of order between
them.
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