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Abstract

Global change alters the stability of biological communities by affecting species richness and how species covary through time

(i.e., synchrony). There are few large-scale empirical tests of stability-diversity-synchrony relationships and those mostly focus

on the terrestrial realm. Moreover, the effect of synchrony is largely unknown when species only covary at either high or low

extremes of abundance (i.e., tail-dependent synchrony), a common phenomenon in ecological communities. Here, we synthesized

long-term community time-series data (20+ years of species’ abundances/biomass for 2,668 communities across 7 taxonomic

groups) from both terrestrial and freshwater realms and explored how the relationships among richness, synchrony, and stability

vary across realms. We also investigated the effect of tail-dependent synchrony on stability across 714 freshwater and 1,954

terrestrial communities. For terrestrial communities, we found a positive diversity-stability relationship and that the tail-

dependent synchrony was a more important determinant of stability than the traditional measure of overall synchrony (i.e.,

based on the covariation of all species). For freshwater communities, only overall synchrony explained some variation in stability.

Assessing tail-dependent synchrony can improve our ability to understand why stability varies across different ecosystems and

thereby our inferences about the causes of human-mediated biodiversity loss.
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Abstract:  63 

Global change alters the stability of biological communities by affecting species richness and how 64 

species covary through time (i.e., synchrony). There are few large-scale empirical tests of stability-65 

diversity-synchrony relationships and those mostly focus on the terrestrial realm. Moreover, the 66 

effect of synchrony is largely unknown when species only covary at either high or low extremes 67 

of abundance (i.e., tail-dependent synchrony), a common phenomenon in ecological communities. 68 

Here, we synthesized long-term community time-series data (20+ years of species’ 69 

abundances/biomass for 2,668 communities across 7 taxonomic groups) from both terrestrial and 70 

freshwater realms and explored how the relationships among richness, synchrony, and stability 71 

vary across realms. We also investigated the effect of tail-dependent synchrony on stability across 72 

714 freshwater and 1,954 terrestrial communities. For terrestrial communities, we found a positive 73 

diversity-stability relationship and that the tail-dependent synchrony was a more important 74 

determinant of stability than the traditional measure of overall synchrony (i.e., based on the 75 

covariation of all species). For freshwater communities, only overall synchrony explained some 76 

variation in stability. Assessing tail-dependent synchrony can improve our ability to understand 77 

why stability varies across different ecosystems and thereby our inferences about the causes of 78 

human-mediated biodiversity loss. 79 

 80 

 81 

 82 

 83 
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Introduction 84 

Temporal synchrony of communities, the tendency for multiple species to fluctuate synchronously 85 

through time at the same site, can strongly influence the persistence of populations in the face of 86 

environmental variability (Yachi & Loreau 1999; Valencia et al. 2020). Communities are more 87 

likely to persist in variable environments when species have low synchrony and respond differently 88 

to environmental perturbations, making a community more stable (Yachi & Loreau 1999; Craven 89 

et al. 2018). In contrast, high synchrony, where species respond similarly to environmental change, 90 

can increase the variability in total community biomass making a community less stable (Loreau 91 

& de Mazancourt 2008). Additionally, species can have similar threshold-like responses to 92 

environmental changes (Walter et al. 2022), such as high mortality beyond a temperature threshold 93 

(Bragazza 2008) or high productivity beyond a resource threshold (Interlandi & Kilham 2001). In 94 

such cases, species can become synchronous when they have either simultaneously low abundance 95 

or simultaneously high abundance, and thus are strongly correlated only in their extreme 96 

abundances (Figure 1). For example, when plant species are synchronously rare (i.e., having low 97 

abundance) in drought conditions, traditional measures of synchrony will underestimate extinction 98 

risk in the community (Ghosh et al. 2021). Alternatively, when pest species are synchronously 99 

abundant, due to shared phenological responses to temperature thresholds (Ghosh et al. 2020b), 100 

an assessment of synchrony at the extremes can help identify risks to crop production. 101 

Synchrony at the extremes (also referred to as tail-dependent synchrony (Ghosh et al. 2020b, 2021; 102 

Walter et al. 2022)) has been routinely overlooked in previous analyses of community dynamics, 103 

even though it is central to understanding how species richness influences stability (Ghosh et al. 104 

2021). Stability, the inverse of temporal variability of the sum of species’ abundances (or biomass) 105 

in a community (McCann 2000; Pennekamp et al. 2018), often increases with species richness and 106 

https://paperpile.com/c/HD8Due/OMEb+BrgJ
https://paperpile.com/c/HD8Due/OMEb+BrgJ
https://paperpile.com/c/HD8Due/OMEb+BrgJ
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https://paperpile.com/c/HD8Due/olBy
https://paperpile.com/c/HD8Due/nbKs
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https://paperpile.com/c/HD8Due/nbKs
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https://paperpile.com/c/HD8Due/idn0
https://paperpile.com/c/HD8Due/idn0
https://paperpile.com/c/HD8Due/idn0
https://paperpile.com/c/HD8Due/idn0+M7Nb+nbKs
https://paperpile.com/c/HD8Due/idn0+M7Nb+nbKs
https://paperpile.com/c/HD8Due/idn0+M7Nb+nbKs
https://paperpile.com/c/HD8Due/idn0+M7Nb+nbKs
https://paperpile.com/c/HD8Due/idn0+M7Nb+nbKs
https://paperpile.com/c/HD8Due/idn0+M7Nb+nbKs
https://paperpile.com/c/HD8Due/M7Nb
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decreases with overall synchrony. A positive relationship between richness and stability can result 107 

from statistical averaging of multiple independent population time series, a phenomenon known 108 

as the portfolio effect (Doak et al. 1998; Cottingham et al. 2001). Alternatively, a negative 109 

relationship between stability and synchrony can result from differential population responses of 110 

species to environmental change, i.e., the insurance hypothesis (Naeem & Li 1997; Yachi & 111 

Loreau 1999). Typically, overall synchrony is measured using pairwise covariances among all 112 

species (Peterson 1975; Loreau & de Mazancourt 2008), but these metrics do not account for 113 

potential correlations between species when both have either simultaneously low or high 114 

abundance relative to their mean abundance over time. Here, we explicitly consider how pairwise 115 

correlations can emerge between species when they have simultaneously either high or low 116 

abundances (Figure 1a, b). This approach, which uses time series of ranked abundances to quantify 117 

tail-dependent synchrony (Ghosh et al. 2020a) (see Materials & Methods), complements 118 

traditional overall measures of synchrony and provides additional insight into the relationship 119 

between synchrony and stability. For instance, measuring overall synchrony for a grassland 120 

community that is repeatedly exposed to droughts would be unlikely to account for co-variation in 121 

drought-dependence among grassland species, and thereby potentially overestimate the stability 122 

of the community. An overestimate of stability is, in fact, a general outcome of ignoring synchrony 123 

that can emerge at the extremes of species abundances (Ghosh et al. 2021). Integrating tail-124 

dependent synchrony into the ecological theory of community stability thus provides a broader 125 

perspective on synchrony and novel insight into how community stability will vary across time 126 

and space. 127 

Here, we evaluate the influence of richness, overall synchrony, and tail-dependent synchrony on 128 

community stability using time series across multiple taxonomic groups from 2,668 communities 129 

https://paperpile.com/c/HD8Due/4DXQ+8izc2
https://paperpile.com/c/HD8Due/4DXQ+8izc2
https://paperpile.com/c/HD8Due/4DXQ+8izc2
https://paperpile.com/c/HD8Due/4DXQ+8izc2
https://paperpile.com/c/HD8Due/4DXQ+8izc2
https://paperpile.com/c/HD8Due/BrgJ+RMyo
https://paperpile.com/c/HD8Due/BrgJ+RMyo
https://paperpile.com/c/HD8Due/iz4q+olBy
https://paperpile.com/c/HD8Due/H8CE
https://paperpile.com/c/HD8Due/H8CE
https://paperpile.com/c/HD8Due/H8CE
https://paperpile.com/c/HD8Due/M7Nb
https://paperpile.com/c/HD8Due/M7Nb
https://paperpile.com/c/HD8Due/M7Nb
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in freshwater (n=714) and terrestrial (n=1,954) realms. We considered the two realms 130 

independently as it is well recognized that the process underlying biodiversity dynamics may differ 131 

within (i.e., among taxa) and across realms (Blowes et al. 2019; Antão et al. 2020; van Klink et 132 

al. 2020). Previous work has suggested that (i) differences in the extent of niche packing of species 133 

along environmental gradients can contribute to differences in overall richness among realms (e.g. 134 

between marine and terrestrial systems) (May et al. 1994; Mora et al. 2011; Grosberg et al. 2012), 135 

(ii) underlying drivers of biodiversity loss can differ among terrestrial, freshwater, and marine 136 

systems (Jaureguiberry et al. 2022), and (iii) contrasting physical (e.g. light attenuation), chemical 137 

(e.g. nutritional quality), and habitat properties (e.g. connectivity) of ecosystems can lead to 138 

different expected biodiversity responses to environmental change (McFadden et al. 2023). Using 139 

data from both freshwater and terrestrial realms we evaluate how richness, overall synchrony, and 140 

tail-dependent synchrony influence community stability (Tilman et al. 1998; McCann 2000; 141 

Cottingham et al. 2001; Loreau & de Mazancourt 2013) between realms. 142 

Materials & Methods 143 

Data processing: We compiled long-term (a minimum of 20 years sampled) community time 144 

series data across 7 taxa (terrestrial birds: n=1,259, invertebrates: n=124, plants: n=435, and 145 

mammals: n=136, freshwater fish: n=587, invertebrates: n=112, and phytoplankton: n=15) from 146 

the terrestrial (n=1,954) and freshwater (n=714) realms, using several databases  (e.g., BioTIME 147 

(BioTIME Consortium 2018; Dornelas et al. 2018), RivFIshTIME (Comte et al. 2021), Breeding 148 

Bird Survey (Pardieck et al. 2020), SLU database (MVM-Start 2020)), NZ Freshwater Fish 149 

Database (NIWA 2016), Long Term Resource Monitoring Program database (Upper Midwest 150 

Environmental Sciences Center 2016)), and other studies (Beven 1976; Kendeigh 1982; 151 

Williamson 1983, 1987; Hall 1984; Vickery & Nudds 1984; Moore 1991; Gibbons et al. 1993; 152 

https://paperpile.com/c/HD8Due/oFdm+ocZm+5wHx
https://paperpile.com/c/HD8Due/oFdm+ocZm+5wHx
https://paperpile.com/c/HD8Due/oFdm+ocZm+5wHx
https://paperpile.com/c/HD8Due/oFdm+ocZm+5wHx
https://paperpile.com/c/HD8Due/oFdm+ocZm+5wHx
https://paperpile.com/c/HD8Due/oFdm+ocZm+5wHx
https://paperpile.com/c/HD8Due/oFdm+ocZm+5wHx
https://paperpile.com/c/HD8Due/oFdm+ocZm+5wHx
https://paperpile.com/c/HD8Due/0UO9+oNJI+CO3O
https://paperpile.com/c/HD8Due/0UO9+oNJI+CO3O
https://paperpile.com/c/HD8Due/0UO9+oNJI+CO3O
https://paperpile.com/c/HD8Due/0UO9+oNJI+CO3O
https://paperpile.com/c/HD8Due/0UO9+oNJI+CO3O
https://paperpile.com/c/HD8Due/0UO9+oNJI+CO3O
https://paperpile.com/c/HD8Due/0UO9+oNJI+CO3O
https://paperpile.com/c/HD8Due/mBOfH
https://paperpile.com/c/HD8Due/mBOfH
https://paperpile.com/c/HD8Due/mBOfH
https://paperpile.com/c/HD8Due/Aocoo
https://paperpile.com/c/HD8Due/Aocoo
https://paperpile.com/c/HD8Due/Aocoo
https://paperpile.com/c/HD8Due/3quo+QrqE+9gEs+8izc2
https://paperpile.com/c/HD8Due/3quo+QrqE+9gEs+8izc2
https://paperpile.com/c/HD8Due/3quo+QrqE+9gEs+8izc2
https://paperpile.com/c/HD8Due/3quo+QrqE+9gEs+8izc2
https://paperpile.com/c/HD8Due/3quo+QrqE+9gEs+8izc2
https://paperpile.com/c/HD8Due/3quo+QrqE+9gEs+8izc2
https://paperpile.com/c/HD8Due/AJeP+Og1B
https://paperpile.com/c/HD8Due/AJeP+Og1B
https://paperpile.com/c/HD8Due/AJeP+Og1B
https://paperpile.com/c/HD8Due/Ayjr
https://paperpile.com/c/HD8Due/Ayjr
https://paperpile.com/c/HD8Due/Ayjr
https://paperpile.com/c/HD8Due/RYmB
https://paperpile.com/c/HD8Due/RYmB
https://paperpile.com/c/HD8Due/RYmB
https://paperpile.com/c/HD8Due/IOJ4u
https://paperpile.com/c/HD8Due/EyVT
https://paperpile.com/c/HD8Due/eVBK
https://paperpile.com/c/HD8Due/eVBK
https://paperpile.com/c/HD8Due/aiKTF+qLC9+8QjO+bKaM+g9Wss+WYtt+w16g+Sfn8+hriX+GG0g+j4gR+IySg+PUzg+Bb0a+1it3+ocZm+RwSwY+PKcIU+Am5Dz+x2cx2+iiHMk+XvGJy+dJ4Wv+e1p7d+sY1Xs+dhTbJ+1W5Nx+wZO4+Irdd+iYob+3cr0+tIcA+YNOe+c3eY+nSNu+aJrp+prBd+leb7k+JZ4Kg+GcoDK+Bceqk+GMEaZ+a9I9v+OzLFx+o1z3+I8OH+fgTO+bnF0+7w87+Yh96+QN3M+vVXx+Tm6oj+yDnEy+Hz9je+I2Dr+VwD7+g4JH
https://paperpile.com/c/HD8Due/aiKTF+qLC9+8QjO+bKaM+g9Wss+WYtt+w16g+Sfn8+hriX+GG0g+j4gR+IySg+PUzg+Bb0a+1it3+ocZm+RwSwY+PKcIU+Am5Dz+x2cx2+iiHMk+XvGJy+dJ4Wv+e1p7d+sY1Xs+dhTbJ+1W5Nx+wZO4+Irdd+iYob+3cr0+tIcA+YNOe+c3eY+nSNu+aJrp+prBd+leb7k+JZ4Kg+GcoDK+Bceqk+GMEaZ+a9I9v+OzLFx+o1z3+I8OH+fgTO+bnF0+7w87+Yh96+QN3M+vVXx+Tm6oj+yDnEy+Hz9je+I2Dr+VwD7+g4JH
https://paperpile.com/c/HD8Due/aiKTF+qLC9+8QjO+bKaM+g9Wss+WYtt+w16g+Sfn8+hriX+GG0g+j4gR+IySg+PUzg+Bb0a+1it3+ocZm+RwSwY+PKcIU+Am5Dz+x2cx2+iiHMk+XvGJy+dJ4Wv+e1p7d+sY1Xs+dhTbJ+1W5Nx+wZO4+Irdd+iYob+3cr0+tIcA+YNOe+c3eY+nSNu+aJrp+prBd+leb7k+JZ4Kg+GcoDK+Bceqk+GMEaZ+a9I9v+OzLFx+o1z3+I8OH+fgTO+bnF0+7w87+Yh96+QN3M+vVXx+Tm6oj+yDnEy+Hz9je+I2Dr+VwD7+g4JH
https://paperpile.com/c/HD8Due/aiKTF+qLC9+8QjO+bKaM+g9Wss+WYtt+w16g+Sfn8+hriX+GG0g+j4gR+IySg+PUzg+Bb0a+1it3+ocZm+RwSwY+PKcIU+Am5Dz+x2cx2+iiHMk+XvGJy+dJ4Wv+e1p7d+sY1Xs+dhTbJ+1W5Nx+wZO4+Irdd+iYob+3cr0+tIcA+YNOe+c3eY+nSNu+aJrp+prBd+leb7k+JZ4Kg+GcoDK+Bceqk+GMEaZ+a9I9v+OzLFx+o1z3+I8OH+fgTO+bnF0+7w87+Yh96+QN3M+vVXx+Tm6oj+yDnEy+Hz9je+I2Dr+VwD7+g4JH
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Standley et al. 1996; Stone et al. 1997; Merritt 1999; Gaston & Blackburn 2000; Holmes & Sherry 153 

2001; Enemar et al. 2004; NCEAS 10241 : Zilov: The 60-year data set of plankton dynamics in 154 

Lake Baikal et al. 2006; Svensson 2006; Bê che & Resh 2007; Bêche & Resh 2007; Friggens 2008; 155 

Rudstam 2008a, b; Rudstam & Jackson 2008a, b; Ernest et al. 2009; Day 2010; Lack 2010; 156 

Magnuson, J., S. Carpenter, and E. Stanley 2010; McLarney et al. 2010; Svensson et al. 2010; 157 

Zachmann et al. 2010; Lter 2011a, b; Wagner et al. 2011; Animal Demography Unit 2012; Harmon 158 

M & Franklin 2012; HawkCount 2012; HMANA 2012; Magnuson et al. 2012; Center for 159 

Limnology & Lter 2013; Sers 2013; Vasseur et al. 2014; Lightfoot 2015, 2016; Thackeray et al. 160 

2015; Gross 2016; Hartnett, D.C. & Collins, S.L. 2016; Joern 2016; Kaufman 2016; Sandercock 161 

2016; Willig, M. R. & Bloch, C. P. 2016; Carpenter, S., J. Kitchell, J. Cole, and M. Pace 2017; 162 

Landis 2018; “Finnish electrofishing register Hertta” 2019, “The Missouri Coteau Wetland 163 

Ecosystem Observatory” 2020; Blowes et al. 2019; Pomati et al. 2019; UK Environmental Agency 164 

2019; McLean et al. 2021).  165 

There are very few (<40) long-term datasets available from the marine realm (source: public 166 

database BioTIME), so we excluded marine systems from our analysis. A total of 242 study IDs 167 

for 2,668 communities have been included in this analysis (see Table S1). Eighty-five percent of 168 

the communities recorded abundance data (240 studies, 2,267 communities). Fifteen percent of the 169 

communities, all representing plant taxa, recorded biomass data instead (2 studies, 401 170 

communities). It is common for plant studies to use biomass, density or cover in place of 171 

abundance (Chiarucci et al. 1999; Larocque 2016), so we retained studies recording abundance or 172 

biomass in our analysis. Most of the data were identified at the species level. When species-level 173 

identification was not confidently available throughout the sampling periods (mainly for 174 

freshwater invertebrates, zooplankton, and phytoplankton), higher taxonomic level aggregation 175 
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https://paperpile.com/c/HD8Due/aiKTF+qLC9+8QjO+bKaM+g9Wss+WYtt+w16g+Sfn8+hriX+GG0g+j4gR+IySg+PUzg+Bb0a+1it3+ocZm+RwSwY+PKcIU+Am5Dz+x2cx2+iiHMk+XvGJy+dJ4Wv+e1p7d+sY1Xs+dhTbJ+1W5Nx+wZO4+Irdd+iYob+3cr0+tIcA+YNOe+c3eY+nSNu+aJrp+prBd+leb7k+JZ4Kg+GcoDK+Bceqk+GMEaZ+a9I9v+OzLFx+o1z3+I8OH+fgTO+bnF0+7w87+Yh96+QN3M+vVXx+Tm6oj+yDnEy+Hz9je+I2Dr+VwD7+g4JH
https://paperpile.com/c/HD8Due/aiKTF+qLC9+8QjO+bKaM+g9Wss+WYtt+w16g+Sfn8+hriX+GG0g+j4gR+IySg+PUzg+Bb0a+1it3+ocZm+RwSwY+PKcIU+Am5Dz+x2cx2+iiHMk+XvGJy+dJ4Wv+e1p7d+sY1Xs+dhTbJ+1W5Nx+wZO4+Irdd+iYob+3cr0+tIcA+YNOe+c3eY+nSNu+aJrp+prBd+leb7k+JZ4Kg+GcoDK+Bceqk+GMEaZ+a9I9v+OzLFx+o1z3+I8OH+fgTO+bnF0+7w87+Yh96+QN3M+vVXx+Tm6oj+yDnEy+Hz9je+I2Dr+VwD7+g4JH
https://paperpile.com/c/HD8Due/aiKTF+qLC9+8QjO+bKaM+g9Wss+WYtt+w16g+Sfn8+hriX+GG0g+j4gR+IySg+PUzg+Bb0a+1it3+ocZm+RwSwY+PKcIU+Am5Dz+x2cx2+iiHMk+XvGJy+dJ4Wv+e1p7d+sY1Xs+dhTbJ+1W5Nx+wZO4+Irdd+iYob+3cr0+tIcA+YNOe+c3eY+nSNu+aJrp+prBd+leb7k+JZ4Kg+GcoDK+Bceqk+GMEaZ+a9I9v+OzLFx+o1z3+I8OH+fgTO+bnF0+7w87+Yh96+QN3M+vVXx+Tm6oj+yDnEy+Hz9je+I2Dr+VwD7+g4JH
https://paperpile.com/c/HD8Due/aiKTF+qLC9+8QjO+bKaM+g9Wss+WYtt+w16g+Sfn8+hriX+GG0g+j4gR+IySg+PUzg+Bb0a+1it3+ocZm+RwSwY+PKcIU+Am5Dz+x2cx2+iiHMk+XvGJy+dJ4Wv+e1p7d+sY1Xs+dhTbJ+1W5Nx+wZO4+Irdd+iYob+3cr0+tIcA+YNOe+c3eY+nSNu+aJrp+prBd+leb7k+JZ4Kg+GcoDK+Bceqk+GMEaZ+a9I9v+OzLFx+o1z3+I8OH+fgTO+bnF0+7w87+Yh96+QN3M+vVXx+Tm6oj+yDnEy+Hz9je+I2Dr+VwD7+g4JH
https://paperpile.com/c/HD8Due/aiKTF+qLC9+8QjO+bKaM+g9Wss+WYtt+w16g+Sfn8+hriX+GG0g+j4gR+IySg+PUzg+Bb0a+1it3+ocZm+RwSwY+PKcIU+Am5Dz+x2cx2+iiHMk+XvGJy+dJ4Wv+e1p7d+sY1Xs+dhTbJ+1W5Nx+wZO4+Irdd+iYob+3cr0+tIcA+YNOe+c3eY+nSNu+aJrp+prBd+leb7k+JZ4Kg+GcoDK+Bceqk+GMEaZ+a9I9v+OzLFx+o1z3+I8OH+fgTO+bnF0+7w87+Yh96+QN3M+vVXx+Tm6oj+yDnEy+Hz9je+I2Dr+VwD7+g4JH
https://paperpile.com/c/HD8Due/aiKTF+qLC9+8QjO+bKaM+g9Wss+WYtt+w16g+Sfn8+hriX+GG0g+j4gR+IySg+PUzg+Bb0a+1it3+ocZm+RwSwY+PKcIU+Am5Dz+x2cx2+iiHMk+XvGJy+dJ4Wv+e1p7d+sY1Xs+dhTbJ+1W5Nx+wZO4+Irdd+iYob+3cr0+tIcA+YNOe+c3eY+nSNu+aJrp+prBd+leb7k+JZ4Kg+GcoDK+Bceqk+GMEaZ+a9I9v+OzLFx+o1z3+I8OH+fgTO+bnF0+7w87+Yh96+QN3M+vVXx+Tm6oj+yDnEy+Hz9je+I2Dr+VwD7+g4JH
https://paperpile.com/c/HD8Due/aiKTF+qLC9+8QjO+bKaM+g9Wss+WYtt+w16g+Sfn8+hriX+GG0g+j4gR+IySg+PUzg+Bb0a+1it3+ocZm+RwSwY+PKcIU+Am5Dz+x2cx2+iiHMk+XvGJy+dJ4Wv+e1p7d+sY1Xs+dhTbJ+1W5Nx+wZO4+Irdd+iYob+3cr0+tIcA+YNOe+c3eY+nSNu+aJrp+prBd+leb7k+JZ4Kg+GcoDK+Bceqk+GMEaZ+a9I9v+OzLFx+o1z3+I8OH+fgTO+bnF0+7w87+Yh96+QN3M+vVXx+Tm6oj+yDnEy+Hz9je+I2Dr+VwD7+g4JH
https://paperpile.com/c/HD8Due/aiKTF+qLC9+8QjO+bKaM+g9Wss+WYtt+w16g+Sfn8+hriX+GG0g+j4gR+IySg+PUzg+Bb0a+1it3+ocZm+RwSwY+PKcIU+Am5Dz+x2cx2+iiHMk+XvGJy+dJ4Wv+e1p7d+sY1Xs+dhTbJ+1W5Nx+wZO4+Irdd+iYob+3cr0+tIcA+YNOe+c3eY+nSNu+aJrp+prBd+leb7k+JZ4Kg+GcoDK+Bceqk+GMEaZ+a9I9v+OzLFx+o1z3+I8OH+fgTO+bnF0+7w87+Yh96+QN3M+vVXx+Tm6oj+yDnEy+Hz9je+I2Dr+VwD7+g4JH
https://paperpile.com/c/HD8Due/aiKTF+qLC9+8QjO+bKaM+g9Wss+WYtt+w16g+Sfn8+hriX+GG0g+j4gR+IySg+PUzg+Bb0a+1it3+ocZm+RwSwY+PKcIU+Am5Dz+x2cx2+iiHMk+XvGJy+dJ4Wv+e1p7d+sY1Xs+dhTbJ+1W5Nx+wZO4+Irdd+iYob+3cr0+tIcA+YNOe+c3eY+nSNu+aJrp+prBd+leb7k+JZ4Kg+GcoDK+Bceqk+GMEaZ+a9I9v+OzLFx+o1z3+I8OH+fgTO+bnF0+7w87+Yh96+QN3M+vVXx+Tm6oj+yDnEy+Hz9je+I2Dr+VwD7+g4JH
https://paperpile.com/c/HD8Due/aiKTF+qLC9+8QjO+bKaM+g9Wss+WYtt+w16g+Sfn8+hriX+GG0g+j4gR+IySg+PUzg+Bb0a+1it3+ocZm+RwSwY+PKcIU+Am5Dz+x2cx2+iiHMk+XvGJy+dJ4Wv+e1p7d+sY1Xs+dhTbJ+1W5Nx+wZO4+Irdd+iYob+3cr0+tIcA+YNOe+c3eY+nSNu+aJrp+prBd+leb7k+JZ4Kg+GcoDK+Bceqk+GMEaZ+a9I9v+OzLFx+o1z3+I8OH+fgTO+bnF0+7w87+Yh96+QN3M+vVXx+Tm6oj+yDnEy+Hz9je+I2Dr+VwD7+g4JH
https://paperpile.com/c/HD8Due/aiKTF+qLC9+8QjO+bKaM+g9Wss+WYtt+w16g+Sfn8+hriX+GG0g+j4gR+IySg+PUzg+Bb0a+1it3+ocZm+RwSwY+PKcIU+Am5Dz+x2cx2+iiHMk+XvGJy+dJ4Wv+e1p7d+sY1Xs+dhTbJ+1W5Nx+wZO4+Irdd+iYob+3cr0+tIcA+YNOe+c3eY+nSNu+aJrp+prBd+leb7k+JZ4Kg+GcoDK+Bceqk+GMEaZ+a9I9v+OzLFx+o1z3+I8OH+fgTO+bnF0+7w87+Yh96+QN3M+vVXx+Tm6oj+yDnEy+Hz9je+I2Dr+VwD7+g4JH
https://paperpile.com/c/HD8Due/aiKTF+qLC9+8QjO+bKaM+g9Wss+WYtt+w16g+Sfn8+hriX+GG0g+j4gR+IySg+PUzg+Bb0a+1it3+ocZm+RwSwY+PKcIU+Am5Dz+x2cx2+iiHMk+XvGJy+dJ4Wv+e1p7d+sY1Xs+dhTbJ+1W5Nx+wZO4+Irdd+iYob+3cr0+tIcA+YNOe+c3eY+nSNu+aJrp+prBd+leb7k+JZ4Kg+GcoDK+Bceqk+GMEaZ+a9I9v+OzLFx+o1z3+I8OH+fgTO+bnF0+7w87+Yh96+QN3M+vVXx+Tm6oj+yDnEy+Hz9je+I2Dr+VwD7+g4JH
https://paperpile.com/c/HD8Due/aiKTF+qLC9+8QjO+bKaM+g9Wss+WYtt+w16g+Sfn8+hriX+GG0g+j4gR+IySg+PUzg+Bb0a+1it3+ocZm+RwSwY+PKcIU+Am5Dz+x2cx2+iiHMk+XvGJy+dJ4Wv+e1p7d+sY1Xs+dhTbJ+1W5Nx+wZO4+Irdd+iYob+3cr0+tIcA+YNOe+c3eY+nSNu+aJrp+prBd+leb7k+JZ4Kg+GcoDK+Bceqk+GMEaZ+a9I9v+OzLFx+o1z3+I8OH+fgTO+bnF0+7w87+Yh96+QN3M+vVXx+Tm6oj+yDnEy+Hz9je+I2Dr+VwD7+g4JH
https://paperpile.com/c/HD8Due/aiKTF+qLC9+8QjO+bKaM+g9Wss+WYtt+w16g+Sfn8+hriX+GG0g+j4gR+IySg+PUzg+Bb0a+1it3+ocZm+RwSwY+PKcIU+Am5Dz+x2cx2+iiHMk+XvGJy+dJ4Wv+e1p7d+sY1Xs+dhTbJ+1W5Nx+wZO4+Irdd+iYob+3cr0+tIcA+YNOe+c3eY+nSNu+aJrp+prBd+leb7k+JZ4Kg+GcoDK+Bceqk+GMEaZ+a9I9v+OzLFx+o1z3+I8OH+fgTO+bnF0+7w87+Yh96+QN3M+vVXx+Tm6oj+yDnEy+Hz9je+I2Dr+VwD7+g4JH
https://paperpile.com/c/HD8Due/NlMW+DaXN
https://paperpile.com/c/HD8Due/NlMW+DaXN
https://paperpile.com/c/HD8Due/NlMW+DaXN
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was performed. Following previous analyses of community stability that focused on common over 176 

rare species (Sasaki & Lauenroth 2011; Thibaut & Connolly 2013; Valencia et al. 2020), we only 177 

included species that were present in at least 70% of the sampling time points.  178 

To mitigate bias associated with differences in sampling effort across realms and taxonomic 179 

groups, we conducted repeated analyses with subsampled communities from our entire dataset 180 

without replacement (Figure S1). First, we selected a more balanced pool of 1,768 communities 181 

across realms (terrestrial: freshwater = 60:40) by stratified random sampling across 70 strata for 182 

birds from the BBS database which was more dominant in the initial dataset (n=1,227). We 183 

reduced this BBS dataset (Pardieck et al. 2020) to ~27% (n=327) via randomly sampling data 184 

points from each stratum proportional to the stratum area. Next, we selected a more balanced pool 185 

across taxa by sampled randomly (without replacement) 15 communities for each of 7 taxa, and 186 

for 100 replicates. As phytoplankton were only recorded for 15 communities, they were always 187 

included in 105 community pools in all 100 replicates. Figure S1 depicts the rarefaction scheme 188 

of data included in this study. We analyzed our model for the 100 replicates and presented the 189 

summarized results.  190 

Synthesizing data from different databases also requires caution, as we need to ensure consistency 191 

in sampling effort and minimization of sampling errors. To address this issue, we first aggregated 192 

annual data considering months that were sampled consistently throughout the whole period for 193 

each study and with a minimum sampling period of 20 years. Second, in particular for Breeding 194 

Bird Survey dataset (Pardieck et al. 2020), we considered data for year 1997 onwards to have 195 

consistent quality-control for each sampling event (with “RunType code”=1 that ensures data were 196 

collected consistent with all standardBBS criteria). Third,  there may be  uncertainty due to 197 

different types of sampling protocols - e.g., electrofishing vs. gillnet use for RivFishTIME 198 

https://paperpile.com/c/HD8Due/OMEb+QRFj+V4c1
https://paperpile.com/c/HD8Due/OMEb+QRFj+V4c1
https://paperpile.com/c/HD8Due/OMEb+QRFj+V4c1
https://paperpile.com/c/HD8Due/RYmB
https://paperpile.com/c/HD8Due/RYmB
https://paperpile.com/c/HD8Due/RYmB
https://paperpile.com/c/HD8Due/RYmB
https://paperpile.com/c/HD8Due/RYmB
https://paperpile.com/c/HD8Due/RYmB
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database. But, as we did not have full information about the sampling protocol for all the dataset 199 

we included in this analysis, we considered a random effect in our modeling based on the types of 200 

taxa and plots nested within a given study sites (e.g., study sites are analogous to strata for BBS 201 

dataset and to hydrobasins for RivFishTIME).  202 

To further evaluate how poor sampling effort could affect our estimates of tail-dependent 203 

synchrony, we simulated a scenario of the true pattern versus observed pattern of a species’ 204 

abundance distribution (Figure S2). In the simulation, we introduced a known amount of 205 

undersampling (e.g., 20%, 40%, or 80%) to the true pattern and reran our analysis (Figure S2, 206 

Section S1). The most common scenario in empirical datasets is that species occurrences will be 207 

missing (i.e. undersampled) because they are synchronously scarce (shown in highlights, Figure 208 

S2) for some years. We find that if data are undersampled by 20% of those years, then that would 209 

have a negligible effect on the tail-asymmetry estimates (i.e., Figure S2, h and n both have the 210 

same tail-asymmetry value). In contrast, if one missed 80% of those years then that would lead to 211 

60% error in the estimates (i.e., Figure S2, l compared to Figure S2, h). Actual sampling 212 

completeness is unknown and varies across taxa and time. However, assuming that in most cases 213 

sampling was relatively complete (only 20 to 40 percent missing) then our results would still 214 

provide useful and consistent interpretations.  Nonetheless, to account for variation in sampling 215 

completeness we introduced some randomness for each study in the modeling (see Hierarchical 216 

Bayesian modeling below).  217 

Data summary statistics: Stability was nearly three times higher in terrestrial than freshwater 218 

communities (terrestrial: median=3.52, n=1,954, interquartile-range - IQR =2.93; freshwater: 219 

median= 1.13, n=714, IQR= 0.62). Terrestrial communities had higher species richness 220 

(median=36, IQR=28) compared to freshwater communities (median=4, IQR=6). Our terrestrial 221 
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communities also had four times lower levels of overall synchrony than in freshwater communities 222 

(terrestrial: median=0.16, IQR=0.16; freshwater: median=0.52, IQR=0.29), and tail-dependent 223 

synchrony was seventy-five times higher in terrestrial (median=9.06, IQR=10.9) than in freshwater 224 

communities (median=0.12, IQR=0.65). A visual representation of raw data distribution is 225 

depicted in Figure S3. 226 

Quantifying community stability, overall synchrony, and tail-dependent synchrony: 227 

To measure community stability, we used the abundance (or biomass if abundance was not 228 

available) time series of N species in a community that was sampled for 𝑇 (≥ 20) years. Total 229 

community abundance (or biomass) was the sum of individual species time series (𝑚𝑖), and 230 

represented as  𝑀 = ∑ 𝑚𝑖
𝑛
𝑖=1 . Community stability (S) was then computed by taking the ratio of 231 

the median and the interquartile range (IQR), instead of the mean and standard deviation (sd), for 232 

the total community-abundance (or biomass) time series, i.e., 𝑆 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑀)/𝐼𝑄𝑅(𝑀). The 233 

choice of this metric was made based on the fact that the usual definition of stability (=234 

𝑚𝑒𝑎𝑛(𝑀)/𝑠𝑑(𝑀)) is sensitive to extreme values when the temporal distribution of the data is not 235 

gaussian/ normal (Altman & Bland 1994) (see Figure S4). Therefore, if species are synchronous 236 

at the extremes (e.g., as shown in (Ghosh et al. 2021)), total abundance (or biomass, 𝑀) could be 237 

skewed and thus, a non-biased estimator for stability is preferred. 238 

We measured overall synchrony using a standard covariance-based metric (i.e., Loreau-de 239 

Mazancourt synchrony (Loreau & de Mazancourt 2008)) and a new community-level correlation 240 

metric. The Loreau-de Mazancourt synchrony (Loreau & de Mazancourt 2008)  (LMS) is the ratio 241 

of the variance in total community abundance (or biomass) time series compared to the one with 242 

species in the community in perfect synchrony. LMS is recommended over the classic variance 243 

https://paperpile.com/c/HD8Due/3VPq
https://paperpile.com/c/HD8Due/M7Nb
https://paperpile.com/c/HD8Due/M7Nb
https://paperpile.com/c/HD8Due/M7Nb
https://paperpile.com/c/HD8Due/olBy
https://paperpile.com/c/HD8Due/olBy
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ratio approach (Thibaut & Connolly 2013) and quantified as ∑ 𝑣𝑖𝑗𝑖,𝑗 (∑ √𝑣𝑖𝑖𝑖 )2⁄ , where 𝑣𝑖𝑗 is the 244 

covariance between species i  and j, and 𝑣𝑖𝑖 is the variance in  ith species time series. Community-245 

level correlation is a rank-based measure using the Spearman correlation for each possible pairwise 246 

combination of species time series (total N(N-1)/2 combinations are possible). We classified 247 

pairwise correlations between species to be either independent (no correlation), synchronous 248 

(positive correlation), or asynchronous (negative correlation). We computed the community-level 249 

correlation (c) by taking the sum of all significant pairwise between-species correlations and 250 

dividing the sum by N(N-1)/2. This community-level correlation (c) was used as an alternative 251 

measure of overall synchrony to test the robustness of our findings. Our results were qualitatively 252 

similar using these two metrics (Figures S5, S6), therefore, we retained LMS as it is commonly 253 

used in the literature and thus, facilitates comparison to other work. 254 

To measure tail-dependent synchrony, we followed three steps. First, we made a copula plot 255 

(Nelsen 2007; Ghosh et al. 2020a) with each positively correlated species pair - where each species 256 

time series was ranked (in increasing order) independently and divided by (𝑇 + 1) so that they fell 257 

within a unit box (0,1), we called this scatter plot of a bivariate copula as a “normalized rank plot” 258 

(e.g. see Fig 1a in the main text). We used a ranked time series instead of the raw data because 259 

ranking makes the marginals of the bivariate distribution uniform, and extracts separately 260 

dependence between two variables at their extreme values (i.e., the tail-dependence, for details see 261 

(Sklar 1959; Nelsen 2007; Joe 2014) ). As a result, the rank of one species is related to the rank of 262 

the other species. When the ranks of both species matched, they were closely associated and were 263 

considered synchronous. If there was more association between lower ranks (i.e., when both 264 

species had low abundance as in Fig 1a, top panel) - a strong tail appeared in the lower half of the 265 

diagonal line 𝑦 = −𝑥 + 1 (i.e., below a 50% threshold). Conversely, if there was greater 266 

https://paperpile.com/c/HD8Due/V4c1
https://paperpile.com/c/HD8Due/H8CE+FsWh
https://paperpile.com/c/HD8Due/H8CE+FsWh
https://paperpile.com/c/HD8Due/H8CE+FsWh
https://paperpile.com/c/HD8Due/FsWh+y0pu+nQ5C
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association between higher ranks (i.e., when both species were highly abundant as in Fig 1a, 267 

bottom panel) - a strong tail appeared in the upper half of the diagonal line 𝑦 = −𝑥 + 1 (i.e., above 268 

the 50% threshold). Second, we computed a partial Spearman correlation (Ghosh et al. 2020a) for 269 

the lower half (Corl) and upper half (Coru) of the copula plot. In Fig 1a, top panel, Corl is greater 270 

than Coru, i.e., the data points below the diagonal line 𝑦 = −𝑥 + 1 of the normalized rank plot 271 

contribute more to the total Spearman correlation of all the data points. In contrast, in Fig 1a, 272 

bottom panel, Coru is greater than Corl and the points lying above the diagonal line contribute more 273 

to the total Spearman correlation. Third, we quantified total tail asymmetry as, TA =Σ|Corl - Coru 274 

|ij, where the sum was for any two dissimilar species i and j such that i < j, i = 1, ..., N, j=1, ..., N. 275 

This is the measure of net tail dependence for all possible dissimilar and synchronous species pairs 276 

from the community - which we termed as tail-dependent synchrony for a community. Further, to 277 

determine the relative importance of synchrony at lower and upper extremes on stability we split 278 

total tail asymmetry into its two counterparts. We defined lower tail-dependent synchrony (i.e., 279 

synchrony when species were simultaneously rare) as L = Σ(Corl - Coru)ij for those species-pair 280 

when Corl > Coru and upper tail-dependent synchrony (i.e., synchrony when species were 281 

simultaneously common) as U = Σ(Coru - Corl)ij for those species-pair when Corl < Coru.  Here, 282 

we only considered positively correlated (aka synchronous) species-pairs in our calculation of tail-283 

dependent synchrony (see section S2 for details). 284 

To calculate total tail asymmetry (TA) a threshold is needed. We used a 50% threshold when we 285 

computed the dependence at the extremes (i.e., L or U). Choosing a more conservative threshold 286 

(e.g., 75%) would require longer time series for the community. The 50% threshold yielded 2,668 287 

communities with a minimum of 20 years sampled (i.e., 20 data points at least for our copula plot); 288 

however, when we increased the threshold to 75%, the sample size reduced drastically to 41 289 

https://paperpile.com/c/HD8Due/H8CE
https://paperpile.com/c/HD8Due/H8CE
https://paperpile.com/c/HD8Due/H8CE
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communities (with a minimum of 40 years of data points). From these 41 communities we 290 

subsequently excluded 6 that had no synchrony and used the remaining 35 communities to 291 

compare the metrics L and U using both 50% and 75% thresholds. For these 35 communities, we 292 

found strong correlations between the two thresholds (Spearman correlations >0.9, p-values 293 

<0.001). Overall, this analysis suggests that our findings would be qualitatively similar irrespective 294 

of the choice of threshold. 295 

Hierarchical Bayesian modeling: We built a hierarchical multi-group mixed-effect Bayesian 296 

model, considering all factors together. Richness, overall synchrony, and tail-dependent synchrony 297 

were fixed effects.  Realm, which was a categorical variable with two levels (terrestrial versus 298 

freshwater), was considered as an interactive fixed effect. This setup allowed us to compare the 299 

path estimates for stability-driver relationships between terrestrial and freshwater systems. Finally, 300 

taxa and plots nested within the study sites for different taxa (7 broad taxonomic groups in total: 301 

birds, fish, terrestrial and freshwater plants, terrestrial mammals, terrestrial and freshwater 302 

invertebrates) were added as random effects (i.e., intercepts). We ran simple and complex versions 303 

of this model for 100 replicates (as shown in Figure S1). The simple version depicted in Figure 1C 304 

and Figure 2, included direct paths between each variable and stability. To evaluate model 305 

performance, we compared the eight possible combinations of stability-driver relationships: (i) 306 

richness, (ii) richness and LM synchrony, (iii) richness and total tail-asymmetry, (iv) richness, LM 307 

synchrony, and total tail-asymmetry, with and without the realm effect (Figures S7, S8). The 308 

complex version considered both the direct and indirect effects of richness on stability by including 309 

two extra paths: richness to tail-dependent synchrony and richness to overall synchrony (Figures 310 

S5: LM synchrony, Figure S6: community-level correlation). Bayesian analyses were performed 311 

in R-software using the brm() function from the ‘brms’ package (Bürkner 2023) after data 312 

https://paperpile.com/c/HD8Due/ljlfl
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standardization (zero mean, unit standard deviation) to compare coefficients for different types of 313 

predictors on the same scale. As multi-collinearity can lead to path estimates >1, we checked if 314 

there are any collinearity issues regarding the driver variables we chose. In this respect, we found 315 

that the variation inflation factor (VIF) was acceptable for our model (Figure S9: VIF <2 for the 316 

model with whole and subsetted data; <5 for 98 replicates, between 5 to 5.5 for 2 replicates). A 317 

VIF greater than 10 (or >5 if being  conservative) is usually considered as an indicator of 318 

multicollinearity (Vittinghoff et al. 2005; James et al. 2013). For each of 100 replicates, we 319 

followed this procedure: we used 16,000 total iterations with 75% warmup on each of four chains 320 

(starting with randomized initialization) to fit the parameters of a gaussian distribution with weakly 321 

informative priors, where every fourth sample was drawn using NUTS sampling from post-322 

warmup samples to avoid auto-correlation. Convergence was assured by checking Rhat = 1 323 

(potential scale reduction factor on split chains) and significance was assessed on a 95% CI scale. 324 

Comparison among model performances was computed using the compare_performance() 325 

function from the ‘performance’ R-package (Lüdecke et al. 2021). 326 

Results & Discussion 327 

Tail-dependent synchrony (when species have simultaneously low or high abundance; Figure 1) 328 

explained significant variation in stability of terrestrial communities and had a better explanatory 329 

power than overall synchrony (Figure 2a, Figure S10). In particular, upper tail-dependent 330 

synchrony (i.e., synchrony when species were common) had a stronger impact on terrestrial 331 

stability than lower tail-dependent synchrony (Figure S11). This finding is consistent with previous 332 

research (Valencia et al. 2020) indicating synchrony among dominant species is important for 333 

terrestrial stability. In contrast to the terrestrial realm, only overall synchrony, and not tail-334 

dependent synchrony, explained variation in freshwater stability (Figure 2b, Figure S10). 335 
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Richness had a strong positive influence on the stability of terrestrial systems, yielding the most 336 

extensive empirical support for this relationship to date and confirming past plant-community 337 

based studies (Tilman et al. 2006; Valencia et al. 2020) (Figure 2a). We found that in both 338 

freshwater and terrestrial systems richness was positively associated with tail-dependent 339 

synchrony and negatively associated with overall synchrony (Figure S5). Importantly, however, 340 

terrestrial richness influenced stability directly and also indirectly via affecting both types of 341 

synchrony (Figure S5a), whereas freshwater richness had no direct effect on stability, but indirectly 342 

influenced stability mainly via the effects on overall synchrony (Figure S5b). Overall, our analysis 343 

of a taxonomically diverse set of communities from freshwater and terrestrial systems confirms 344 

the importance of richness for stability, and additionally provides novel insight into the effects of 345 

different types of synchrony on stability (McCann 2000; Xu et al. 2021). 346 

Overall synchrony and tail-dependent synchrony revealed different insights about the stability of 347 

ecological communities. First, not only do our results confirm that richness is an important driver 348 

of stability in terrestrial communities, but they also reveal that over a broad gradient of richness 349 

measures of overall synchrony explained little variation in the stability of freshwater and terrestrial 350 

communities (Figure 3a). When tail-dependent synchrony is not considered, we overestimate the 351 

stability of terrestrial and freshwater communities (Figure 3a). Furthermore, these overestimates 352 

of stability increase with increasing species richness (Figure 3a). Second, our analysis recovers the 353 

expected negative relationship between stability and overall synchrony for freshwater 354 

communities (Figure 3b, right panel) and between stability and tail-dependent synchrony for 355 

terrestrial communities (Figure 3b, left panel). In terrestrial systems, our analysis reveals that 356 

stability is strongly dependent on tail-dependent synchrony rather than overall synchrony. This 357 

result is particularly clear in species-poor communities where the stability of terrestrial systems 358 
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drops below that of freshwater systems (Figure 3b, compare two pink dots and note the different 359 

y-axes’ ranges). 360 

The realm-dependence of some of our conclusions (e.g. Figure 2, Figure 3, Figure S7) could stem 361 

from realm-specific differences in physical and environmental characteristics (Thackeray et al. 362 

2010; Forster et al. 2012). For example, recent work suggests greater climate fluctuations in 363 

terrestrial systems lead to greater physiological stress across multiple species (Jørgensen et al. 364 

2022), with potential consequences for synchrony occurring at the extremes of species’ population 365 

abundance. However, because our dataset has relatively few species-rich freshwater communities 366 

(See Data summary statistics) our ability to detect the effects of tail-dependent synchrony is likely 367 

greater in terrestrial communities. Nevertheless, our analyses suggest that realm-specific 368 

characteristics could differentially shape relationships between temporal synchrony and stability. 369 

Overall, our results emphasize the importance of tail-dependent synchrony as a potential 370 

determinant of community stability. The greater explanatory power of tail-dependent synchrony 371 

than overall synchrony on stability in terrestrial communities (Figure 2, Figure S8), adds new 372 

insight into decades of research that has consistently identified species richness and overall 373 

synchrony as the key determinants of community stability  (Tilman et al. 1998; McCann 2000; 374 

Cottingham et al. 2001; Loreau & de Mazancourt 2013). The prevalence of tail-dependent 375 

synchrony in natural communities (Ghosh et al. 2020b, 2021; Walter et al. 2022) suggests that 376 

measuring only overall synchrony may oversimplify complex community dynamics. Hence, 377 

developing a broader view of synchrony can provide a more detailed and accurate assessment of 378 

community dynamics given ongoing global environmental change.  379 

As the frequency of extreme environmental conditions is projected to increase in the coming 380 

https://paperpile.com/c/HD8Due/i1Qn+bQlP
https://paperpile.com/c/HD8Due/i1Qn+bQlP
https://paperpile.com/c/HD8Due/i1Qn+bQlP
https://paperpile.com/c/HD8Due/i1Qn+bQlP
https://paperpile.com/c/HD8Due/i1Qn+bQlP
https://paperpile.com/c/HD8Due/i1Qn+bQlP
https://paperpile.com/c/HD8Due/VnMN
https://paperpile.com/c/HD8Due/VnMN
https://paperpile.com/c/HD8Due/VnMN
https://paperpile.com/c/HD8Due/VnMN
https://paperpile.com/c/HD8Due/3quo+QrqE+9gEs+8izc2
https://paperpile.com/c/HD8Due/3quo+QrqE+9gEs+8izc2
https://paperpile.com/c/HD8Due/3quo+QrqE+9gEs+8izc2
https://paperpile.com/c/HD8Due/3quo+QrqE+9gEs+8izc2
https://paperpile.com/c/HD8Due/3quo+QrqE+9gEs+8izc2
https://paperpile.com/c/HD8Due/3quo+QrqE+9gEs+8izc2
https://paperpile.com/c/HD8Due/nbKs+idn0+M7Nb
https://paperpile.com/c/HD8Due/nbKs+idn0+M7Nb
https://paperpile.com/c/HD8Due/nbKs+idn0+M7Nb
https://paperpile.com/c/HD8Due/nbKs+idn0+M7Nb
https://paperpile.com/c/HD8Due/nbKs+idn0+M7Nb


 

Page 18 

decades (Fischer et al. 2021), therefore, species will likely find themselves either at the edge or 381 

beyond their physiological tolerance limit (Khaliq et al. 2014; Buckley & Huey 2016). Such 382 

threshold-like biological responses of populations are often observed in response to environmental 383 

fluctuations in general (Brown & Brown 1998; Bragazza 2008), and to extreme climatic events in 384 

particular (Ummenhofer & Meehl 2017). In such scenarios, measures of tail-dependent synchrony  385 

will help elucidate the influence of extreme environmental events on community dynamics and 386 

gauge the severity of community responses to extreme events. As a result, continuing to focus on 387 

overall synchrony may underestimate both the interspecific diversity of population responses to 388 

environmental change and the susceptibility of communities to ongoing disturbances (Walter et 389 

al. 2022) . 390 

In sum, considering both overall synchrony and tail-dependent synchrony will help disentangle 391 

relationships between species richness, environmental change, and community stability as they 392 

provide complementary yet critical information for conservation planning (Maxwell et al. 2019). 393 

Overall synchrony can be used to assess the susceptibility of an entire community to environmental 394 

change, while tail-dependent synchrony focuses on the impact of those species that either benefit 395 

(become simultaneously abundant) or suffer (become simultaneously scarce) in response to such 396 

environmental change. Until now, it has not been appreciated that tail-dependent synchrony can 397 

have strong impacts on the stability of higher levels of biological organization – i.e., the 398 

community. Given concerns about ecosystems being pushed beyond their capacity to sustain 399 

humanity (Wang-Erlandsson et al. 2022), it is essential to integrate our understanding of the 400 

importance of tail-dependent synchrony for community stability into wise decision making for 401 

both ecosystem conservation and restoration. 402 

 403 
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Figures 427 

 428 

Figure 1: Incorporating tail-dependent synchrony into ecological stability analysis. (a) Tail-429 

dependent synchrony could occur in either tail of species’ ranks if they have simultaneously low 430 

abundances (more synchrony between lower ranks makes lower tail-dependence, top panel) or 431 

simultaneously high abundances (more synchrony between higher ranks makes upper tail-432 

dependence, bottom panel); (b) Quantifying tail-dependent synchrony for a community (see 433 

Materials & Methods) as total tail asymmetry, TA. For each positively correlated species pair, 434 

lower tail-dependence and upper tail-dependence were measured using the partial Spearman 435 

correlation approach (Ghosh et al. 2020a), and total tail asymmetry was defined as the sum of 436 

their absolute differences; (c) a schematic diagram showing a model for stability-synchrony-437 

diversity relationships that could vary across terrestrial vs. freshwater realm.  438 
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 439 

Figure 2: Drivers of stability vary across realms. (a) Richness and both types of synchrony 440 

explained the variation in terrestrial community stability, (b) whereas for freshwater communities, 441 

overall synchrony was more important. Numbers by the arrows (bold for significant) are the 442 

average of 100 median estimates (representing the 100 replicates as shown in see Figures S1c and 443 

S10). For each run, we took the median of 4,000 posterior samples. Italicized numbers within the 444 

parentheses indicate how many times, out of 100 runs, the median was significantly different than 445 

zero (based on 95% CI**). Solid arrows indicate significant effects, whereas a dashed arrow 446 

indicates none of the 100 medians were significantly different than zero. b0 is the intercept used in 447 

the hierarchical mixed-effect Bayesian analysis. 448 
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 449 

Figure 3: Tail-dependent synchrony  matters for estimating richness effects on stability (a) and 450 

uncovering the effects of synchrony on stability (b). We show here the conditional plots with the 451 

posterior estimates from the hierarchical Bayesian model (as shown in Figure 2) conditioning on 452 

any two of these variables: overall synchrony (LMS), tail-dependent synchrony (TA), and species 453 

richness (R). (a) Stability increases with richness in terrestrial communities, but for freshwater 454 

communities, stability decreases with richness, irrespective of the values of overall synchrony 455 

(LMS) and tail-dependent synchrony (TA). But if we ignore the contribution of the tail-dependent 456 



 

Page 23 

synchrony, terrestrial stability would be overestimated and freshwater stability would be 457 

underestimated. (b) For the terrestrial realm, stability shows a nonlinear decrease with increasing 458 

tail-dependent synchrony. The effect of richness was also stronger for terrestrial stability. For the 459 

freshwater community, stability decreases with increasing overall synchrony, but the changes due 460 

to changes in richness or tail-dependent synchrony are much smaller compared to the terrestrial 461 

realm (compare the y-axes). For the species-poor community (R=4), the destabilizing effect of tail-462 

dependent synchrony is so strong that the terrestrial community becomes less stable (-8.21) than 463 

the freshwater one (-7.55) beyond a certain threshold (compare the pink dots from both panels, 464 

note different y-axes ranges). 465 

 466 

 467 
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