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Abstract

Insulators are one of the key components in high-voltage power systems that prevent transmission lines from grounding. Since

they are exposed to different kinds of harsh environments and climates, periodic inspection is indispensable for the safety and

high quality of power grid. Nowadays, Unmanned Aerial Vehicle (UAV) inspection is more widely used, facilitating incorporation

of CNN-based detectors in the insulator detection task. However, these methods are generally based on the assumption that

the image samples are balanced among different categories and possess completely ideal annotations. The problem of sample

imbalance or incomplete annotation is rarely investigated in depth for insulator defect detection. In this paper, we focus

on insulator defect detection with imbalanced data and incomplete annotations. Our proposed framework, named Pi-Index,

introduces Positive Unlabeled (PU) learning to solve the problem of incomplete annotation and designs a novel index the class

prior, which is a key parameter in PU learning. Moreover, focal loss is integrated in our framework to alleviate the effect of

sample imbalance. Experiment results demonstrate that the proposed framework achieves better performance than the baseline

methods in situations of sample imbalance and missing annotation.
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Abstract: Insulators are one of the key components in high-voltage power systems that prevent transmission
lines from grounding. Since they are exposed to different kinds of harsh environments and climates, periodic
inspection is indispensable for the safety and high quality of power grid. Nowadays, Unmanned Aerial
Vehicle (UAV) inspection is more widely used, facilitating incorporation of CNN-based detectors in the
insulator detection task. However, these methods are generally based on the assumption that the image
samples are balanced among different categories and possess completely ideal annotations. The problem of
sample imbalance or incomplete annotation is rarely investigated in depth for insulator defect detection. In
this paper, we focus on insulator defect detection with imbalanced data and incomplete annotations. Our
proposed framework, named Pi-Index, introduces Positive Unlabeled (PU) learning to solve the problem of
incomplete annotation and designs a novel index the class prior, which is a key parameter in PU learning.
Moreover, focal loss is integrated in our framework to alleviate the effect of sample imbalance. Experiment
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results demonstrate that the proposed framework achieves better performance than the baseline methods in
situations of sample imbalance and missing annotation.Keywords: Insulator defect detection; Transmission
line; Power system; Sample imbalance; Incomplete annotation

1 Introduction

Transmission of electricity throughout the power grid is accomplished with the assistance of high-voltage
transmission lines, electrical insulators, and power towers. Although the insulators therein are not directly
responsible for delivering electricity, they suspend the overhead transmission lines and prevent the transmis-
sion lines’ grounding [1]–[5]. Furthermore, they must constantly withstand the supply voltage and bear the
load of the transmission lines’ gravity. Therefore, the insulator is an essential component in a high-voltage
power system, which facilitates maintaining the safety and stabilization of the power grid.

Because of the extensive deployment of the power grid, the insulators need to be adaptable to different
kinds of natural environments and geographic conditions. A fairly large number of them are exposed to
an outdoor environment throughout the entire year, which is more susceptible to the erosion caused by
harsh climates such as sunlight, rain, and snow [6]. Besides, overvoltage shocks from lightning and on-off
operations, mechanical load, weight of wires, as well as metal accessories may also make the insulators more
easily prone to self-blast or breakage [7]. The above factors inevitably give rise to the insulators’ defects and
reduce their service lifetimes. Moreover, aged and defective insulators may cause regional grid failures and
enormous economic losses if they are not periodically inspected [2].

One solution is manual inspection of power equipment, but this traditional method is considered low-
efficiency, labor-intensive, and unsafe. It is incapable of providing quick feedback on the condition of
insulators and meeting the inspection needs of a modern smart grid, namely more frequent inspection,
repair, and maintenance [8]. Due to the low cost, miniaturization, and high mobility of Unmanned Aerial
Vehicle (UAV) inspection, it has replaced manual inspection and become the mainstream inspection scheme
for power equipment [9]–[12]. For insulator defect detection, the UAV inspection collects a large number of
aerial images with insulators. The collected insulator images not only enable the automatic identification of
the insulator defects, but also make it an urgent problem to be solved.

Early algorithms for insulator defect detection are based on handcrafted features and machine learning tech-
nologies [1], [13], [14]. However, feature design is time-consuming and costly, and requires the assistance
of experienced experts. In recent years, deep learning technology has made a breakthrough in image clas-
sification [6], object detection [15], image segmentation [16], etc. The deep learning-based detectors were
introduced in this field [17]–[20], including both You Only Look Once (YOLO) family [21]–[24] and Region-
based CNN (RCNN) series [25]–[27] detectors. On the one hand, the YOLO-based detectors were investigated
to enhance the speed of insulator detection by incorporating a lightweight backbone, such as, replacing the
backbone by MobileNet [28] in YOLO v3 [23] and YOLO v4 [24], and choosing suitable backbone among the
four versions of YOLO v5 [9]. Simultaneously, attention mechanisms have been introduced into insulator
detection research. In detail, channel-wise self-attention was merged with TinyYOLO v4 to facilitate feature
representation [10], while YOLO v5 pipeline was incorporated with a triplet attention module in [9] and a
Convolutional Block Attention Module (CBAM) in [29] for providing more context information for insulator
defect detection.

On the other hand, Faster RCNN, a two-stage detector, was introduced into the insulator detection com-
munity [17], [30]. It first roughly generates the proposals of insulators and then refines the proposals for
locating the insulators’ defects. Moreover, Zhong et al. modified the standard Faster RCNN pipeline to
consider arbitrarily oriented insulator localization [31]. In [32], the attention mechanism was introduced
in Faster RCNN for self-explosion insulator defects. In summary, the aforementioned approaches focused
on the following problems: 1) A complex background and various types of insulators make insulator defect
detection difficult; 2) some severely damaged insulators are too small to recognize; 3) detection speed and
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accuracy needs to be balanced.

In most fields of object detection, ”perfect annotation” indicates that the labeled bounding boxes are close to
the targets’ true boundaries and there are no missing labels. Therefore, the acquisition of the perfect anno-
tation is time-consuming and labor-intensive. To decrease the dependency on perfect annotation, numerous
research works have studied the different scenarios of imperfect annotation, such as incomplete annotation
[33], [34], unreliable labels [35], and incremental new categories [36]. However, the incomplete annotation
problem of insulator defect detection is not thoroughly investigated. Besides, there is a sample imbalance
among different categories in our task.

In this paper, we propose a novel framework for incomplete annotation and sample imbalance in insulator
defect detection. The proposed framework is based on the Faster RCNN detector and integrates Positive
Unlabeled (PU) learning and focal loss. It is termed Pi-Index that follows the name of the proposed algorithm
for estimating the class prior, a key parameter in PU loss, to improve PU learning. The algorithm is designed
to generate a continuous value (Pi-Index) for each anchor as its probability of being positive. In the aspect of
network architecture, Region Proposal Network (RPN) is improved by introducing PU learning to overcome
the problem of incomplete annotation, whereas the focal loss strategy is applied to Region Of Interest (ROI)
Head, to alleviate the impairment caused by sample imbalance.

The contributions of this paper are summarized in the following aspects: 1) A novel estimation strategy for
the class prior, termed Pi-Index, is proposed to improve vanilla PU learning; 2) The PU learning strategy
and focal loss are separately incorporated with RPN and ROI Head, which are responsible for the above
two problems; and 3) Experiment results show that the proposed framework achieves better performance
compared with baseline methods when missing labels or sample imbalance scenarios occur.

The rest of this paper is organized as follows. Section 2 describes the proposed framework that contains FPN
backbone, RPN with PU learning and ROI Head with focal loss. Section 3 is about experimental results
that prove the effectiveness of the proposed framework. Section 4 gives a summary of this paper.

Hosted file

image1.emf available at https://authorea.com/users/655376/articles/661212-electrical-

insulator-defect-detection-with-incomplete-annotations-and-imbalanced-samples

2 Related work

In this section, we introduce the related work that is most relevant to our study. Firstly, a series of references
about insulator detection are reviewed in Section 2.1. Then, Section 2.2 contains scientific literature on
insulator segmentation, which is viewed as pixel-level detection of the insulators.

2.1 Insulator detection

Object detection is to predict a bounding box as an indication of the target’s category and location. Similarly,
insulator detection or insulator defect detection aims to locate the insulators by surrounding them with
bounding boxes and identifying their categories or defect categories. Early methods about insulator defect
detection adopted a combination of computer vision and machine learning technologies [1], [13], [14]. These
methods heavily relied on hand-crafted features, which were time-consuming to design and required the
assistance of experienced experts.

In recent years, deep learning-based detectors are introduced in the application of insulator detection [17]–
[20]. The studies can be classified into one-stage and two-stage detectors. One-stage detectors typically
correlate to the You Only Look Once (YOLO) family of deep neural networks [21]–[24], whereas two-stage
detectors include Region-based CNN (RCNN) and its variations [25]–[27].

3

https://authorea.com/users/655376/articles/661212-electrical-insulator-defect-detection-with-incomplete-annotations-and-imbalanced-samples
https://authorea.com/users/655376/articles/661212-electrical-insulator-defect-detection-with-incomplete-annotations-and-imbalanced-samples


P
os

te
d

on
25

A
u
g

20
23

—
T

h
e

co
p
y
ri

gh
t

h
ol

d
er

is
th

e
au

th
or

/f
u
n
d
er

.
A

ll
ri

gh
ts

re
se

rv
ed

.
N

o
re

u
se

w
it

h
ou

t
p

er
m

is
si

on
.

—
h
tt

p
s:

//
d
oi

.o
rg

/1
0.

22
54

1/
au

.1
69

29
37

36
.6

61
28

19
8/

v
1

—
T

h
is

a
p
re

p
ri

n
t

an
d

h
a
s

n
o
t

b
ee

n
p

ee
r

re
v
ie

w
ed

.
D

a
ta

m
ay

b
e

p
re

li
m

in
a
ry

.

Various one-stage detectors are used to identify the insulator’s defective regions. Yang et al. incorporated a
lightweight backbone into the vanilla architecture of YOLO v3 to identify missing-cap insulators [19]. The
lightweight backbone is based on MobileNet [28] with spatial pyramid pooling [37]. Similarly, a lightweight
YOLO v4 is also proposed in [20] to balance detection accuracy and detection speed for insulator detection.
Their lightweight techniques are analogous, with MobileNet replacing the original backbone. Furthermore,
Han et al. presented TinyYOLO v4 that merged the self-attention module into the Feature Pyramid Network
(FPN) [38] to enhance channel-level feature fusion [10]. This channel-wise self-attention facilitates learning
better feature representation. With the release of YOLO v5, its pipeline was introduced into insulator
detection research. In [39], four versions of YOLO v5 were explored for the localization of the insulator
defect. As a result, the more suitable network architecture was chosen through contrast experiments. Gao
et al. modified the YOLO v5 pipeline by incorporating a triplet attention module in order to enhance
the detection performance of small insulator defects [9]. Then, another attempt to incorporate attention
mechanisms with the YOLO v5 was reported in [29]. Lan et al. introduced the Convolutional Block
Attention Module (CBAM) to provide more channel and spatial context information for insulator defect
detection.

The methods listed above rely on one-stage detectors. Furthermore, two-stage object detection frameworks
were introduced into the insulator detection community. In [17], [30], Faster RCNN was used to first
roughly localize the regions where insulators are most likely to exist, referred to as ”proposals” in the
framework. Then, these proposals are fed into the second stage network, a multitask head, to refine the
localization of the insulators’ defects. Moreover, Tao et al. model insulator defect detection as a two-level
task that includes insulator localization as well as defect detection [18]. The framework is made up of two
concatenated Faster RCNNs: one with a VGG16 backbone for localization and another with the original
Faster RCNN for detecting defective regions. Zhong et al. modified the standard Faster RCNN pipeline
to consider arbitrarily oriented insulator localization [31]. The proposed framework introduced an oriented
Region Proposal Network (RPN) to implement arbitrarily oriented localization for insulators. In [32], the
attention mechanism was introduced in Faster RCNN for self-explosion insulator defects. In detail, an
adaptive receptive field network is proposed and inserted into the FPN backbone.

2.2 Insulator segmentation

In other research works, the focus of the studies was to segment the insulators or defective regions from
the background. In [40], a framework with two cascaded networks were proposed by Li et al. to detect the
insulators globally and segment the local defect objects. The segmentation model was designed to incorporate
an attention mechanism in an improved version of U-Net [41]. Efficient Channel Attention Networks (ECA-
Net) was also introduced as the U-Net encoder, providing an example of fusing an attention mechanism for
insulator segmentation [42]. Yu et al. focused on introducing fine-grained texture into the SINet architecture
and simultaneously improved a positioning network to segment defective regions for insulators [2]. The
insulator segmentation problem was solved by Antwi-Bekoe et al. using a common instance segmentation
framework [43], in which the detection and mask branches implemented instance-level segmentation. Xuan
et al. used a squeeze-excitation module to improve the backbone and a spatial attention module to forecast
the insulator mask to produce excellent results in insulator defect segmentation [44].

3 Method

Our proposed framework intends to locate insulator areas, determine if these insulators are faulty, and
identify which categories these insulators belong to. It needs to be emphasized that the framework explores
the feasibility of this task under the conditions that a portion of annotations are inaccessible and sample
sizes of various classes are imbalanced. In detail, our framework is based on the Faster RCNN pipeline [27],
illustrated in Figure 1. We improved the Faster RCNN by combining PU learning with Region Proposal
Network (RPN) and incorporating focal loss into the Region Of Interest (ROI) Head.
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Hosted file

image3.emf available at https://authorea.com/users/655376/articles/661212-electrical-

insulator-defect-detection-with-incomplete-annotations-and-imbalanced-samples

According to the network architecture depicted in Figure 1, our modified Faster RCNN consists of three
components: Module A (the Feature Pyramid Network (FPN) backbone), Module B (the PU-RPN), and
Module C (the ROI Head). Firstly, FPN serves as a feature extractor in charge of computing the feature
maps, which are the input of subsequent Modules B and C . Secondly, RPN, the first stage of the detector,
focuses on a binary classification, i.e., insulator regions, and background. The generated insulator regions
are denoted as proposals in the Faster RCNN framework, and they will be refined into good insulators or
different types of defective insulators in ROI Head. To solve the problem of incomplete annotation, we
introduce the PU learning strategy [45] into the vanilla RPN, denoted as PU-RPN. Finally, Module C (ROI
Head), the second stage of the detector, utilizes the proposals to further refine the predicted insulator’s
category and bounding box’s localization. We applied focal loss to the ROI Head in order to mitigate the
effect of sample imbalance. The details of the above components are described in the following subsections.

3.1 FPN as feature extractor

There are large or small targets in scenes to be recognized for object detection. Likewise, insulator defect
detection also possesses the insulator strings in large size and the small insulators. The larger ones tend
to be detected in high-level feature maps, which have low resolution and rich semantic information. But
the smaller damaged insulators correspond to too few pixels to be distinguished in high-level feature maps.
Therefore, a multiple-scale strategy is key to insulator defect detection.

Hosted file

image6.emf available at https://authorea.com/users/655376/articles/661212-electrical-

insulator-defect-detection-with-incomplete-annotations-and-imbalanced-samples

The Feature Pyramid Network (FPN) is a famous architecture that applies the multiple-scale strategy to
a base feature extractor . FPN follows the idea of the images’ pyramid, and extends it to the pyramid
of feature maps. The goal of FPN is to combine the advantages of both high-level and low-level feature
maps. As shown in Figure 2, FPN consists of two inverse pathways, a bottom-up and atop-down pathway.
The bottom-up pathway is the base feature extractor mentioned above (on the left in Figure 2), and usually
employs a convolutional neural network (CNN) classifier. Along the direction of the dataflow in the bottom-up
pathway, thebase feature extractor is separated into five stages, and a downsampling operation is applied to
each block. The top layers export the feature maps with more semantic information, while the output of the
low layers possesses a higher spatial resolution. Following the architecture in [27], the base feature extractor
adopts a Residual Neural Network (ResNet) [45]. Concretely, ResNet-50 is chosen to balance performance
and computational complexity. The architecture of the adopted ResNet-50 is displayed on the left side of
Figure 2. The learnable convolutional layers are organized into 5 stages, with Stage1 as a convolutional
layer (out-channel=64 and stride=2) and Stage2˜Stage5 as several stacked convolutional blocks. Each
convolutional block inStage2˜Stage5 has three convolutional layers which match to the three lines11Each
line contains settings for the kernel size, input channel, and output channel. The first line consists of two
input channels. The former is a parameter of the initial convolutional layer, whereas the latter is a parameter
of the two subsequent convolutional layers. in “Stage” boxes in Figure 2.

As depicted in Figure 2, FPN also provides a top-down pathway that contains top-down and lateral connec-
tions. The top-down connections are responsible for upsampling the higher-level feature maps to the same
size as their lower-level counterparts. Specifically, an upsampling operation is based on nearest-neighbor
interpolation. Meanwhile, lateral connections use a convolutional layer to increase the channel dimension of
the bottom feature maps according to the top ones. The upsampled and channel-increased feature maps are
then merged and fed into a convolutional layer to generate pyramid feature maps (P5, P4, P3 , and P2
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). From top to bottom, the top-down and lateral connections cooperate to handle the original feature maps
from ResNet-50 stage-by-stage.

3.2 RPN with PU learning for incomplete annotations

In insulator detection, incomplete annotation will lead to some unlabeled insulators treated as background
during the training process, which causes the ambiguity between targets and background [34]. Therefore,
we introduce PU learning as the new loss of Region Proposal Network (RPN).

A. Region Proposal Network for insulator proposals

RPN is a typical anchor-based detector, which implies targets are detected from anchor regions. The anchors
are obtained by partitioning input images. RPN is in charge of determining whether an insulator exists and
locating the target’s offsets in each anchor. The centers of the anchors correspond to the centers of the
receptive field and, more specifically, to the pixels in the top feature map P5 . The anchor boxes at
the center of each anchor have variable height-to-width ratios to accommodate targets of various shapes.
According to [27], the Faster RCNN pipeline has nine anchor boxes with varying height-to-width ratios.

Our PU-RPN inherits the architecture and supervision method of the vanilla RPN. As seen in Figure 3
(or Module B in Figure 1), the feature maps from FPN are fed into PU-RPN, which generates proposals
and crops the feature maps based on the proposals. The cropped feature maps serve as the ROI Head’s
inputs. PU-RPN is comprised of convolutional layer and two separated convolutional layers. The former
convolutional layer learns from the pyramid feature maps (P5, P4, P3 , andP2 ), which expand the input
channel (256) to the output channel (512). In Figure 3, the upper classification branch uses a convolutional
layer as a binary classifier between insulators and the background. The number of output channel in this
layer is eighteen , which impliestwo categories and nine anchors. Similarly, the other regressor branch aims
to predict the coordinate offsets of the insulators (offsets for and ). The output dimension of regressor branch
is 36 ( offsets).

Before the training processing, the ground-truth bounding boxes need to be converted to the supervision
information of the anchors. A positive label is assigned to an anchor when Intersection over Union (IoU) is
greater than 0.7 with any ground-truth box, whereas a negative label corresponds to IoU values below 0.3.
The coordinate offsets are determined using the difference between the annotated bounding boxes and the
positive anchors. The coordinate offsets of negative anchors are set in a random way.

The loss functions of the original RPN can be summarized in two parts: Positive-Negative (PN) classification
and smooth L1 regression. The PN classification of insulators predicts the good insulators and defective
insulators as positive samples, while the background is regarded as negative samples. The loss function for
this PN classification is computed as follows:

where and separately represent the total number of a specific class and the predicted classification score of
a particular anchor. The subscripts and stand for positive and negative class, respectively. The superscripts
and are the indices of positive and negative anchors, respectively. is usually set to a cross-entropy loss
that calculates the error between the anchors’ prediction classification probability and the corresponding
ground-truth labels.

When it comes to the localization loss for insulator defect detection, a typical choice is the smooth L1-loss
function [46]. The predicted bounding-box is denoted as , while the ground-truth bounding box is represented
as . Hence, the localization loss is defined as

In this equation, and is the same as Equation . The complete loss function for insulator defect detection is
based on the combination of the PU classification loss and the localization loss .

6
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The loss in Equation is used to train the original RPN in the Faster RCNN. Our proposed PU-RPN replaces
the PN loss with the PU loss, and the details are given in the following sections.

B. PU learning for incomplete annotations

For insulator defect detection from images, manual annotations need to overcome the problems derived from
the varied insulator appearances and the complicated background. In the scenario of incomplete annotations,
the missing-labeled regions with insulators are treated as the background. If PU-RPN is trained with the
loss defined in Equation , the PN loss will lead to semantic ambiguity. To solve this issue, PU learning is
introduced in PU-RPN as an alternative to PN loss. Furthermore, PU learning can mitigate the effect that
unlabeled insulators are treated as background.

In the framework of PU learning [47], the class prior π is usually introduced to represent the proportion of
the actual positive samples in the dataset. The loss function of PU learning can be defined as:

where and therein stand for the number of labeled positive samples and unlabeled samples, respectively. and
represent the indices of unlabeled anchors and the corresponding classification probability, respectively. The
remaining symbols refer to Equation . The first term in Equation estimates approximately the loss from
predicting true-positive samples as positive. The second term is the difference in loss between all anchors
and true-positive anchors, which are both predicted to be negative. Then a non-negative operation is applied
to the second term as suggested in [47], which leads to

The estimation of the class prior is crucial for the PU classification loss. The approach to determine the
class prior is described in Section 2.4. Based on PU classification loss , Equation is rewritten as:

3.3 ROI Head with focal loss for sample imbalance

During identifying the categories of the insulators, different categories are with various quantities of samples.
Therefore, the categories’ contributions to the loss are not equal, which makes the category with fewer samples
inclines to obtain a worse performance. Therefore, we introduce focal loss into the Region of Interest (ROI)
Head to relieve this issue.

A. Region of Interest (ROI) Head for insulator detection

The ROI Head is the second-stage detector at the end of the Faster RCNN. The schematic diagram of ROI
Head refers to Figure 4 (or Module C in Figure 1). It follows the FPN and RPN modules, which reserve the
top k proposal regions as ROIs. The ROI Head refines the classification and regression results predicted by
RPN. Its network architecture is composed of ROI pooling layers and several fully-connected (FC) layers.
ROI pooling projects ROI spatial dimensions to fixed-size feature maps. Those FC layers imitate the VGG
classifier head, which possesses two shared FC layers and two parallel separate FC layers as the classification
and detection branches. The goal of the classification branch is to identify the good or defective insulators
from those ROIs’ feature maps.

During the training process, ROI pooling initially receives a lot of ROIs in different sizes. Each ROI’s feature
map can be partitioned roughly equal bins along the spatial dimensions. Then ROI pooling employs max-
pooling to handle the values in the bins. As a result, each bin generates one maximum as its replacement,
ensuring that all ROI’s feature maps have the same size. Furthermore, the ROI-pooled feature maps are
reshaped as a feature vector. The vector passes the shared FC layers for the enhancement of the semantic
information. The last two separated FC layers finish the classification and detection tasks.

The loss functions for the ROI Head contain a multi-class cross entropy and smooth L1 localization loss
defined in Equation . The multi-class cross entropy is defined as

7
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where is the predicted vectors, and stands for the one-hot vector of the label. The and correspond to the
indices of ROIs and elements in predicted vectors, respectively.

B. Focal loss for sample imbalances

The original Faster RCNN employs the multi-class cross entropy that penalizes the samples equally for all
classes. This leads to the drawback that the classes with more samples are weighted by a larger for all
classes. This leads to the drawback that the classes with more samples are weighted by a larger factor.

Focal loss is a better alternative for cross-entropy when the problem of sample imbalance exists [48]. In our
framework, focal loss is incorporated into ROI Head to alleviate the effect of the sample imbalance. The
focal loss for multi-class can be defined as follows:

Hosted file

image46.emf available at https://authorea.com/users/655376/articles/661212-electrical-

insulator-defect-detection-with-incomplete-annotations-and-imbalanced-samples

Hosted file

image48.emf available at https://authorea.com/users/655376/articles/661212-electrical-

insulator-defect-detection-with-incomplete-annotations-and-imbalanced-samples

where and represent the weighing factor and focusing parameter, respectively. The other notations refer to
Equation . In practice, and are separately set to 0.25 and 2 , according to the parameter setting in [48]. The
final loss function for ROI Head is obtained by adding the above loss and :

The losses of ROI Head are accumulated and back-propagated to train the proposed framework.

3.4 Pi-Index: the strategy of estimating class prior

In the Faster RCNN framework, the PU loss is usually applied to the anchor-based RPN [34], [49]. In
other words, classification and regression are performed separately for each anchor in RPN. Incomplete
annotations should thus be converted from annotated boxes to anchors. There are lots of positive anchors
assigned negative labels as background because a part of the targets lacks their annotations. For the PU
classification loss of RPN, the class prior is defined as the percentage of both correctly and incorrectly labeled
positive anchors.

A. Background: the existing methods

Zhao et al. considered the class prior as a hyper-parameter and determined it by grid search based on a
validation set [49]. The estimation granularity of the class prior relies on the interval of the grid search.

Table 1: Performance (AP) of the method in [34] with different confidence thresholds (0.1-0.5) and anno-
tation percents (0.3, 0.5, 0.7 and 1).

APC 0.1 0.2 0.3 0.4 0.5

1 87.60% 87.93% 87.58% 86.98% 87.56%
0.7 76.74% 76.66% 77.01% 76.67% 76.71%
0.5 70.17% 70.45% 70.48% 70.64% 69.95%
0.3 59.16% 59.38% 58.70% 59.23% 59.13%

The more accurate class prior is needed to be estimated, the smaller interval needs to be set. In other words,
class prior with high precision leads to high computation complexity of the grid search method. For example,
If the class prior is searched with an interval of 0.1, the computation complexity will increase tenfold from
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the original.

In [34], the computation of class prior is transformed from the grid search of the class prior to determining
a confidence threshold, which is used to predict whether the anchors are positive. Suppose an anchors’ set ,
where and stand for the -th anchor box and its probability of being positive. is the number of anchors and
is obtained by RPN. The class prior is computed with Equation .

where denotes the confident threshold. In conclusion, a reasonable threshold directly determines the number
of positive anchors, which affects the estimation of the class prior. is also viewed as a hyper-parameter and
needs to be estimated by the grid search.

Table 1 provided experiment results for the grid search of the confident threshold. Each column stands for
AP metrics (details in Section 4.3) with the confident thresholds, while the different rows correspond to
various annotation percents. When the Annotation PerCent (APC, refer to Section 4.2.1) varies from 1 to
0.3, the number of annotated labels decreases during the training process. From Table 1, it is concluded
that the best confidence thresholds are inconsistent with different APCs. In [34], the confident threshold is
fixed, and therefore it should be set to 0.2. The parameter selection is based on the fact that the confident
threshold makes the model achieve more best performance. To sum up, this fixed threshold strategy (denoted
as Pi-FT) also needs compute-intensive optimization of hyper-parameter.

B. A novel index for class prior

In this section, we offer a novel estimation technique for the class prior in our PU-RPN. As shown in Figure
5, the predicted results from two stages, the RPN and ROI Head, are fused to compute the class prior .

Suppose an anchor from a set of . The probability of predicted to be positive is symbolized by . Therefore,
is a set of anchors with their probability of positive class. A predicted box is denoted as , which is output
by ROI Head. Then the predicted boxes are collected as . The and indicate the number of anchors and
predicted boxes, respectively. For an arbitrary anchor , we first match it with the predicted boxes and then
determine the matched box using Equation .

where is a function of computing IoU between two boxes. We propose a class prior index for each anchor,
i.e., the index for the anchor is defined as

The indices of anchors can be expressed as .The class prior is calculated by

Inspired by [34], an Exponential Moving Average (EMA) strategy to stabilize the class prior . The momentum
is set to 0.9. The EMA class prior denotes the class prior after updates. The initialization of ( ) is specified
as the class prior of the first batch. Assuming the current batch’s class prior is , and the EMA class prior is
updated base on the Equation .

Algorithm 1: Class prior estimation based on Pi-Index for one batch.

Algorithm 1: estimation process

Input: Anchor Set: ; Image Batch; Total number of anchors: ; The number of classes ; FPN network ; RPN network; ROIHead network.
Output: Class prior;
1 for Image do
2 Compute FPN features
3 Compute the probabilities predicted by RPN
4 # Filter proposals with a fixed threshold (0.05 in detectron2 ) for the probabilities.
5 Select proposals
6 # Compute the probabilities and bounding boxes predicted by ROIHead.

9
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Algorithm 1: estimation process

7 ;
8 # Filter the predicted boxes based on a configured confidence threshold .
9
10 Determine the index of positive anchors with and according to Equation (12).
11 Collect the set of as
12 Compute the class prior of one image
13
14 end
Return

4 Experiment results

In this section, we conduct a series of comparative experiments to evaluate our proposed framework and the
baseline method. First, we describe the details of the dataset in Section 3.1 and the experimental setup in
Section 3.2. Then, the evaluation metrics are presented in Section 3.3. Finally, we show and analyze the
experimental results in Section 3.4.

4.1 Dataset

4.1.1 Dataset description

The Insulator Defect Image Dataset (IDID)11The Insulator Defect Image Dataset refers to: https://ieee-
dataport.org/competitions/insulator-defect-detection, a widely-used insulator dataset, is utilized for model
assessment. As indicated in Figure 6, the IDID comprises several high-resolution aerial images with insulators
and the corresponding annotations. Each annotation consists of a category label and a bounding box.
Insulators are classified as ”Good,” ”Broken,” and ”FlashDamaged.” Additionally, there exists a fourth
category termed as “Insulator String”, which refers to a cluster of insulators depicted in the images. Figure

10
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6 depicts the many categories of bounding boxes with a variety of colors. The IDID training set comprises a
total of 1600 aerial images, encompassing 2636 “Good”, 1140 “Broken”, and 2004 “FlashDamaged” insulator
shells. These insulator shells collectively form 1788 insulator strings.

However, there exists a portion of images with incomplete annotations in IDID. Figure 7 displays several
aerial images in which some insulators are incorrectly annotated. Specifically, the yellow boxes in the second
row of images represent unlabeled insulators. The incomplete annotations could potentially stem from the
dense arrangement of insulators and the oversight on part of the annotators. In many studies [], the IDID
dataset has been utilized as a perfectly annotated dataset despite the presence of missing annotations.
Therefore, regarding IDID as a partially annotated dataset is more reasonable and this partially annotated
scenario studied in this paper has practical significance.

4.1.2 Dataset split

In order to eliminate interference from the sample imbalance, the model evaluation is performed on validation
and test sets with category balance. The number of broken insulator shells is the lowest among the four
classes. The samples from this category are distributed into the training, validation, and test sets in a ratio
of 5:2:3. The validation and test sets for each category contain 228 and 342 samples, respectively. Therefore,
we randomly select 228 and 342 samples from each category to form the validation and test sets, respectively.
The remaining samples from each category are mixed together to form the training set, which consists of
1218 insulator strings, 1756 good insulator shells, 570 broken insulator shells, and 1434 flashover damaged
insulator shells. In all our experiments, we have set the random seed to 1.

4.2 Experimental setup

4.2.1 Implementation details

To verify our method with different proportions of annotations, we randomly remove a portion of the anno-
tations from the training set. The Annotation PerCent (APC) represents the percentage of annotations that
remain after the aforementioned removal procedure. The other significant hyper-parameters are delineated
as follows: The batch size is set to 16, the learning rate is set to 0.02, the total number of iterations is 10,000,
and the evaluation interval for the validation set is 200 iterations. The best model is selected according to
the AP metric on the validation set, which is then applied to the test set. Finally, the data augmentation in
our framework contains the horizontal and vertical flips as well as the default data augmentation strategy
in Detectron222The github repository of Detectron2: https://github.com/facebookresearch/detectron2.

4.2.2 Software platform

This experiment was conducted on a server with the Linux system and used Visual Studio Code (VSCode)
as our Integrated Development Environment (IDE). PyTorch and Python were selected as the deep learning
toolkit and the programming language, respectively. The hardware of the server is mainly composed of two
Intel(R) Xeon(R) E5-2680 v4 CPUs with 14 cores each running at 2.4 GHz, 256 GB memory, and two Nvidia
GeForce RTX 3090 GPUs.

4.2.3 Adopted baselines

To verify the effectiveness of our proposed method on incomplete annotation data, we conducted experiments
to compare our method with other mainstream methods under different APCs (1, 0.7, 0.5, and 0.3). Our
proposed framework is a Positive-Unlabeled (PU) framework, which is viewed as a combination of a Positive-
Negative (PN) pipeline and PU loss. Therefore, we first selected existing mainstream Positive-Negative
(PN) learning object detection algorithms [31], [32] to ablate the influence of PU loss. Furthermore, we also
introduced several PU-based detectors [34], [49] as contrast methods.

11
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PN-based object detection algorithms typically include two frameworks: one-stage and two-stage. The
existing one-stage frameworks for insulator detection are usually based on YOLO v3 and YOLO v4 with
MobileNet backbone, abbreviated as M-YOLO v3 [19] and M-YOLO v4 [20], respectively. Since our study
does not focus on lightweight computing, we combined DarkNet53 with the aforementioned YOLO frame-
works (D-YOLO v3 [23] and D-YOLO v4 [24]), as well as YOLO v5 (D-YOLO v5) [39]. Because

Table 2: Detection results of our method and other methods based on the complete annotation supported
by IDID.

Methods AP AP@0.75 AP@0.5 AP-String AP-Good AP-Broken AP-FlashD

YOLO v3 (MobileNet) 42.92% 46.18% 72.94% 45.60% 50.90% 25.70% 49.40%
YOLO v3 (DarkNet53) 62.20% 76.30% 94.80% 59.80% 65.60% 55.70% 67.70%
YOLO v4 (MobileNet) 62.40% 77.10% 92.90% 64.60% 66.40% 54.60% 63.80%
YOLO v4 (DarkNet53) 66.10% 82.50% 95.40% 64.30% 69.90% 60.50% 69.80%
YOLO v5 (DarkNet53) 84.50% 96.20% 98.30% 84.60% 87.30% 79.10% 86.80%
Faster RCNN 87.19% 95.12% 97.23% 91.77% 87.08% 80.13% 89.79%
Pi-GS[38] 87.70% 95.33% 97.28% 92.07% 87.51% 80.60 % 90.62%
Pi-FT[24] 87.93% 95.59% 97.54% 92.37% 88.08% 80.72% 90.56%
Ours 88.11% 96.35% 97.98% 93.14% 88.06% 81.03% 90.20%

the proposed method is based on the Faster RCNN, this section also selected Faster RCNN as the baseline
of PN-based two-stage detectors.

For the fair comparison, we chosen two PU-based detectors that adopted Faster RCNN as the base model.
These two methods are detailed in Section 3.4. The first one is Pi-GS (Grid Search) [49], which estimates
the class prior probability by conducting a grid search on the validation set with a search interval of 0.1
and repeating training 10 times. The second method is Pi-FT (Fixed Threshold) [34], which utilizes a fixed
threshold to filter out the positive anchors by comparing their confidence scores with this threshold. In
summary, we use M-YOLO v3, D-YOLO v3, M-YOLO v4, D-YOLO v4, D-YOLOv5, Pi-GS, and Pi-FT as
the comparison methods.

4.3 Evaluation metrics

In this paper, we introduce the COCO evaluation metrics, a popular metrics for object detection, from the
COCO challenge [50]. The COCO metrics is designed based on the principal metric, mAP@T , which

stands for the mAP with IoU threshold equaling T . For example, AP@0.5 and AP@0.75 are the typical
mAP metrics, provided by the COCO metrics. AP in COCO metrics represents the average of mAP with
IoU threshold varying from 0.5 to 0.95 (interval 0.05 ). Finally, AP-category is the AP being applied to
one particular category, such as AP-String, APGood, AP-Broken, and AP-Flashover-Damage (shorted as
AP-FlashoverD) in our experiments.

4.4 Detection results

This section presents the detection results of different methods under 1.0, 0.7, 0.5, and 0.3 Annotation
PerCent (APC), as shown in Tables 2-5. Meanwhile, Figures 8-9 visualize the detection results of different
methods, providing a more intuitive display of the results. In detail, Figure 8 (I) and (II) depict the detection
results under 1.0 and 0.7 APCs, respectively. Figures 9 (I) and (II) individually present the detection results
under 0.5 and 0.3 APCs.

4.4.1 Detection results with IDID’s annotations

12
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The IDID dataset is used as a fully annotated dataset in reality. But there are some samples with missing
annotations due to the dense arrangement of insulators and oversights by annotators. Some examples of
missing annotations are shown in Section 4.1.1. Therefore, even though all the IDID’s annotations are used,
it still belongs to incomplete annotation setting. We constructed the first experiment under all annotations
provided by the IDID dataset. The detection results are summarized in Table 2, and the visualization of
prediction results are shown in Figure 8 (I).

Rows 1-6 of Table 2 display the detection results of PN-based, primarily from one-stage (rows 1-5) and
two-stage (row 6) networks. YOLO v5 significantly outperforms other one-stage networks with an Average
Precision (AP) of 84.50%, an AP@0.75 of 96.20%, and an AP@0.5 of 98.30%. However, the two-stage Faster
RCNN achieved an AP of 87.19%, which is approximately 2.69% higher than YOLO v5. This demonstrates
that Faster RCNN exhibits the best performance among the above PN learning frameworks.

PU-based methods with Faster RCNN as the backbone are represented in rows 7-9 of Table 2. They
have improved detection performance in comparison with PN-based detectors. Among these methods, our
proposed Pi-Index obtained the highest performance with an AP metric of 88.25%, which to some extent

13
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indicates the advantage of Pi-Index in estimating the class prior. Moreover, the AP values of Pi-GS [49] and
Pi-FT [34] are 0.41% and 0.18% lower than Pi-Index, respectively. The reason may be that their class prior
estimates are based on a hyper-parameter or a fixed threshold. This parameter or threshold is determined via
grid search, but the search interval of 0.1 may stride over the optimal value and further lead to performance
deterioration.

Figure 8 (I) shows the detection results of various methods with APC=1. The different columns correspond
to different insulator detection scenarios, while each row is the detection result of a particular method. Rows
(a)-(h) display manual labels and prediction results of M-YOLO v3, D-YOLO v3, M-YOLO v4, D-YOLO
v4, YOLOv5, Pi-FT, and our Pi -Index. The green solid and red dashed boxes in the figure represent
the Ground-Truth bounding Boxes (GT-Boxes) and predicted boxes, respectively. The text in the upper
left corner of each GT-Box and predicted box individually indicates the annotated and predicted category,
including: “String”, “Good”, “Broken”, and “FlashDamged”. To facilitate the analysis of prediction results,
yellow arrows are employed to number those small and densely arranged insulators. The analysis of detection
results is divided into two aspects: 1) The count of correctly detected insulators, i.e., whether any insulator
strings or insulators were missed or detected repeatedly; 2) The localization accuracy of predicted boxes for
the insulator strings or insulators.

In the first column of row (a), there is one insulator string and 13 insulators. In detail, the insulators at
positions (1)-(4) and (9)-(12) are labeled as “Good”, while those at positions (5), (7), and (13) are labeled
as “Broken”. However, the insulators at positions (6) and (8) are not labeled. All methods successfully
identified the insulator string. Furthermore, the comparison of (b)-(e) and (f)-(h) reveals that M/D-YOLO
v3 and v4 exhibit larger errors than YOLO v5 and two-stage algorithms in locating the string.

For the small-scale insulators, all methods correctly identify and accurately locate those at positions (1)-(3)
and (7). The detection errors of each method are mainly concentrated on positions (5) and (13). Primarily,
the “Broken” insulator at position (5) is misidentified as “Good” by M-YOLO v3, D-YOLO v3, and YOLO
v5, misclassed as “FlashDamaged” by D-YOLO v4, and repeatedly identified as both “Good” and “Broken”
by Pi-FT. Only M-YOLO v4 and the method proposed in this paper manage to correctly identify it. Next,
the “Broken” insulator at position (13) was missed by M-YOLO v3, M-YOLO v4, and YOLO v5. It was
misidentified as “Good” by D-YOLO v3 and “FlashDamaged” by D-YOLO v4. Only Pi-FT and our proposed
method correctly identified it. By comprehensively considering the detection results of position (5) and (13),
it reveals that M-YOLO v4, Pi-FT, and Pi-Index demonstrate superior performance.

Compared with Pi-Index, M-YOLO v4 not only misclassed the “Good” at position (9) as “Broken” but
also missed the insulators at positions (10)-(12). In the detection results of Pi-FT, false alarms occurred
at positions (4) and (5). They individually belong to the categories of “Broken” and “Good”, but are
simultaneously identified as both “Good” and “Broken”. This further substantiates the superiority of the
Pi-Index over the other two algorithms. There are another two unlabeled targets at positions (6) and (8).
Neither M-YOLOv4 nor YOLO v5 recognized them, while M-YOLO v3 and D-YOLOv4 only recognized
positions (6) and (8), respectively. By contrast, D-YOLO v3, Pi-FT, and ours recognized the insulators at
positions (6) and (8). In summary, our proposed method not only achieves the overall best performance for
the labels provided by IDID but also yields competitive results on unlabeled data.

The second column in Figure 8 (I) contains one insulator string that is composed of 12 insulators. However,
seven insulators therein were annotated in IDID as either “Good” or “Broken”. The former category includes
six insulators at positions (1)-(4), (8), and (9), while the latter category includes only one insulator at position
(5). It is worth noting that the insulator at position (9) was repeatedly annotated as “Good”.

Table 3: Detection results of our method and the baseline method with (APC=0.7) in the training process.

Methods AP AP@0.75 AP@0.5 AP-String AP-Good AP-Broken AP-FlashD

YOLO v3 (MobileNet) 35.50% 35.20% 64.30% 39.50% 49.10% 18.40% 35.10%
YOLO v3 (DarkNet53) 58.30% 68.90% 90.70% 54.00% 66.20% 50.90% 62.20%
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Methods AP AP@0.75 AP@0.5 AP-String AP-Good AP-Broken AP-FlashD

YOLO v4 (MobileNet) 59.70% 72.70% 90.20% 62.60% 63.50% 50.80% 61.80%
YOLO v4 (DarkNet53) 64.10% 79.10% 92.70% 60.70% 68.60% 58.10% 69.10%
YOLO v5 (DarkNet53) 72.20% 87.00% 91.00% 71.70% 79.30% 63.00% 75.00%
Faster RCNN 76.04 % 88.08 % 92.66 % 84.24 % 77.04 % 66.15% 76.72 %
Pi-GS 77.01% 87.25% 91.43% 82.61% 78.14% 67.13% 80.14%
Pi-FT 76.66% 87.41% 90.92% 81.15% 76.84% 67.89% 80.74%
Ours 79.57% 89.45% 92.64% 83.85% 82.13% 68.96% 83.36%

The detection results of (b)-(h) show that all methods have identified the insulator string. However, there
was a false alarm in M-YOLO v3, and three more insulator strings were detected in detail. Meanwhile, the
predicted boxes from D-YOLO v3, M-YOLO v4, and D-YOLO v4 exhibit a relatively larger error on the
right border. On the contrary, YOLO v5, Pi-FT, and Pi-index provide the more accurate localization for
the insulator string.

In the detection of insulators, YOLO v5, Pi-FT and our proposed Pi-Index correctly identified seven insula-
tors (annotated in IDID) and the other methods had missed insulators to varying extent. This demonstrates
that the Pi-Index achieved competitive results on the annotated insulators in IDID. Furthermore, the IDID
dataset lacks annotations at positions (6), (7), (10), (11), and (12). Based on the aforementioned analysis,
we further compared the performance of YOLO v5, Faster RCNN, and Pi-Index on unannotated insulators.
recognized the unannotated insulators at positions (7) and (10). Therefore, both annotated and unannotated
experimental results proved the effectiveness of Pi-Index.

4.4.2 Detection results under 0.7 annotation percentage

A decrease in data annotations inevitably results in a decline in the performance of the model. This circum-
stance facilitates a more comprehensive exploring the performance of different algorithms under imperfect
labeling conditions. In this section, we further increase the proportion of unlabeled targets in the dataset. In
detail, we randomly delete 30% of the labels in the IDID dataset. The detection results of different methods
are organized in Table 3, and the visualization of annotated and predicted boxes is shown in Figure 8 (II).

From Tables 2 and 3 (1.0 vs. 0.7 APCs), it can be seen that each method’s performance in Table 3 has
declined compared with the counterpart in Table 2. Meanwhile, the performance differences between the
various methods become more significant while maintaining consistency in trends. As detailed in Table 3,
YOLO v5 surpassed other one-stage detectors (rows 1-4) with an AP value of 72.2%. Nevertheless, the
AP, AP@0.75, and AP@0.5 of Faster RCNN are 3.84%, 1.08%, and 1.66% higher than those of YOLO v5,
respectively.

Compared with Faster RCNN, the AP value of Pi-GS, Pi-FT, and Pi-Index have shown improvements of
2.56%, 2.91%, and 3.53%, respectively. This indicates that the addition of PU loss can effectively alleviate
the effect of missing labels. From the last three rows in Table 3, Pi-Index achieved the best performance
with an AP value of 79.57%, an AP@0.75 of 89.45%, and an AP@0.5 of 92.64%, which also outperformed
other mainstream algorithms in each category’s AP. As depicted in Table 2, when compared to Pi-GS and
Pi-FT, Pi-Index exhibits a marginal improvement in the AP metric by less than 0.50%. But in Table 3, the
AP of Pi-Index increased by 2.56% and 2.91% compared to those of Pi-GS and Pi-FT, respectively. This
proves that the Pi-Index can achieve more significant performance improvements as the amount of unlabeled
data increases.

Figure 8 (II) displays the detection results of seven methods, which are identical to those depicted in Figure
8 (I), under an APC of 0.7. The two columns in Figure 8 (II) correspond to two images with insulators. The
first image or column contains a total of two insulator strings and 12 insulators. The insulators within the
left-hand string are distributed evenly and appear relatively large in the image. Whereas the insulators in the
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right insulator string are densely arranged, and some insulators therein are occluded due to shooting reasons.
Consequently, distinguishing the insulators located on the right side poses a greater challenge compared to
those on the left side. According to the IDID dataset, the insulators at positions (2), (3), (5), (6), and
(7)-(12) have been annotated as “Good”, while the insulator at position (4) has been labeled as “Broken”.

From (b)-(h) in the first column of Figure 8 (II), all methods have successfully identified the insulator string
on the left, whereas they failed to identify the insulator string on the right. This discrepancy is presumably
due to a greater degree of occlusion affecting the insulator string on the right. Both M/D-YOLO v3 and
M/D-YOLO v4 exhibited larger localization errors for the left insulator string compared to other methods.
Specifically, the lower bounds of the predicted boxes for M/D-YOLO v3 and D-YOLO v4 exceeded the
ground-truth lower bound by a large amount. The localization error of M-YOLO v4 was reflected in the
larger predicted box, which enclosed the GT-Box. Furthermore, the Pi-Index possessed the highest overlap
between its predicted box and the GT-Box than YOLO v5 and Pi-FT. These results indicate that the
Pi-Index is more accurate for localizing insulator strings.

For small target insulators, M-YOLO v3 and YOLO v5 exhibited subpar performance with an accuracy
rate below 50%. D-YOLO v3, M-YOLO v4, and Pi-FT successfully detected seven insulators. The first six
insulators detected by all of them are positions (3)-(5), (7), (9), and (10). The seventh insulator detected
by D-YOLO v3, M-YOLO v4, and Pi-FT is position (1), (2), and (12), respectively.

Furthermore, D-YOLO v4 and Pi-Index have correctly identified 8 insulators, indicating that these two
methods outperformed the previously mentioned methods. For the localization of the left insulator strings,
the predicted box of D-YOLO v4 was shifted to the right side of the GT-Box. Additionally, the lower
boundary of the predicted box extended beyond the GT-Box. Contrastingly, Pi-Index generated a predicted
bounding box that exhibited a large overlap with the GT-Box. Furthermore, we conducted a comparative
analysis between D-YOLO v4 and Pi-Index based on their respective performance in detecting insulators
within insulator strings. In the case of the left insulator string, both D-YOLO v4 and Pi-Index correctly
identified the insulators at positions (1)-(4). However, D-YOLO v4 exhibited a large offset when locating
insulators at positions (1) and (2). Within the right insulator string, both D-YOLO v4 and Pi-Index
detected four insulators. Despite these detected insulators being located at different positions, there was
a significantly greater overlap between GT-Boxes and the predicted bounding boxes produced by Pi-Index
than those produced by D-YOLO v4. In conclusion, the proposed Pi-Index exhibits superior performance
to the comparison algorithm in terms of both the number of correct detections and localization accuracy.

The second column of both Figure 8 (I) and (II) shared the same image or detection scenario. This scenario
consisted of one insulator string and 12 insulators. It is worth noting that the same scenario was applied
with different data APCs during the training process, which led to different detection results. The following
analysis is based on APC = 0.7.

In Figure 8 (II), with the exception of M-YOLO v3, all other methods failed to successfully identify the
insulator string. This may be attributed to the fact that during the process of reducing the APC, labels
for insulator strings within similar scenes were randomly eliminated, resulting in their being interpreted
by the network as background. However, M-YOLO v3 misclassified the insulators at positions (2)-(7) as
an insulator string. Combining the detection results of M-YOLO v3 under APC=1 (in the second column
of Figure 8 (I)), it can be seen that M-YOLO v3 identified up to four insulator strings. These identified
insulator strings only encompassed a portion of the insulators present within the annotated insulator string.
Therefore, we may conclude that M-YOLO v3 has a tendency to identify a series of consecutive insulators as
forming an insulator string, rather than detecting the entire insulator string. Contrastingly, the remaining
methods failed to detect the insulator string.

Table 4: Detection results of our method and the baseline method with (APC=0.5) in the training process.

Methods AP AP@0.75 AP@0.5 AP-String AP-Good AP-Broken AP-FlashD

YOLO v3 (MobileNet) 31.90% 29.80% 59.80% 35.70% 47.90% 14.30% 29.60%
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Methods AP AP@0.75 AP@0.5 AP-String AP-Good AP-Broken AP-FlashD

YOLO v3 (DarkNet53) 52.30% 57.00% 86.60% 49.60% 59.70% 45.30% 54.60%
YOLO v4 (MobileNet) 54.50% 62.40% 87.20% 54.20% 62.40% 48.50% 52.90%
YOLO v4 (DarkNet53) 59.80% 70.80% 88.50% 54.10% 68.40% 53.80% 62.90%
YOLO v5 (DarkNet53) 62.20% 76.90% 85.50% 59.00% 71.40% 56.40% 61.90%
Faster RCNN 69.35 % 80.88 % 88.85 % 75.42 % 71.04 % 59.34 % 71.60 %
Pi-GS 69.90% 81.86% 88.56% 74.23% 73.26% 59.40% 72.69%
Pi-FT 70.45% 83.12% 91.06% 73.86% 74.34% 59.73% 73.85%
Ours 73.49% 84.43% 89.22% 79.74% 78.33% 62.45% 73.42%

For the insulators, M-YOLO v3, D-YOLO v3, and M-YOLO v4 each detected no more than two insulators,
indicating their poor detection performance. D-YOLO v4 correctly detected the majority of the insulators,
with the exception of those at positions (4) and (9). In contrast, YOLO v5, Pi-FT, and ours Pi-Index were
able to accurately detect all of the insulators. These results show that Pi-Index is capable of achieving high
detection performance under labeled conditions.

Furthermore, we compared the details in the detection results of YOLO v5, Pi-FT, and Pi-Index. Firstly,
the detection results at positions (3)-(5) indicate that both Pi-FT and Pi-Index were significantly more
accurate in locating insulators than YOLO v5. Subsequently, Pi-Index also identified the unannotated
insulator at position (7). This further demonstrated the effectiveness of the proposed method when applied
to unannotated data. Although D-YOLO v4 was able to detect two unannotated insulators, its failure to
detect some annotated insulators resulted in an overall detection performance that was inferior to that of
the Pi-Index.

4.4.2 Detection results under 0.5 annotation percentage

This section provides a summary of the detection results obtained using an APC value of 0.5. Table 4
presents quantitative results, including values for AP, AP@0.75, and AP@0.5. The visualized prediction
results are illustrated in Figure 9 (I).

Rows 1-5 of Table 4 present results for one-stage detectors based on PN learning. YOLO v5 achieved an
AP value of 62.2%, demonstrating a significant advantage over the other one-stage detectors. In contrast,
the two-stage Faster RCNN method outperformed the aforementioned one-stage methods, achieving an AP
value of 69.35%, an AP@0.75 value of 80.88%, and an AP@0.5 value of 88.85%.

The PU-based methods in rows 7-9 can be viewed as the combination of Faster RCNN and PU loss. These
PU-based methods have achieved better performance than Faster RCNN, as shown in the sixth row. The AP
metric of Pi-Index is 3.59% higher than that of Pi-GS and 3.04% higher than that of Pi-FT. A comparison
of Tables 2-4 reveals that the performance of each method deteriorated to a certain extent as the labeling
ratio decreased. However, the degree of deterioration for Pi-Index is relatively small compared to other
mainstream methods. In other words, the performance improvement of Pi-Index is more significant than
other mainstream algorithms.

Figure 9 (I) shows the detection results of the seven above methods with an APC of 0.5. As shown in (a)
of the first column, the image contains one insulator string and a total of 11 insulators. The insulators at
positions (1), (3)-(5), and (7)-(11) are labeled as “Good”, whereas the insulator at position (6) is labeled as
“FlashDamaged”.
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In the first column, from (b) to (h), all methods except for M/D-YOLO v4 and YOLO v5 correctly identified
the insulator string. However, compared to Pi-FT and Pi-Index, M/D-YOLO v3 had a larger localization er-
ror for insulator strings. Specifically, the right boundary of the predicted box by M-YOLO v3 was inaccurate,
while the upper boundary of the predicted box by D-YOLO v3 exceeded the GTBox.

For the relatively small insulators, all methods correctly classified the insulators at positions (1), (3), and
(10). The positions that are easily undetected or misclassified by these methods are (6), (7), and (11).
According to the IDID’s annotations, M-YOLO v3 missed the insulators at positions (4), (6), and (7). D-
YOLO v3 misclassified the “FlashDamaged” insulator at position (6) as “Good” and missed the insulators at
positions (7) and (11). M-YOLO v4 missed the insulators at positions (6) and (7), and further misidentified
the “Good” insulator at position (11) as “FlashDamaged”. D-YOLO v4 missed 3 insulators at positions (5),
(7), and (8). YOLO v5 missed the insulator at position (9) and had false alarms at positions (8) and (11),
in which the “Good” insulators were identified as “Good” and “FlashDamaged”. Both Pi-FT and Pi-Index
detected the “Good” insulator at position (11) as both “Good” and “FlashDamaged”.

In summary, Pi-FT and Pi-Index were the most effective algorithms for labeled data. It is worth noting that
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the insulator at position (2) was not labeled in the IDID dataset, yet only Pi-Index was able to identify it.
This demonstrates that Pi-Index is more effective for unlabeled data than other mainstream algorithms.

In the second column of Figure 9 (I), there is one insulator string containing 12 insulators. The insulators
at positions (1) and (12) were only partially visible in the image, while the rest were entirely visible with
clear edges. Specifically, positions (1)-(4), (6), and (8)-(12) were labeled as “Good”, whereas positions (5)
and (7) were labeled as “Broken”.

The insulator string was identified only by D-YOLO v4, Pi-FT, and Pi-Index, whereas the rest of the methods
missed it. Moreover, we focused on the detection details of the insulator string by D-YOLO v4, Pi-FT, and
Pi-Index. D-YOLO v4 predicted a large error in locating the insulator string, and specifically its upper
boundary exceeded that of the GT-Box. Pi-FT had false alarms on the prediction of the insulator string.
The insulators at positions (1)-(5) and (3)-(12) were also misclassified as two separate insulator strings.
However, Pi-Index has the best performance on the localization of the insulator strings. It correctly detected
the insulators at positions (1)-(12) as one insulator string, and the boundary box basically overlaps with the
GT-Box.

For the small-size insulators, all methods correctly detected the insulators at positions (2)-(4), (6), and (9)-
(11). The differences of detection results from the above methods are mainly concentrated at positions (1),
(5), (7), (8), and (12). Both M-YOLO v3 and D-YOLO v3 missed three insulators at positions (1), (5), and
(12), but M-YOLO v3 further misidentified the “Good” insulator at position (7) as “Broken”. M/D-YOLO
v4 missed the insulators at positions (1) and (12). Pi-FT missed the insulators at positions (1) and (8),
while our Pi-Index only missed the insulator at position (1). YOLO v5 successfully detected all insulators,
performing better than other mainstream methods. In summary, Pi-Index is significantly better than other
mainstream algorithms except for YOLO v5.

When comparing Pi-Index and YOLO v5, we can be concluded that Pi-Index is significantly better than
YOLO v5 in terms of the large-scale insulator string. However, Pi-Index has a higher miss rate than
YOLOv5 in terms of the small-size insulators. Besides, Pi-Index outperforms YOLOv5 in terms of locating
small targets. This is specifically reflected in the overlap rate between the predicted box and the GT-Box
for the insulators at positions (5) and (7), where Pi-Index has a higher rate than that of YOLOv5.

4.4.2 Detection results under 0.3 annotation percentage

In this section, the APC is set to 0.3, which means that 70% of the labels in the IDID dataset are randomly
removed. The aim is to observe the detection performance of each method when labels are severely missing
and to verify the effectiveness of the algorithm proposed in this paper under such conditions.

In Tables 2-5, each detector’s performance deteriorated as the APC decreased. Contrary to the results of the
previous experiment, Table 5 shows that the AP metric of YOLO v5 is lower than that of D-YOLO v4. It
indicates that YOLO v5 is not suitable for the situation where there is a severe lack of labels. Nevertheless,
the two-stage Faster RCNN surpasses other PN-based methods with an AP of 58.57%, an AP@0.75 of
70.41%, and an AP@0.5 of 81.02%, which is consistent with previous experiments. According

Table 5: Detection results of our method and the baseline method with (APC=0.3) in the training process.

Methods AP AP@0.75 AP@0.5 AP-String AP-Good AP-Broken AP-FlashD

YOLO v3 (MobileNet) 25.30% 23.10% 49.39% 26.90% 45.10% 7.50% 21.70%
YOLO v3 (DarkNet53) 47.20% 52.30% 78.00% 48.10% 59.00% 36.90% 44.80%
YOLO v4 (MobileNet) 46.20% 51.90% 77.80% 47.40% 58.20% 34.40% 44.90%
YOLO v4 (DarkNet53) 53.40% 63.20% 80.40% 50.80% 65.50% 40.40% 56.90%
YOLO v5 (DarkNet53) 50.00% 58.60% 74.90% 41.40% 66.00% 42.50% 50.00%
Faster RCNN 58.57 % 70.41 % 81.02 % 64.52 % 62.98 % 41.92 % 62.30 %
Pi-GS 60.74% 72.15% 81.72% 65.24% 67.82% 48.37% 61.53%
Pi-FT 59.38% 70.00% 80.13% 66.25% 68.22% 44.25% 58.81%
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Methods AP AP@0.75 AP@0.5 AP-String AP-Good AP-Broken AP-FlashD

Ours 63.82% 75.37% 83.16% 72.2% 71.71% 47.55% 63.81%

to Table 5, Pi-GS, Pi-FT, and Pi-Index are individually 2.17%, 0.81%, and 5.25% higher than Faster RCNN’s
AP metric, indicating that PU learning can effectively improve the detection performance under severe label
missing conditions.

Figure 9 (II) displays the detection results of the seven methods with an APC value of 0.3. The first scenario,
shown in the first column of Figure 9 (II), contains an insulator string that consists of six insulators. The
insulator at position (6) is partially exposed, while the rest are clearly visible in the image. The insulators,
except for the one labeled as “Broken” in position (3), are labeled as “Good”.

For the insulator string, M/D-YOLO v3 did not recognize the insulator string, as shown in (b) and (c).
Meanwhile, the other methods were able to identify it successfully. However, D-YOLO v4 and YOLO v5
had large localization errors when detecting the insulator string. Specifically, the left and right boundaries
of the predicted box by D-YOLO v4 both exceeded the boundaries of the GTBox. The predicted box by
YOLO v5 was completely enclosed within the GTBox. For small-size insulators, M-YOLO v3 and M-YOLO
v4 missed all insulators. D-YOLO v3 and D-YOLO v4 detected only two insulators, while YOLO

v5 and Pi-FT detected three insulators. Therefore, Pi-Index outperformed the other methods with four
insulators detected correctly.

There is one insulator string and seven insulators in the second scenario, shown in the second column of
Figure 9 (II). The insulators are arranged closely and the positions (1)-(5) labeled as “Good”, while the
insulator at position (7) labeled as “FlashDamaged”. From the detection results of the insulator string,
it can be seen that the results from all the methods are poor. Only Pi-FT and Pi-Index were able to
successfully recognize the insulator string. For the insulators, M/D-YOLO v3 and M-YOLO v4 did not
detect any insulators, while D-YOLO v4 only detected the insulator at position (3). This indicates that
these methods have a high rate of missed detections. The performance of YOLO v5 and Pi-FT is slightly
better. In detail, they only missed the insulator at position (7). Pi-Index further successfully identified the
insulator at position (7). The detection results demonstrated that Pi-Index performed best for detecting
insulators in contrast to the other detectors.

4 Conclusion

In this paper, we propose a framework to explore insulator defect detection under circumstances that combine
incomplete annotation and sample imbalance. The framework introduces a PU-RPN that integrates improved
PU learning with RPN and incorporates focal loss into the ROI Head. On one hand, the improved PU loss
is used to address the problem of incomplete annotation by appropriately calibrating the losses of different
samples. In addition, the proposed Pi-Index strategy is responsible for estimating a more accurate class prior
by combining classification confidence scores from RPN and predicted boxes from ROIHead. On the other
hand, focal loss is incorporated into the ROI Head to alleviate performance degradation caused by sample
imbalance. To verify the effectiveness of our proposed framework, we conducted two groups of experiments.
The experimental results demonstrate that our method outperforms not only the baseline method or Faster
RCNN, but also other mainstream methods. Specifically, our method achieved the highest AP metrics
(88.11% for 1.0 APC, 79.57% for 0.7 APC, 73.49% for 0.5 APC, and 63.82% for 0.3 APC) with different
proportions of annotations when compared to mainstream methods.
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