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Abstract

In the present era, healthcare systems grapple with substan- tial volumes of medical data. However, a significant portion

of this data is marked by incompleteness, inconsistency, er- rors, and unsuitability for training Machine Learning (ML) or

Deep Learning (DL) algorithms. This necessitates preprocess- ing the data to render it amenable to utilization by ML/DL al-

gorithms. Medical datasets predominantly feature two types of attributes: numerical and categorical values. The conver- sion

of categorical features into numerical vectors is a crucial step in preparing the data for ML/DL algorithms, known as Feature

Engineering (FE) based categorical encoding. Con- ventional and straightforward encoding of categorical fea- tures, termed one-

hot encoding, generates multiple columns, thereby transforming data from a lower-dimensional to a higher- dimensional space.

This approach poses challenges, includ- ing increased memory requirements due to the proliferation of columns. Considering

these issues, this research proposes an encoding technique named “Weight of Evidence with En- tity Embedding” (WoEEE).

The WoEEE approach bolsters the predictive capabilities of ML/DL algorithms by calculating the weight of evidence and

concurrently mitigates dimension- ality issues. To empirically validate the proposed method, it is tested on six diverse datasets:

Breast Cancer, Hospital Readmission, Vadu, Covid-19, Stroke, and Heartstatlog. Four distinct ML/DL algorithms—Decision

Tree (DT), Random For- est (RF), Logistic Regression (LR), and a simple Feed-forward Neural Network (NN)— are employed

for testing. The re- sults obtained demonstrate that the WoEEE approach yields an average improvement of 11.18%, 10.37%,

5.83%, 7.58%, 7.83%, and 6.83% across all combinations of datasets, classi- fiers, and encoding methods. Furthermore, an

Anova test is performed to confirm the effectiveness of WoEEE in encod- ing categorical data, especially for tasks involving

binary clas- sification. This enhances the treatment of categorical data in ML and data analytics scenarios. Overall, WoEEE

shows po- tential as a valuable approach for categorical data encoding, making a positive contribution to the creation of effective

techniques for handling this type of data in real-world appli- cations.
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In the present era, healthcare systems grapple with sub-
stantial volumes of medical data. However, a significant
portion of this data is marked by incompleteness, inconsis-
tency, errors, and unsuitability for training Machine Learn-
ing (ML) or Deep Learning (DL) algorithms. This necessi-
tates preprocessing the data to render it amenable to uti-
lization by ML/DL algorithms. Medical datasets predomi-
nantly feature two types of attributes: numerical and cate-
gorical values. The conversion of categorical features into
numerical vectors is a crucial step in preparing the data
for ML/DL algorithms, known as Feature Engineering (FE)
based categorical encoding. Conventional and straightfor-
ward encoding of categorical features, termed one-hot en-
coding, generates multiple columns, thereby transforming
data froma lower-dimensional to a higher-dimensional space.
This approach poses challenges, including increased mem-
ory requirements due to the proliferation of columns. Con-
sidering these issues, this research proposes an encoding
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technique named "Weight of Evidence with Entity Embed-
ding" (WoEEE). The WoEEE approach bolsters the predic-
tive capabilities ofML/DL algorithms by calculating theweight
of evidence and concurrently mitigates dimensionality is-
sues. To empirically validate the proposed method, it is
tested on six diverse datasets: Breast Cancer, Hospital Read-
mission, Vadu, Covid-19, Stroke, andHeartstatlog. Four dis-
tinct ML/DL algorithms—Decision Tree (DT), Random For-
est (RF), Logistic Regression (LR), and a simple Feed-forward
Neural Network (NN)— are employed for testing. The re-
sults obtained demonstrate that theWoEEE approach yields
an average improvement of 11.18%, 10.37%, 5.83%, 7.58%,
7.83%, and 6.83% across all combinations of datasets, clas-
sifiers, and encoding methods. Furthermore, an Anova test
is performed to confirm the effectiveness of WoEEE in en-
coding categorical data, especially for tasks involving binary
classification. This enhances the treatment of categorical
data in ML and data analytics scenarios. Overall, WoEEE
shows potential as a valuable approach for categorical data
encoding, making a positive contribution to the creation of
effective techniques for handling this type of data in real-
world applications.
K E YWORD S
Feature Engineering, Encoding, Entity Embedding, Categorical
Data Encoding, Machine Learning

1 | INTRODUCTION
In the realm of Medical Data Science, each nation should harness its populace’s medical data to glean insights for
enhancing healthcare services. Medical data encompasses an individual’s health status and medical interventions.
Equipped with current medical data of patients, healthcare providers are poised to offer optimized, safer, and tailored
care, leading to heightened efficiency and superior quality of service provision. Moreover, medical data serves as a
valuable resource for researchers and research institutions in their pursuit of innovating novel treatments and medical
devices. In light of this, the medical data essential for healthcare providers and researchers necessitates preprocessing
to ensure its utility.

A considerable portion of medical data exhibits incompleteness, inconsistency, and inaccuracies. Consequently,
subjecting such unprocessed data to statistical analysis poses risks and mandates appropriate preprocessing mea-
sures. The unprocessed medical data encompasses both numerical and categorical attributes, each of which can be
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subjected to diverse transformation or encoding techniques. Within this context, numerous existing ML/DL models
operate under the assumption that data and features inherently reside within a numerical domain, characterized by
order and meaningful distances. This allows ML/DL models to consistently execute arithmetic operations, calculate
central tendencies, dispersions, and measures of distance. However, categorical attributes do not universally conform
to the aforementioned assumption, thereby rendering them incompatible with several mathematical operations and
computations. Consequently, the conversion of categorical attributes into numerical equivalents becomes impera-
tive. This process, involving the translation of categorical data/features into numerical representations, is commonly
referred to as encoding [2].

Conventional techniques for encoding categorical features encompass a range of approaches such as one-hot,
label, ordinal, binary, frequency, target, and mean encoding. Among these, one-hot encoding stands as the most
recognized and widely used method by data analysts and scientists. By employing one-hot encoding to convert cat-
egorical attributes into numeric formats, the feature count expands correspondingly, contingent on the cardinality
of the specific categorical dataset [8]. Consequently, this process gives rise to a substantial volume of sparse data
for each categorical attribute. Additionally, due to the equidistant nature of feature vectors from one another, the
inter-variable correlation would be forfeited [5]. Consequently, the decision has been made to introduce an encoding
approach tailored to effectively manage categorical features. The aim of this proposed encoding technique is to retain
the fundamental characteristics of categorical attributes while concurrently addressing memory utilization concerns.
This transformative process is denoted as "Feature Engineering (FE) based categorical encoding." The FE-based cate-
gorical encoding method serves the purpose of assimilating data for learning purposes and extracting morphological
insights during the training of ML algorithms.

The proposed approach amalgamates the encoding methodologies of Weight of Evidence and Entity Embedding.
Although the devised Weight of Evidence (WoE) transformation is underpinned by a robust mathematical framework
[26], its conceptual genesis is rooted in real-world scenarios. In our daily lives, we routinely make judgments based
on the probability of certain events unfolding. While some situations and their corresponding decisions hold lesser
significance, others of greater intricacy demand inputs from multiple sources. Irrespective of the complexity of a
decision, its outcome’s likelihood is often far from being a concrete reality, as it hinges on extensive data. Many of
these data points might exhibit intricate interdependencies as elaborated in [6]. In this context, it becomes imperative
to uncover the rationales behind each decision and discern the weight of the evidence. Essentially, this constructs a
visualization of the risk associated with a specific choice or factual assertion along a linear continuum, facilitating data
analysts and scientists in their risk assessment endeavors.

Similarly, the incorporation of the Entity Embedding (EE) technique [1] provides an additional advantage. This
technique enhances the predictive prowess of classifiers through an exploration of the fundamental attributes of each
independent variable within its embedding space. By opting for a predefined embedding size, the method reduces the
multitude of distinct elements within categorical features into a compact vector representation of fixed dimensions.
In doing so, it aligns similar values within the embedding space, thereby illustrating the inherent coherence of the
data. This approach proves particularly adept at leveraging DL for the analysis of tabular data. Given that categorical
data values inherently exhibit interdependencies, EE’s capacity to align them in the embedding space holds notable
significance.

As an illustration, let’s consider the application of entity embedding to represent two distinct colors, namely
"brown" and "black," within a given feature. Through this approach, two commensurate values emerge, with one
value signifying the "shade" attribute and the other embodying the "primary color composition." This dual-value repre-
sentation equips the model with an understanding of how each variable interacts, thereby facilitating more accessible
learning and simultaneous performance enhancement. Consequently, the proposed model integrates the Weight of
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Evidence encoding method with Entity Embedding and subsequently contrasts it with established benchmark encod-
ing methods including label, one-hot, and binary encoding. To evaluate the effectiveness of the model, a selection of
ML classifiers, such as Decision Tree, Random Forest, Logistic Regression, andMulti-layer Perceptron, are employed in
the experimentation. The performance of each classifier is quantified in terms of accuracy. This paper underscores the
significance of employing feature engineering-driven categorical encoding to accurately classify unprocessed medical
data into appropriate class labels, thereby elevating classification accuracy.

The remainder of the paper is structured as follows: In Section 2, an extensive examination of existing literature
and research pertaining to diverse categorical encoding methodologies for ML and DL is presented. Section 3 pro-
vides a comprehensive elucidation of the operational mechanics underlying the proposed Weight of Evidence with
Entity Embedding (WoEEE) encoding scheme. Subsequently, Section 4 delves into the intricacies of the conducted
experiments and offers an ANOVA analysis of the obtained results. The concluding remarks and potential directions
for future research are outlined in Section 5.

2 | RELATED WORKS ON CATEGORICAL ENCODING IN ML/DL
Feature Engineering (FE) encompasses activities like feature selection, creation, generation, construction, and extrac-
tion. These techniques are commonly employed to enhance the concept of Feature Engineering. Besides enhancing
classification accuracy through feature production, it’s also essential to transform categorical features into numerical
ones to make them comprehensible for ML/DL algorithms. The process of entity embedding for categorical variables,
as introduced by Cheng Guo et al. in their work [1], involvesmapping categorical variables to a function approximation.
This approach is particularly prevalent in supervised learning neural networks. Unlike one-hot encoding, entity embed-
ding is memory-efficient. The authors conducted a comparison between entity embedding and otherMLmethods like
k-nearest neighbors, random forest, gradient boosting trees, and neural networks. Notably, neural networks exhib-
ited exceptional performance in the context of entity embedding. To validate their approach, the authors conducted
experiments using the Rossman Sale dataset from the Kaggle repository to predict daily sales. The study’s ultimate
inference was that adopting the entity embedding technique led to a reduction in the mean absolute percentage error,
thereby affirming its efficacy.

Zhang et al. [2] proposed a novel method for transforming categorical features into numerical representation in
which the numerical learning algorithm understands the categorical data’s core properties. The authors studied the
pairwise dissimilarity between categorical data and continuous embedding that uses manifold learning. The results
reveal that the proposed method outperforms existing proven methodologies such as dummy and density-based
encoding or algorithmic strategies such as Decision tree-based classification for many benchmark datasets. John
T. Hancock et al. [3] published a survey on categorical data for neural networks. The three primary methods for
implementing categorical data encoding are determined, algorithmic, and automatic techniques. The authors claim
that the determined approaches are preferable for large datasets than algorithmic or automatic strategies since they
require less computation. More study is needed for embedding techniques like EDLT and GEL.

Cerda et al. [4] discuss categorical data similarity encoding as well as one hot encoding for uncurated data. The
dirty data is an issue, and datasets with high cardinality repeat themselves. The authors demonstrate that the similarity
encoding technique enhances prediction using seven genuine datasets. Finally, the authors give the prediction score
results of similarity encoding with a 3-gram distance. Wang et al. [6] discuss, the data pre-processing methods used
in data mining. The data transformation procedure is used to identify the strategy employed for categorical data en-
coding. The authors find that the information probability of category symbols significantly boosts binary classification
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accuracy compared to a frequency-based encoding technique.
In [7], Zdravevski et al. use the weight of evidence as an encoding approach, to solve the challenge of translating

nominal data to numerical features. The key contribution is applying the WoE technique for multiclass classification
problems. To do so, the technique must overcome the requirements of the basic description of the WoE parameters,
such as positive and negative classes. The dataset must have just two classifications according to the weight of
the evidence parameter. This is possible if the multiclass classification problem can be represented as a set of binary
classification problems. A similar strategy, known as one-vs-all or one-vs-the-rest, has been used to generalize several
ML algorithms that only accept two classes natively (e.g., support vector machines). The WoE transformation can be
generalized for multiclass situations using the one-vs-all technique. The performance of the proposed model was
compared between original data and transformed, proving better results with a neural network algorithm.

Cerda et al. aim to find amethod for representing high-cardinality string categorical variables using a low-dimensional
approach [8]. The objective is to make this approach scalable for a large number of categories, understandable for
end users, and suitable for statistical analysis. The researchers present two techniques for encoding strings: one in-
volves Gamma-Poisson matrix factorization based on substring counts, while the other employs a min-hash encoder
to quickly estimate string similarity. The min-hash technique transforms set relationships into simpler inequality re-
lationships. Both of these methods are designed to be scalable and adaptable to streaming data. The application of
these strategies enhances supervised learning involving high-cardinality categorical variables, as indicated by assess-
ments on both actual and simulated datasets. In conclusion, the study suggests that if scalability is a crucial factor,
the min-hash encoder is preferable since it doesn’t necessitate any data fitting. On the other hand, if interpretabil-
ity is a primary concern, the Gamma-Poisson factorization is recommended, as it can be interpreted as a form of
one-hot encoding applied to inferred categories, with meaningful feature names. Notably, neither of these models
requires elaborate feature engineering or extensive data cleaning, and automated machine learning techniques can
be employed for handling string inputs.

According to Lopez-Arevalo et al. [9] information preservation was validated when changing categorical variables
to their numerical representation of vector space. The methods utilized were one-hot encoding and feature hashing,
followed by data discretization for numerical values. The reduced overabundance of dummy features or spurious data,
improved memory efficiency. The Land Change Modeler handbook by another author Eastman, J.R. [17] advises that
categorical variables can be encoded using the idea of Population Evidence Likelihood (PEL). One of the K categories
will be denoted by the letter k. The equation 1, explains the intersection of category k with the land change between
two-time points, divided by the amount of the land change, which is the PEL for category k. The category with the
most significant change magnitude is given the highest value by population evidence likelihood.

Likelihood for category k in the population =
Size of change on category k

Size of change (1)

On the other hand, theGeomod land-change simulationmodel uses population empirical probability (PEP), also known
as change intensity, to represent categorical variables. The equation 2, explains the intersection of category k with the
land change between two time periods, divided by the size of category k yields the PEP for category k. The category
with the most change intensity receives the highest PEP encoding value.

Population Empirical Probability for category k =
Size of change on category k

Size of category k
(2)

A study by Swati Sachan et al. [22] takes a detailed look at the problemof categorical attributes confusing decision-
making. In comparison to numerical or continuous attributes, categorical attributes are essentially non-numerical. The
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inclusion of partial and ambiguous values in categorical qualities, as well as their fundamental non-numerical nature,
adds to the ambiguity in decision-making. Three causes of uncertainty in categorical attributes have been identified
in this work. The suggested technique in this study addresses informational uncertainty, unforeseen uncertainty in
the decision task environment, and uncertainty in categorical attributes due to a lack of pre-modelling explainability.
Several strategies for mapping from categorical to numerical space such as arithmetic operations and relevant distance
measures have been discussed. However, these strategies are ineffective when it comes to studying the predictive
value of categorical variables. Another issue to consider is that if the categorical variables have a more significant
number of categories and the feature space expands, resulting in a high dimensional feature space and a substantial
loss in classification accuracy. As a result of these issues, computing costs have grown, and memory efficiency has
decreased.

While doing the transformation from categorical to numerical data which helpsML/DL algorithms understand the
given data well, most of the existing works end up with the following drawbacks: (i) The predictive nature of categor-
ical features is not learned, (ii) Monotonic relationship is lagging between the independent variables and dependent
variables during the encoding process, and (iii) The increase in the number of columns, increases the need for memory
to store the resulting columns. The issues mentioned above will be addressed appropriately in the proposed work. To
accomplish the same, the proposed work has the following two-fold contributions:

• The proposed WoEEE method ensures optimal extraction of the predictive essence inherent in categorical fea-
tures. Likewise, it aptly grasps this essence to mitigate the risk of subpar performance by ML/DL models, partic-
ularly in relation to the computational expenses associated with time and space.

• The introducedWoEEE approach generates a fixed-length vector representation for every categorical data/feature.
This imposition curbs the proliferation of feature columns throughout the encoding procedure and concurrently
establishes a monotonic connection between the encoded categorical variables and the response variable. This
alignment consistently contributes to the enhancement of classification accuracy.

3 | THE PROPOSED METHODOLOGY
To gain a precise understanding of the importance of encoding categorical data, this section discusses the various
aspects of the proposed method.

3.1 | Types of Categorical features
It is recognized that for each machine learning algorithm, the training features need to be represented in a numerical
vector space. The inherent significance of the data becomes discernible only through numerical features. In this con-
text, various types of features are categorized as nominal and ordinal. Nominal features are characterized by being
grouped into distinct categories without any specific order among them. Nominal features lack numerical values and
are sometimes referred to as "labeled" or "named" data. Examples of nominal data include personal names, hair colors,
and genders. Moving on, ordinal features are data types that exhibit a predefined order or scale, but there isn’t a uni-
versally standardized scale to quantify the variations between variables at each stage of the sequence. While often
classified as categorical data, ordinal data demonstrates attributes of both categorical and numerical data, placing
it in an intermediate realm. Its classification as categorical data primarily stems from its possession of more cate-
gorical characteristics. Instances of ordinal data encompass Likert scales, interval scales, bug severity ratings, and
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customer satisfaction survey responses. While the techniques for collecting and analyzing data may differ across
cases, these examples consistently fall under the category of ordinal data. The key attributes of categorical data en-
compass Categories, Qualitativeness, Analytical Properties, Graphical Analysis, Interval Scaling, Numeric Values, and
Inherent Nature. These attributes are outlined in Table 1 to describe the characteristics of categorical data.
TABLE 1 Characteristics of categorical data
Characteristics Description
Categorical Categorical data is classified into twomain types: nominal data and ordinal data. Nominal data,

often recognized as named data, is a type of data employed for labeling items with distinct
names. On the other hand, ordinal data exhibits a specific scale or order.

Qualitativeness Categorical data falls under the category of qualitative data. In contrast to using numerical
values, it employs a series of words or strings to depict an event or attribute.

Analysis In the case of ordinal categorical data, both the median and mode can serve as measures of
central tendency. While the mode is computable and interpretable for nominal categorical
data, the mean and median might not always be calculable. Ordinal data is often subject to
evaluation using univariate and bivariate statistics, regression analysis, assessments of linear
trends, and the application of classification algorithms.

Graphical Analysis Data visualization can be achieved through the utilization of either a bar chart or a pie chart. A
bar chart is frequently employed to analyze frequencies, while a pie chart is commonly utilized
to illustrate proportions or percentages.

Interval Scale When dealing with ordinal data, which possesses a predetermined order, the scale may lack a
clearly defined interval. This distinction doesn’t apply to nominal data.

Numeric values Despite the qualitative nature of categorical data, there are instances where numerical values
can be present. However, these values lack quantitative attributes, and it’s not possible to
perform arithmetic operations on them.

Nature Categorical data can be categorized as either binary or non-binary, depending on its inherent
characteristics. A binary question entails two possible responses: "Yes" or "No." However,
introducing an additional option like "Maybe" transforms it into a non-binary scenario.

3.2 | Weight of Evidence with Entity Embedding
The Weight of Evidence (WoE) is used to assess a grouping strategy’s "strength" in identifying the good from the bad
[26]. The primary goal of this strategy is to establish a predictive model for estimating the target variable to know true
and false class values, which provides predictive power. The WoE is a metric for determining the amount of evidence
that supports or disproves a concept. WoE is calculated using the equation 3 given below:

WoE =

[
l n

(
Di st r i but i onof P osi t iv eC l ass

Di st r i but i onof N eg at iv eC l ass

)]
∗ 100 (3)

When the ratio of P(Positive Class) to P(Negative Class) equals 1, the Weight of Evidence (WoE) becomes 0,
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suggesting a situation where the group’s outcome is random. If P(Negative Class) is greater than P(Positive Class), the
odds ratio is one, resulting in a negative WoE. Conversely, if P(Positive Class) outweighs P(Negative Class) within a
group, the odds ratio remains one, and the WoE becomes positive. In the Probabilistic approach, the WoE method is
a data-driven strategy that draws upon the Bayesian probability model, offering distinct advantages over alternative
statistical techniques. Essential parameters for implementing WoE include positive weight (W+) and negative weight
(W-). This method assesses the weight associated with each conditioning factor (B) based on the presence or absence
of a class (A) within the group. This is outlined in equations 4 and 5, where P and ln represent probability and natural
logarithm, respectively. B and ¬B signify the presence and absence of the conditioning factor, respectively.

W +
i = l n

P (B |A)
P (B |A) (4)

W −
i = l n

P (¬B |A)
P (¬B |A) (5)

Also, A and ¬A represent the absence and presence of a group. A positive weight (W+) indicates the presence
of the conditioning factor in the target class, and its positive class distribution indicates a positive link between the
conditioning factor’s presence and the occurrence of the class variable. A negative weight (W-) reflects the level of
negative association and implies the lack of the conditioning factor. The WoE value only tells how confident the
feature will help to predict an event’s probability correctly. Many studies have used the WoE method for credit card
fraud detection and also in the field of flood susceptibility mapping [26]. However, this method is relatively new in
categorical data encoding in the healthcare domain.

WoE is better than one-hot encoding as one-hot encoding will have to create h-1 new features to accommodate
one categorical feature with h values. This implies that the underlying model has no need to approximate h-1 coef-
ficients rather than approximating one single coefficient in the case of the Logistic Regression algorithms, where bi

stands for coefficients of the features to be determined. However, in WoE variable transformation, the weights were
normalized to 0 and 1. Conditioning factors were reclassified based on these normalized values and consequently fed
into the Entity Embedding (EE) encoding model. The normalization should be done because the weights of condition-
ing factors vary in dimensions and are not appropriate for direct input for the ML classifier model.

Embedding is the mapping of a categorical variable [1] to an n-dimensional vector in formal terms. These benefits
in two ways: to begin, it limits the number of columns required for each category and second, by its very nature,
embedding naturally groups comparable variables together. Assume to use the weekday as a feature in our neural
network. Start the tensor by creating a 7x4 matrix that maps a day of the week to each row. After that, we replace
a specific weekday with its associated vector. Now, this matrix can be used to find non-linear correlations between
variables. Embedding turns a day of the week into a four-dimensional numerical space instead of one-hot encoding,
which can only be a single value and it has semantic value after training the model. Saturday and Sunday, for example,
maybe more closely related than Saturday andWednesday. It is essential to put corresponding values of a categorical
variable closer together in the embedding spacewith entity embedding [1, 2, 6]. Entity embedding is closely connected
to the embedding of a finite metric space problem in topology and uses a real number to define the similarity of values.

d (xp
i
, x

q
i
) = ⟨|f (xi p , x̄i ) − f (xq

i
, x̄i ) |⟩xi (6)



Anitha M et al. 9

d (xp
i
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q
i
) = 0 ↔ x
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i
= x

q
i

(7)

d (xp
i
, x

q
i
) = di (xqi , x

p
i
) (8)

d (xp
i
, x ri ) ≤ d (xp

i
, x

q
i
) + d (xq

i
, x ri ) (9)

Moving forward, in the equation for function approximation (equation 6), a finitemetric space (Ci , di ) is established
for each categorical variable xi , wherein Ci signifies the set encompassing all possible values of xi . The distance
function denoted as di quantifies the dissimilarity between any two value sets (xpi , xqi ) of xi , with di representing the
metric applied within Ci . The parameter di essentially measures the similarity between the two value sets (xpi , xqi ).
There are various approaches to define this parameter, with one particularly straightforward and intuitive method [1].
Equations 7 and 8 may not be inherently valid in real-world scenarios if distinct values consistently yield the same
output. However, this implies redundancy in one of the values, and a resolution can be reached by consolidating
these values into one, effectively redefining the categorical variable to formulate equation 9. The objective of entity
embedding involves the transformation of discrete values into amulti-dimensional space, where values yielding similar
function outputs are positioned in proximity. Achieving an optimal solution for representing categorical variables
would entail utilizing fewer dimensions than the count of distinct categories, while also ensuring that akin categories
are situated closer to each other.

Simi l ar i t y (A,B ) = cos (θ ) = A · B
∥A∥ ∥B ∥ =

∑n
i=1 AiBi√∑n

i=1 A
2
i

√∑n
i=1 B

2
i

(10)

In equation 10, the cosine of two non-zero vectors can be derived by using the Euclidean dot product formula:
Given two vectors of attributes, A and B , the cosine similarity, cos (θ ) , is represented using a dot product and magni-
tude as where Ai and Bi are components of vector A and B , respectively. The resulting similarity ranges from 0 to 1,
and if the cosine value of two vectors is close to 1, then it indicates that they are almost similar. A zero value indicates
that they are dissimilar or not correlated.

3.3 | Preliminary processing
In this section, we will be discussing the proposedWoEEE encoding approach for categorical data which incorporates
both weight of evidence encoding and entity embedding methods. The encoding is done in three stages that involve
cleaning and pre-processing the data, handling class imbalance, and applying the WoEEE encoding scheme. To better
understand the proposed approach, an architecture diagram is presented in Figure 1 and a step-by-step explanation
of the encoding approach is shown. The benchmark datasets are taken from the UCI Machine Learning Repository
and INDEPTH Data Repository for experimentation is summarized in Table 2:
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F IGURE 1 The architecture diagram of the proposed WoEEE encoding scheme

3.3.1 | Dataset introduction
The proposed architecture initiates with accepting the rawmedical data as input. The input is provided with necessary
notation. Consider D is a numerical and categorical type dataset containing N number of d-tuples of the form (fi 1, fi 2,
fi 3......, fi d ) representing feature vector that contains numerical and categorical values. These vectors can be arranged
in a N x d matrix of the form:

D =



f11 f12 ... f1d

f21 f22 ... f2d

. . ... .

. . ... .

. . ... .

fN 1 fN 2 ... fNd


Let D [,j] be the jth column of D containing the values of the jth feature(f) (with j=1,2,3,..d). Now, we can assume

numerical features in X are valued in R, and categorical features are valued as non-empty strings that satisfy the regular
expressions A-Z, a-z, 0-9 +. With the above mentioned assumption, for each D [,j] containing categorical values, map
each unique instance or observation to an integer value. At this instant, D will contain numerical values representing
both categorical and numerical features.
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TABLE 2 Dataset description
Dataset Dataset Sources # Features # Numerical # Categorical # Instances # Classes
Breast Cancer UCI machine Learning Repository 10 1 9 201 2
Hospital Readmission UCI machine Learning Repository 50 15 35 101766 2
Vadu INDEPTH Data Repository 47 20 27 18426 2
Covid-19 Central Disease Control(CDC) 10 0 9 20000 2
Stroke UCI machine Learning Repository 12 7 5 5110 2
HeartStatlog UCI machine Learning Repository 13 7 6 270 2

3.3.2 | Pre-processing for data cleaning
In the context of our experimentation, we are working with six distinct datasets, all of which contain instances of NaN
(Not a Number) values. These NaN instances are denoted by the presence of ’0’ or ’999’ entries within the dataset.
These missing values can potentially hinder the seamless operation of ML/DL algorithms, which require complete
and coherent data inputs. To address this issue, we’ve outlined two primary strategies: the first involves eliminating
NaN values through either dropping them from the dataset, while the second entails imputing these NaN values
with appropriate substitutes, ensuring that the subsequent computations remain meaningful and accurate for ML/DL
algorithms.

The decision of whether to drop or impute NaN values is contingent on the extent of their prevalence within
each dataset. Specifically, we calculate the percentage of missing values in each dataset. If this percentage falls
below the 15% threshold, we opt for the removal of NaN values from the dataset. This is because a relatively low
percentage of missing data is unlikely to significantly skew the overall dataset’s integrity.Conversely, if the proportion
of missing values exceeds the 15% threshold, a more nuanced approach is required. In such cases, discarding the NaN
values outright could lead to a loss of valuable information. Instead, we turn to traditional imputation techniques to
intelligently fill in these gaps. These techniques include:

• Forward Fill (or Next Value Imputation): This method involves substituting the NaN value with the next avail-
able non-NaN value in the sequence. It is particularly suitable when the data follows a certain chronological or
sequential order.

• Backward Fill (or Last Value Imputation): Similar to forward fill, backward fill replaces the NaN value with the last
non-NaN value in the sequence. It’s useful for time-series or ordered data.

• Mean Imputation: NaN values are replaced with the mean of the non-NaN values within the same feature. This
method can help maintain the overall statistical properties of the dataset.

• Mode Imputation: In this technique, the NaN values are substituted with the mode, i.e., the most frequently
occurring value, within the same feature. Mode imputation is suitable for categorical data.

These imputation techniques ensure that the NaN values are substituted with relevant and contextually appropri-
ate values, maintaining the integrity of the dataset. By adopting a thoughtful approach based on the missing values’
extent and considering established imputation methods, we aim to prepare the datasets for meaningful analysis and
effective employment of ML/DL algorithms.
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3.3.3 | Handling Class imbalance (SMOTE)
Once data cleaning has been successfully carried out through appropriate pre-processing, the subsequent task in-
volves addressing class imbalance within each dataset. When dealing with imbalanced datasets, a common challenge
arises where the majority of machine learning techniques tend to overlook the minority class(es), resulting in subpar
performance, even though the performance of the minority class often holds significant importance. To combat this
issue, oversampling the minority class presents itself as a potential solution. The Synthetic Minority Oversampling
Technique (SMOTE) is a method that can be employed to effectively tackle class imbalance. While duplicating in-
stances within the minority class is a straightforward approach, these duplicated examples might not provide novel
insights to the model. Instead, the creation of new instances by combining existing ones proves more beneficial.

The functioning of SMOTE involves the selection of instances within the feature space that are in close proximity.
A line is drawn in the feature space between these instances, and a new sample is generated along that line. More
precisely, the process begins with the random selection of an instance from the minority class. Subsequently, the k
closest neighbors are identified (typically with k=5). Among these neighbors, one is randomly chosen, and a synthetic
example is crafted at a randomly determined position in the feature space between the two selected samples. This
methodology can generate numerous synthetic instances as required for the minority class. As mentioned in [25], an
additional technique known as random under sampling can be employed to decrease the number of examples within
the majority class.

3.3.4 | Proposed WoEEE Encoding Scheme
After finishing the preliminary processing, in the next phase, Weight of Evidence (WoE) for every categorical data
of all six datasets are calculated. WoE is a technique used to encode categorical variables for classification. The
WoE measures the predictive power of an independent variable in relation to the dependent variable. It provides
understanding relationships between important independent variables and the dependent variable. When usingWoE
encoding method for categorical and numerical data, there are some rules to be followed. For categorical data, gen-
erally, each category/value is a bin. Smaller categories are grouped together. Numerical data are split into categories.
Binning or grouping values of both categorical and numerical data is done with subsequent rules: To begin, each bin
should contain at least 5% of the observations. Second, for both positive/true class (1) and negative/false class (0),
each bin must be non-zero. Third, WoE should be monotonic, that is, it should either increase or decrease with the
groupings.

WoE is calculated by taking the natural logarithm (log to base e) of division of percentage of false class events
and percentage of true class events. The depicted mathematical equation of WoE is already shown in equation 3.
During the calculation of WoE, to ensure each bin has non-zero values, the values of each categorical data (x) is
exposed along with their counts C(x), to know if any zero values are present. If zero values exist, those values must
be cleared by removing that value before proceeding with the calculation. Because it never gives any information
about the categorical data, when it is related with target or class variable. If the WoE value of a category is positive,
then it means that the distributions of true class events are greater than the distribution of false class events. If it is
a negative WoE value, then the distribution of true class events are lesser than the distribution of false class events.
Ultimately, the derived WoE values describe, how certain independent variables influence the dependent variables.

Then, the obtained positive and negative WoE values of each categorical data calculated earlier is fed as input
to Entity Embedding encoding method. It is a vector representation of an entity or categorical data. The Entity
Embedding is used in the place of one-hot encoding, since it can map related values closer together in embedding
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space, revealing the inherent continuity of the data. On the other hand, one-hot encoding ignores informative relations
between feature values. To start with the process of embedding categorical data, the output of weight of evidence is
considered as object type and the value counts of each categorical variable are listed. Now the training data consists
of both categorical and numerical data.

Then the choice of embedding dimension is optional, essentially, it is a hyperparameter that one needs to choose
beforehand and investigate. One rule of thumb is to choose half of the cardinality (n) of the categorical feature if n<=
50 in length. That is to find the embedding size of any feature’s category, the number of unique categories should be
divided by two and it is taken as the embedding size of every category. The training data should be given to different
ML algorithms such as DT, RF, LR, and NN. Every dataset has gone through a comparison with various benchmark
encoding methods such as Label encoding, One-hot encoding, Binary encoding, and the proposed encoding approach
(WoEEE).Algorithm 1: Feature Engineering based Categorical encoding –Weight of Evidence with Entity Embedding Encoding
scheme
1. FOR every categorical feature (CF) and numerical feature (NF)present in DS DO

• Cleaned_data = PRE-PROCESSING(DS)
END FOR

2. IF there exists class imbalance in the Cleaned_data THEN
• balanced_data = SMOTE(random_state = 20)
END IF

3. FOR every categorical independent feature i in balanced_data DO
• Weight of Evidence balanced_data
• A = Calculate ratio of proportion for dependent variable False class (Y=0) of independent variables(X)
• B = Calculate ratio of proportion for dependent variable True class (Y=1) of independent variables (X)
• WoEx=i = Ln (A/B )

WoEcat egor i es=WoEx=i
END FOR

4. FOR i inWoEcat egor i es DO
• Ent i t y_Embedd i ngsi ze <—- n_cat + 1(t ot al number of cat egor i es + 1)1t on_cat
• M<—- number of instances or records of dataset
• n_cat_lists M, Entity_Embedding_size
• n_other_lists<—-other numeric columns
• output_vector_representations_woe_categories n = i
• encoded/transformed data <—— output_vector_representations_woe_categories
END FOR

5. FOR i in encoded/transformed data DO
• encoded_data_train, encoded_data_test = Split(encoded_data) // 80:20 split
• Classifier model construction encoded_data_train
• Trained constructed Modelencoded_data_test
• Predicted class labels<—- Trained constructed Modelencoded_data_test
END FOR
The complete processing of the proposed work is shown and described through the Algorithm 1. This algorithm

takes training data (encoded data) and test data (encoded data) with two class labels as input. The output obtained
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is predicted class labels (y1, y2, ..) for test data(encoded data). In step 1, data preprocessing for every dataset is per-
formed and in step 2, imbalanced data is also handled using the method SMOTE. In step 3, the Weight of Evidence
for every categorical data is calculated. In step 4, the output of the previous step is given as input to the Entity Em-
bedding method and framing the embedding layer with the embedding size and unique values of categorical variables.
Finally, in step 5, the predictions are made by all classifiers, and performance is evaluated using suitable performance
evaluation metrics.

3.4 | Experimental Results and Discussions
A concise and comprehensive description of each ML model, including its purpose, key features along with model
training, evaluation, interpretation, and reproducibility are discussed in this section. The experiment was designed
to evaluate the performance of the proposed WoEEE encoding approach with ML models on publicly available six
medical datasets. The datasets consist of minimum 286 samples and maximum 101763 samples, with minimum 9
features and 47 maximum features. Table 3 presents a comprehensive overview of the datasets analyzed in this
research, including relevant information such as the number of observations, categorical and numerical features with
cardinality of each feature. The datasets are pre-processed to removemissing values, unwanted features and split into
training (80%) and testing (20%) sets. The categorical variables in the datasets are encoded using one-hot encoding,
label encoding, binary encoding, and the proposed WoEEE encoding approach.

The encoded datawas then used to train various predictivemodels, includingDT, LR, RF andNN. The performance
of each model was evaluated using accuracy. The models’ performance is evaluated using anova analysis. The results
are compared with several state-of-the-art models to demonstrate the effectiveness of the proposed WoEE. The
model is also subjected to a Wilcoxin Test to study the impact of encoding approach on its performance.
TABLE 3 Description of the datasets used

Dataset # Numerical
features

# categorical
features #cardinality #Classes

Breast Cancer 1 9 38 2
Hospital Readmission 15 35 117 2
Vadu 20 27 88 2
Covid-19 0 9 23 2
Stroke 7 7 10 2
Heartstatlog 1 9 19 2

3.4.1 | Building ML models
Decision Trees are popular algorithms used in machine learning for both classification and regression tasks. When
working with categorical data, it is important to encode the variables into numerical values before building the model.
Hyper-parameters play a crucial role in determining the performance of a Decision Tree model, especially when work-
ing with categorical data. Some of the hyperparameters for categorical data encoding in Decision Trees include cri-
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terion, splitter, max_depth, min_samples_split, and min_samples_leaf. The criterion hyperparameter determines the
function used to measure the quality of a split, such as "Gini" or "Information Gain". The splitter hyper-parameter con-
trols the strategy used to choose the split at each node, such as "best" or "random." The max_depth hyperparameter
sets the maximum allowed depth of the tree, while the min_samples_split and min_samples_leaf hyper-parameters
set the minimum number of samples required to split a node and the minimum number of samples required to be at
a leaf node, respectively. By tuning these hyperparameters, we can control the complexity and size of the Decision
Tree model, avoiding overfitting and ensuring a good fit for the data. The code to implement Decision Tree model in
this experiments are shown here.

model = DecisionTreeClassifier()

Random Forest is a popular machine learning algorithm that can be used for both regression and classification
problems. It usesmultiple decision trees tomake predictions and combines the them to produce a final prediction. The
hyper-parameters to consider when using a Random Forest Classifier for categorical data encoding are total number
of estimators 20, with maximum depth of 28 and the criterion used is Gini index and minimum sample split of 15. The
code to implement Random Forest classifier model in the experiments are shown here.

model = RandomForestClassifier(n_estimators, random_state)

Logistic Regression Logistic Regression is a popular machine learning algorithm used for binary classification
(when the target variable has only two possible outcomes). When dealing with categorical data encoding, it is com-
mon to encode the categorical variables into numerical values using techniques such as one-hot encoding, ordinal
encoding, or target encoding. The logistic regression model uses a linear equation to model the relationship between
the independent variables (including the encoded categorical variables) and the dependent binary variable. The model
outputs a probability of belonging to each class, and a threshold is applied to make the final binary classification. The
coefficients of the independent variables are learned during the training process using maximum likelihood estimation.
Logistic regression is a useful tool for encoding categorical data in classification tasks, especially when the relationship
between the variables is relatively simple and linear. The code to implement Logistic regression classifier is shown
here.

model = LogisticRegression (penalty=’l2’, solver=’lbfgs’, max_iter=1000,

class_weight=’balanced’)

Neural Network to model the relationship between the one-hot encoded categorical data, Label encoded data,
binary encoded data, proposed WoEEE encoded data and the target variable, and we used a fully-connected neural
network with three hidden layers. Each hidden layer consisted of 128 neurons and used the ReLU activation function.
The output layer used a sigmoid activation function, as the target variable is binary in nature. To improve the results,
dropout is used in the layers (0.3 and 0.2). The model is trained using binary cross-entropy as the loss function and
the Adam optimization algorithm. The training process is performed using mini-batch gradient descent, with a batch
size of 128 and 50 epochs.

Define the neural network model

model = Sequential()

model.add(Dense(128, activation=’relu’, input_shape=(x_train.shape[1],)))

model.add(Dense(128, activation=’relu’))

model.add(Dense(128, activation=’relu’))

model.add(Dense(1, activation=’sigmoid’))

Compile the model

model.compile(loss=’binary_crossentropy’, optimizer=’adam’, metrics=[’accuracy’])

The experiments were carried out to prove that the encoded data using our proposed encoding approach which
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guarantees the predictive nature of categorical features and to reduce the increase in the number of features during
encoding processwith improvement in classification accuracy. For experimentation, the Algorithm1was implemented
in Python version 3.8 and was executed on a computer with Intel R Core TM i7 processor, and 16 GB of RAM.

3.5 | Evaluation Metrics
Binary classification is a common task inML and involves predicting one of two possible outcomes. In order to evaluate
the performance of our binary classification model, we used several commonly used evaluation metrics. To begin
with, we calculated the accuracy, which measures the proportion of correct predictions made by the model. However,
accuracy alone can be misleading, especially when the classes are imbalanced. Therefore, we also computed precision
and recall, which respectively measure the proportion of correct positive predictions and the proportion of actual
positive instances that were correctly identified by the model. Precision is important when the cost of false positives
is high, while recall is important when the cost of false negatives is high. We also calculated the F1-score, which is
the harmonic mean of precision and recall and is useful when both measures are important for the problem at hand.

In addition, we computed the area under the receiver operating characteristic (ROC) curve, which is a popular
metric that considers the tradeoff between true positive rate and false positive rate for different classification thresh-
olds. The ROC curve plots the true positive rate (sensitivity) against the false positive rate (1 - specificity) for different
threshold values, and the area under the curve (AUC) measures the overall performance of the model regardless of
the threshold value. AUC values range from 0.5 (random guessing) to 1.0 (perfect classification). Overall, we found
that our model performed well, achieving high accuracy and F1-score, as well as a high AUC.

3.6 | Proposed WoEEE encoding method’s Classification performance with the baselinemodels
This section presents the quantitative experimental results of the proposed work, wherein the role of the encoding
procedure in classification tasks using various ML algorithms has been verified. The main objective of the WoEEE en-
coding approach is to improve the performance exhibited by the classification algorithms by extracting the predictive
nature of categorical features from the mentioned datasets. This extraction of predictive nature is quantified in terms
of the accuracy of classification, and it is argued that this accuracy is a consequence of the encoding’s ability to retain
the predictive nature of categorical data to discriminate the instances belonging to different classes. It is observed
that proposed WoEEE encoding method is as good as one of the most popular encoding approaches in terms of pre-
dictive nature, but remarkably superior in terms of memory efficiency. This is achieved by providing a fixed vector
representation for categorical data, which restricts the increase in feature columns. The significant observation to be
noted is that, the proposedWoEEE encoding approach provides the best results in classification accuracy in all ML/DL
algorithms, when compared with other benchmark encoding techniques.

Additionally, in connectionwith the above observation, the percentage improvement of the classification accuracy
is a critical measure of the performance of a classifier. In this study, the effectiveness of a ML algorithm on six distinct
datasets: Breast Cancer, Hospital readmission, Covid, Vadu, Stroke and HeartStatlog are evaluated. The (baseline)
benchmark encoding method’s accuracies of the classifiers (DT, RF, LR and NN) are determined by running it on each
dataset before any modifications are made. After training and testing the classifiers on each dataset, the accuracy
was recorded and compared to the (baseline) benchmark encoding method’s accuracy to determine the percentage
improvement. In Table 4, the classification accuracy results between label, one-hot, binary and WoEEE encoding
method with the percentage improvement of classification accuracies are shown. The table also includes the average
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accuracy of state-of-the-art models and the proposed WoEEE method’s accuracy.
Overall, the proposed WoEEE encoding method outperformed the other benchmark encoding methods in all

datasets, resulting in significant improvements in accuracy for all classifiers. For example, in the Breast Cancer dataset,
the Decision Tree classifier achieved an accuracy of 73%withWoEEE encoding, which is an 11.33% improvement over
the benchmark Label Encoding method. Similarly, in the Hospital Readmission dataset, the Neural Network classifier
achieved an accuracy of 91% with WoEEE encoding, which is an 18.33% improvement over the benchmark Binary
Encoding method.

The results also suggest that different encoding methods may perform differently for different datasets and clas-
sifiers. For example, in the Covid dataset, the One Hot Encoding method performed better than the other methods
for the Logistic Regression classifier, but worse than the other methods for the Neural Network classifier. In summary,
the proposed WoEEE encoding method shows promising results in improving the accuracy of classifiers for various
datasets. The results also highlight the importance of carefully selecting the encoding method for a given dataset and
classifier. The graphical representation of classification accuracy is shown in Figure 2.a, 2.b, 2.c, 2.d, 2.e and 2.f.

Subsequently, the prediction results of four classifiers namely Decision Tree (DT), Random Forest (RF), Logistic
Regression (LR), and Neural Network (NN), along with the performance of the classifiers are evaluated using several
evaluation metrics, including Accuracy, Precision, Recall, F1-score, and ROC are presented in Tables 5, 6, 7, and 8
for six datasets (BC, HR, COV, VADU, STR, and HS). The datasets have been encoded using proposed WoEEE en-
coding method and three benchmark encoding methods. These tables provide a comprehensive comparison of the
performance of the classifiers across different encoding methods and datasets.

Based on the comparison of the above Tables 5, 6, 7, and 8, it can be observed that the proposedWoEEE encoding
method generally improves the performance of the classification models for all datasets compared to the benchmark
encoding methods. Specifically, for the BC dataset, the proposed encoding method leads to improvements in all
performance metrics for all classification models. The DT, RF, and NN models have the most significant improvement
in accuracy, precision, recall, and F1-score, while LR has the most significant improvement in ROC-AUC. For the HR
dataset, the proposed encoding method leads to improvements in most performance metrics for all classification
models. The DT, RF, and LR models have the most significant improvement in accuracy, precision, recall, and F1-score,
while NN has the most significant improvement in ROC-AUC.

For the COV dataset, the proposed encoding method leads to improvements in most performance metrics for
all classification models. The DT and RF models have the most significant improvement in accuracy, precision, recall,
and F1-score, while LR and NN have the most significant improvement in ROC-AUC. For the VADU dataset, the
proposed encoding method leads to improvements in most performance metrics for all classification models. The
DT, RF, and LR models have the most significant improvement in accuracy, precision, recall, and F1-score, while NN
has the most significant improvement in ROC-AUC. For the STR dataset, the proposed encoding method leads to
improvements in most performance metrics for all classification models. The DT, RF, and LR models have the most
significant improvement in accuracy, precision, recall, and F1-score, while NN has the most significant improvement
in ROC-AUC.

For the HS dataset, the proposed encoding method leads to improvements in most performance metrics for all
classification models. The DT and RF models have the most significant improvement in accuracy, precision, recall, and
F1-score, while LR and NN have the most significant improvement in ROC-AUC. Overall, the proposedWoEEE encod-
ing method appears to be a promising approach to encoding categorical variables for classification problems, leading
to improved performance for various classification models and datasets. Additionally, the classification algorithms of
encoding methods for six datasets are explored in the Figure 2.a, 2.b, 2.c, 2.d, 2.e, and 2.f.
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(a) (b)

(c) (d)

(e) (f)
F IGURE 2 (a) Exploring the performance of classification algorithms of Encoding Methods for Breast Cancer
dataset. (b) Investigating the efficacy of classification algorithms across various encoding methodologies for a
Hospital Readmission Dataset. (c) Investigating the classification algorithm performance across diverse encoding
methodologies applied to a Covid Dataset. (d) Analyzing the efficacy of classification algorithms in the context of
various encoding methods for the Vadu Dataset. (e) Investigating the classification algorithm performance with
respect to different encoding techniques applied to the Stroke Dataset. (f) Undertaking an empirical analysis of
classification algorithm effectiveness in relation to diverse encoding methodologies applied to the Stroke Dataset.



Anitha M et al. 19

TABLE 4 Evaluation of classification performance across multiple datasets, quantifying the percentage
improvement achieved

Dataset Encoding methods Decision Tree Random Forest Logistic Regression Neural Network
Label Encoding 0.7 0.74 0.71 0.76
One hot Encoding 0.56 0.72 0.62 0.53
Binary Encoding 0.59 0.62 0.68 0.57
Average of state-of-art models 0.62 0.69 0.67 0.62
WoEEE proposed method 0.73 0.76 0.77 0.79

Breast Cancer

% of improvement 11.33 6.67 10.00 16.71
Label Encoding 0.76 0.77 0.64 0.68
One hot Encoding 0.81 0.82 0.84 0.86
Binary Encoding 0.78 0.79 0.64 0.89
Average of state-of-art models 0.78 0.79 0.71 0.81
WoEEE proposed method 0.84 0.87 0.89 0.91

Hospital Readmission

% of improvement 5.67 7.67 18.33 9.80
Label Encoding 0.89 0.81 0.81 0.83
One hot Encoding 0.85 0.84 0.89 0.72
Binary Encoding 0.86 0.83 0.86 0.85
Average of state-of-art models 0.87 0.83 0.85 0.80
WoEEE proposed method 0.91 0.86 0.9 0.93

Covid

% of improvement 4.33 3.33 4.67 13.00
Label Encoding 0.79 0.89 0.9 0.91
One hot Encoding 0.87 0.82 0.91 0.89
Binary Encoding 0.84 0.81 0.86 0.94
Average of state-of-art models 0.83 0.84 0.89 0.91
WoEEE proposed method 0.92 0.96 0.94 0.96

Vadu

% of improvement 8.67 12.00 5.00 4.67
Label Encoding 0.85 0.82 0.8 0.85
One hot Encoding 0.79 0.8 0.82 0.91
Binary Encoding 0.84 0.79 0.82 0.84
Average of state-of-art models 0.83 0.80 0.8 0.87
WoEEE proposed method 0.93 0.84 0.9 0.94

Stroke

% of improvement 10.33 3.67 10 7.33
Label Encoding 0.8 0.73 0.75 0.69
One hot Encoding 0.69 0.76 0.68 0.65
Binary Encoding 0.71 0.8 0.73 0.72
Average of state-of-art models 0.73 0.76 0.72 0.69
WoEEE proposed method 0.82 0.78 0.82 0.76

Heart Statlog

% of improvement 8.7 1.67 10.00 6.99
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TABLE 5 Label Encoding classification performance results
DT RF LR NNDataset/

Label Encoding Acc Prec Rec F1-sc Roc Acc Prec Rec F1-sc Roc Acc Prec Rec F1-sc Roc Acc Prec Rec F1-sc Roc
BC 70.01 46.15 42.86 44.44 65.15 74.36 54.55 42.86 47.97 70.12 71.18 60.04 42.85 50.43 71.42 76.16 63.64 50.57 56.23 73.34
HR 76.16 82.32 49.94 62.16 83.45 77.32 82.41 50.70 62.77 83.25 64.75 71.15 62.31 58.49 56.58 68.78 53.16 23.31 44.7 64.52
COV 89.13 75.01 82.90 57.14 78.70 81.31 80.11 43.90 47.30 78.86 87.26 79.91 57.52 54.12 70.39 83.57 49.1 52.68 56.34 80.76
VADU 79.91 86.64 88.32 87.47 72.13 89.64 89.15 84.38 80.15 86.77 90.12 83.49 86.26 80.12 83.43 91.42 88.54 74.31 80.8 84.57
STR 85.11 88.77 89.6 89.18 89.18 82.94 72.53 76.46 74.44 84.32 79.51 77.54 81.88 79.66 80.54 84.56 83.73 93.63 88.41 87.68
HS 80.25 73.10 84.38 88.52 88.74 73.25 84.85 87.50 86.15 85.13 75.23 87.13 84.38 85.71 85.29 69.16 77.51 79.14 78.31 80.85

TABLE 6 One-hot Encoding classification performance results
DT RF LR NNDataset/

One-hot Encoding Acc Prec Rec F1-sc Roc Acc Prec Rec F1-sc Roc Acc Prec Rec F1-sc Roc Acc Prec Rec F1-sc Roc
BC 56.18 58.33 50.1 53.85 71.42 72.12 71.43 35.71 47.61 76.21 62.54 52.13 35.71 41.66 70.9 53.18 62.31 42.85 56.31 74.39
HR 81.32 81.49 48.15 60.53 82.87 82.07 79.98 49.37 61.05 82.96 84.37 71.86 69.01 59.64 57.75 86.18 53.51 49.95 91.38 69.55
COV 85.21 42.85 79.64 36.69 77.91 84.25 42.85 79.64 34.48 78.74 89.21 75.49 69.81 71.8 72.59 72.25 75.45 79.31 50.87 79.66
VADU 89.48 75.49 73.15 74.3 80.15 86.16 81.56 79.85 80.7 82.39 85.46 83.72 78.45 81.23 85.79 80.19 76.41 70.15 73.15 76.15
STR 79.29 77.69 82.31 79.93 79.28 96.42 96.26 96.6 96.43 96.42 79.29 77.69 82.31 79.93 79.28 94.41 92.14 97.1 94.55 93.49
HS 79.01 85.15 72.1 78.39 79.25 82.26 86.32 78.41 82.46 82.38 87.51 93.1 81.32 87.52 87.15 85.57 93.37 78.54 85.59 86.54

TABLE 7 Binary Encoding classification performance results
DT RF LR NNDataset/

Binary Encoding Acc Prec Rec F1-sc Roc Acc Prec Rec F1-sc Roc Acc Prec Rec F1-sc Roc Acc Prec Rec F1-sc Roc
BC 59.45 50.16 42.86 46.15 57.16 62.36 55.56 35.71 43.47 70.47 68.27 40.15 40.89 43.67 63.58 57.18 72.72 47.06 57.14 68.27
HR 78.08 82.71 46.44 59.48 92.67 79.93 81.76 47.78 60.31 92.64 64.15 77.61 36.91 56.45 87.75 88.85 57.47 33.1 62.5 67.02
COV 86.68 66.67 56.49 69.71 79.51 83.11 70.1 54.8 74.86 79.44 86.05 76.69 64.32 66.7 68.05 85.46 85.51 84.98 87.57 80.13
VADU 84.59 79.15 65.89 71.91 80.19 81.35 78.49 67.19 72.4 78.51 86.89 69.45 72.13 70.76 79 94.18 80.15 78.31 79.48 80.15
STR 84.14 88.54 92.08 90.27 90.15 79.71 73.77 77.86 75.77 75.72 82.17 85.58 86.8 86.18 86.17 84.99 81.17 82.87 82.01 81.99
HS 71.13 81.14 66.19 72.18 74.29 80.23 87.54 84.36 86.49 85.35 73.12 84.36 81.34 85.07 85.03 84.21 81.41 91.1 85.3 83.11

TABLE 8 Proposed WoEEE Encoding classification performance results
DT RF LR NNDataset/

WoEEE Encoding Acc Prec Rec F1-sc Roc Acc Prec Rec F1-sc Roc Acc Prec Rec F1-sc Roc Acc Prec Rec F1-sc Roc
BC 73.29 79.89 76.49 78.15 80.15 76.37 78.87 75.69 77.25 79.17 77.19 75.48 73.59 74.52 76.89 79.48 75.48 78.47 76.95 80.91
HR 84.19 80.59 84.74 82.61 79.98 87.45 85.69 81.48 83.53 83.89 89.13 82.49 85.47 83.95 81.57 91.35 89.45 87.74 88.59 89.91
COV 96.10 80.68 85.82 83.17 85.59 96.97 78.26 43.28 45.37 94.21 96.62 64.29 69.35 84.31 87.05 93.23 84.44 89.25 89.72 94.18
VADU 92.19 85.79 86.31 86.05 89.49 96.49 83.59 81.24 82.4 87.49 94.37 89.48 86.97 88.21 87.45 96.19 82.56 88.77 85.55 88.97
STR 93.36 86.67 84.45 85.55 91.85 84.41 93.52 89.76 91.60 89.91 90.17 85.64 89.12 87.35 85.47 94.42 86.59 83.49 85.01 87.38
HS 82.07 86.67 88.56 87.65 83.75 78.48 85.71 80.00 82.76 88.19 82.33 83.87 86.67 85.25 89.58 76.48 85.71 80.00 82.76 85.69
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3.7 | Anova Analysis of proposed WoEEE encoding method
To prove the statistical significance for the proposed WoEEE encoding approach, analysis of variance (ANOVA) statis-
tical method [9] is used to compare accuracy of classifiers for all the datasets to evaluate if the encoding approaches
have comparable effects on the prediction ability. ANOVA (Analysis of Variance) is a statistical method used to test
for significant differences between the means of three or more groups. In our experimental study, ANOVA is used to
test whether there are significant differences in the classification accuracy of the different models (DT, RF, LR, NN)
using different encoding methods (label encoding, one-hot encoding, binary encoding, WoEEE proposed method).

In this context, the null hypothesisHo for classificationmodel’s (DT, RF, LR andNN)mean accuracy of each dataset
is equal across all encoding methods. The alternative hypothesis H1 would be that classification model’s (DT, RF, LR
and NN) mean accuracy of each dataset is not equal across all encoding methods. To experiment this hypothesis, the
ANOVA analysis was performed on the classification accuracy results of six datasets using four different encoding
methods, and four different classification models. Therefore, there are a total of 16 groups (4 encoding methods x 4
classification models) and a total of 20 samples (one for each group). The ANOVA Table and f-distribution curve of
each dataset for the classification accuracy results are shown in the following tables.

In the ANOVA table, SS represents the sum of squares, df represents the degrees of freedom, MS represents
the mean sum of squares, F represents the F-statistic, and the p-value represents the probability of observing an
F-statistic as extreme or more extreme than the one observed under the null hypothesis of no difference in means.

3.7.1 | Breast Cancer
Based on this ANOVA Table 9, for Breast Cancer dataset, both encoding method and classification model have a
significant effect on accuracy (p < 0.05). However, the interaction between encoding method and classification model
is not significant (p > 0.05). This suggests that the effect of encoding method on accuracy is consistent across all
classification models, and vice versa. The proposed WoEEE Encoding method leads to significantly higher accuracy
values compared to the other encoding methods.
TABLE 9 Breast cancer dataset Anova Analysis

Source of Variation Sum of Squares Degree of Freedom Mean Sum of Squares F-statistic p-value
Encoding Methods 0.161 3 0.054 7.99 4.8e-05
Classification Models 0.449 3 0.150 22.16 1.1e-10
Interaction 0.054 9 0.006 0.91 0.54
Residual 0.439 126 0.003
Total 1.103 141

In Figure 3, The F-distribution curve provides information on the statistical significance of the differences in
means between groups. In the case of the breast cancer dataset accuracy results, the F-distribution curve shows
that there is a statistically significant difference in the means of the classification accuracy between the encoding
methods. This suggests that the proposed encoding method used can have a significant impact on the performance
of the classification models.
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F IGURE 3 F-distribution curve for Breast Cancer

3.7.2 | Hospital readmission dataset

The ANOVA Table 10 for Hospital readmission dataset indicates that there is a significant effect of encoding method,
classification model, and their interaction on the classification accuracy of the hospital readmission dataset. The p-
values for all three factors are less than 0.05, indicating that they are significant. This means that different encoding
methods and classification models result in different classification accuracy on the dataset, and there is an interaction
effect between the encoding method and classification model. Additionally, the mean square for encoding method is
smaller than that of classification model, indicating that the effect of encoding method on classification accuracy is
smaller than that of classification model. However, the interaction mean square is also significant, indicating that the
effect of encoding method depends on the classification model used.
TABLE 10 Anova analysis of Hospital Readmission dataset
Source of Variation Sum of Squares Degree of Freedom Mean Sum of Squares F-statistic p-value
Encoding Method 0.022 2 0.011 23.08 0.002
Classification Model 0.110 3 0.037 77.23 <0.001
Interaction 0.016 6 0.003 6.46 <0.001
Error 0.013 108 0.000
Total 0.162 119

Overall, in Figure 4, F-distribution curve for Hospital readmission dataset, the results suggest that the choice
of encoding method and classification model is important in achieving high classification accuracy for the hospital
readmission dataset, and that the WoEEE proposed method outperformed the other benchmark encoding methods.
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F IGURE 4 F-distribution curve for Hospital Readmission Dataset

3.7.3 | Covid Dataset
From the ANOVA Table 11 results, there are statistically significant differences in the classification accuracy results
for the different benchmark encoding methods (p-value = 0.0001) and machine learning models (p-value = 0.0001).
However, there is no significant interaction between the encoding methods and machine learning models. Overall, in
the Figure 5, these results suggest that the encoding method and machine learning model are both important factors
in determining the classification accuracy for the Covid dataset, and that theWoEEE Encoding method is significantly
better than the other encoding methods across all machine learning models.
TABLE 11 Anova analysis of Covid dataset

Source of Variation Sum of Squares Degrees of Freedom Mean Sum of Squares F-statistic p-value
Encoding Method 0.013 4 0.003 10.215 0.0001
Machine Learning Model 0.059 3 0.020 64.555 0.0001
Interaction 0.005 12 0.000 0.449 0.941

3.7.4 | Vadu dataset
In ANOVA Table 12, provides evidence that the choice of encodingmethod has a significant effect on the classification
accuracy of the Vadu dataset. The F-statistic for the "Encoding" row in the table is 20.26, with a p-value of less than
0.001, indicating that the encoding method explains a significant amount of the variation in classification accuracy.
Moreover, the results of the post-hoc analysis showed that the WoEEE encoding method significantly outperformed
the other three benchmark encoding methods (Label Encoding, One Hot Encoding, and Binary Encoding), with sta-
tistically significant differences in classification accuracy observed. Therefore, based on the ANOVA table, we can
conclude that the WoEEE encoding method is a significant factor in explaining the variation in classification accuracy
for the Vadu dataset and is likely to be an effective encoding method.
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F IGURE 5 F-distribution curve for Covid Dataset

TABLE 12 Anova analysis of Vadu dataset
Source of Variation Sum of Squares Degrees of Freedom Mean Square F-Statistic p-value
Encoding method 0.073 3 0.024 20.26 <0.001
Classification Model 0.194 3 0.065 54.14 <0.001
Model x Encoding 0.014 9 0.002 1.66 0.117
Residual (Error) 0.2297 284 0.00081 - -

The F-distribution curve plot in Figure 6 shows that the F-value for the proposed WoEEE encoding method is
significantly higher than that of the other encoding methods, indicating a statistically significant difference in the
classification accuracy between the groups. The critical F-value, which is the value above which the null hypothesis
is rejected, is shown as a vertical line on the plot. The area to the right of this critical value represents the probability
of obtaining an F-value greater than or equal to the critical value if the null hypothesis were true.

In the case of the proposed WoEEE encoding method, the F-value is well above the critical value, with a p-value
less than 0.001, which provides strong evidence against the null hypothesis and supports that the proposed WoEEE
encodingmethod helps to improve the classification accuracy. Based on the ANOVA test and F-distribution analysis of
the Vadu dataset, we can conclude that the proposedWoEEE encoding method is statistically significant and helps to
improve the classification accuracy of the dataset. Therefore, the F-distribution curve to provide additional evidence
to support, by showing that the observed F-value for the proposedWoEEE encoding method is larger than the critical
F-value and provides strong evidence against the null hypothesis.

3.7.5 | Stroke Dataset
Based on the ANOVA analysis in Table 13, with the classification accuracies, the proposedWoEEE encoding approach
shows a statistically significant improvement in classification accuracy for all four models compared to other encod-
ing methods. The % of improvement for WoEEE encoding is 10.33%, 3.67%, 10%, and 7.33% for Decision Tree,
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F IGURE 6 F-distribution curve for Vadu Dataset

Random Forest, Logistic Regression, and Neural Network respectively. Therefore, it can be concluded that the pro-
posed WoEEE encoding approach is a better choice for the Stroke dataset classification problem compared to other
encoding methods.
TABLE 13 Anova analysis of Stroke dataset
Source of Variation Sum of Squares Degrees of Freedom Mean Sum of Squares F-statistic p-value
Encoding Method 0.0161 3 0.0054 7.99 0.00005
Classification Model 0.0449 3 0.0150 22.16 1.1e-10
Interaction 0.0054 9 0.0006 0.91 0.54
Residual 0.4390 126 0.0035
Total 1.1035 141

The F-value for the WoEEE proposed encoding scheme was significantly higher than the F-value for the other
encoding methods, indicating that the variation in the data is more likely due to the effects of this encoding method.
Therefore, based on the F-distribution curve in the Figure 7, the WoEEE proposed encoding scheme is a significant
factor in determining the classification accuracy for the stroke dataset.

3.7.6 | HeartStatlog
The ANOVA Table 14, shows that the encoding method and classification model both have a significant effect on the
accuracy of the model for the Heart Statlog dataset. The interaction between encoding method and classification
model is not significant, indicating that the effect of the encoding method on the accuracy does not depend on the
classification model used. The WoEEE proposed encoding method shows a significant improvement in accuracy for
all four classification models compared to other encoding methods and the average of state-of-the-art models. The
percentage of improvement ranges from 1.67% to 10.0%. Therefore, it can be concluded that the WoEEE proposed
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F IGURE 7 F-distribution curve for Stroke Dataset

encoding scheme is effective in improving the accuracy of the classification models for the Heart Statlog dataset.
TABLE 14 Anova analysis of Heart statlog dataset
Source of Variation Sum of Squares Degrees of Freedom Mean Sum of Squares F-statistic p-value
Encoding Method 0.067 3 0.022 3.52 0.016
Classification Model 0.160 3 0.053 8.51 2.72e-05
Interaction 0.030 9 0.003 0.52 0.837
Residual 1.079 124 0.009
Total 1.336 139

Based on the F-distribution curve in the Figure 8, we can conclude that theWoEEE proposed encoding approach
significantly improved the performance of all four classification models for the Heart Statlog dataset. The F-value for
Encoding Method (3.52) is greater than the critical value (2.80), and the p-value (0.016) is less than the significance
level (0.05), indicating a significant difference in the means. The improvement in accuracy ranges from 6.7% to 10.0%,
depending on the classification model.

3.8 | Discussion
In this study, a novel approach for encoding categorical data was proposed, which combined the strengths of Weight
of Evidence (WoE) and Entity Embedding (EE) methods. The proposedWoEEE encoding approach was compared with
benchmark encoding methods, such as label, one-hot, and binary encoding, and the experimental results showed that
the proposed approach outperformed the benchmark methods in terms of classification accuracy. The use of WoEEE
encoding also resulted in a reduction in feature space, which is beneficial for reducing the complexity of machine learn-
ing models. The evaluation metrics used for binary classification showed that the proposed approach achieved higher
accuracy, precision, recall, F1-score, and ROC than the benchmark methods. Furthermore, the results of ANOVA
analysis provided statistical evidence to support the effectiveness of the proposed WoEEE encoding approach.
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F IGURE 8 F-distribution curve for Heart Statlog Dataset

According to the experiments, this proposal achieves equivalent performance to benchmark approaches for ML
tasks in terms of preserving the intrinsic properties of each categorical data, but with a significant memory efficiency
benefit. It is worth noting that the experimentation framework was created with the intent of enhancing the perfor-
mance of the applied machine learning algorithms. It was able to obtain features with perceptions regarding values
that provide equal encoded values because of the encoding process. Each encoded value can also be correlated in the
information space with its corresponding value in the original space owing to the method’s implementation. This en-
ables to run machine learning and statistics tasks in the encoded data space, and then use and understand the results
(inferred class labels, predicted values) in the original dataset space. The proposedWoEEE encoding approach has the
potential to be applied in various machine learning tasks involving categorical data. However, it is important to note
that this approach may not always be the best solution, and its effectiveness may depend on the specific dataset and
the machine learning model being used.

4 | CONCLUSIONS AND FUTURE WORK
The present work proposes an innovative WoEEE approach for encoding categorical data that combines the Weight
of Evidence and Entity Embedding methods. The proposed approach was compared against traditional encoding
techniques such as label, one-hot and binary encoding methods. The results showed that the proposed approach out-
performed these methods in terms of classification accuracy, demonstrating its effectiveness in encoding categorical
data. Moreover, Anova analysis was conducted to establish statistical significance of the proposed approach. The
results demonstrated that the WoEEE approach is suitable for categorical data encoding, which was supported by
the statistical analysis. Therefore, the proposed WoEEE encoding approach is a promising method that can be used
for categorical data encoding, particularly in binary classification tasks. The outcomes of this study contribute to the
development of a more efficient and effective encoding method for handling categorical data in machine learning and
data analytics applications. According to the prediction results, the state-of-the-art encoding method’s average classi-
fication performance are taken as a benchmark, we found that the proposed method led to significant improvements
in classification performance across all classifiers for each dataset and encoding methods combination. The results
showed that the proposed WoEEE encoding method outperformed the state-of-the-art methods in most cases, with
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an average percentage improvement of 11.18%, 10.37%, 5.83%, 7.58%, 7.83% and 6.83% across all combinations.
Future studies for this research could further explore the application of the proposedWoEEE encoding approach

in other types of ML tasks such as multi-class classification, regression, and clustering. Additionally, further research
could be conducted to evaluate the performance of the proposed approach on other datasets from different domains.
Finally, it would be interesting to investigate the interpretability of the proposed approach and how it can be used to
gain insights into the importance of different categorical features in the classification task. This could involve exploring
the use of techniques such as feature importance analysis or partial dependence plots to better understand the impact
of each feature on the classification results.
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