
P
os
te
d
on

22
A
u
g
20
23

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
22
54
1/
au

.1
69
26
89
79
.9
93
93
08
6/
v
1
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
a
s
n
o
t
b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Enhancing Outlier Detection in Air Quality Index Data Using a

Stacked Machine Learning Model

Abdoul Aziz Diallo1, Lawrence Nderu2, Bonface Malenje2, and Gideon Kikuvi2

1Pan African University Institute for Basic Sciences Technology and Innovation
2Jomo Kenyatta University of Agriculture and Technology

August 22, 2023

Abstract

Air quality is an important part of environmental health, having serious consequences for human health and well-being. The

Air Quality Index (AQI) is a frequently used metric for assessing air quality in various areas and at different times. However,

AQI data, like many other types of environmental data, can contain outliers - data points that deviate significantly from other

observations, indicating exceptionally good or poor air quality, a critical step in identifying and understanding extreme pollution

episodes that can have serious environmental and public health consequences. These outliers can be caused by a variety of

variables, including measurement mistakes, odd meteorological circumstances, and pollution occurrences. While outliers can

occasionally give useful information about these unusual conditions, they can also skew studies and models if they are not

adequately accounted for. This paper describes a hybrid method for detecting outliers in data, AQI data are used in this study.

The model uses a stacked machine learning model that incorporates K-means clustering, Random Forest (RF), and Gradient

Boosting Classifier (GBC). K-means is used for initial categorization, followed by RF model training, and ultimately, the RF

output is used as input for the GBC to generate the final classification. The performance of this stacked machine learning model

is examined and compared to single models using the Accuracy measure. The findings show that the suggested technique is

efficient, with an accuracy of 0.99, showing its potential for effective outlier detection in data.
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Abstract

Air quality is an important part of environmental health, having serious consequences for hu-
man health and well-being. The Air Quality Index (AQI) is a frequently used metric for assessing
air quality in various areas and at different times. However, AQI data, like many other types
of environmental data, can contain outliers data points that deviate significantly from other ob-
servations, indicating exceptionally good or poor air quality, a critical step in identifying and un-
derstanding extreme pollution episodes that can have serious environmental and public health
consequences. These outliers can be caused by a variety of variables, including measurement mis-
takes, odd meteorological circumstances, and pollution occurrences. While outliers can occasionally
give useful information about these unusual conditions, they can also skew studies and models if
they are not adequately accounted for. This paper describes a hybrid method for detecting outliers
in data, AQI data are used in this study. The model uses a stacked machine learning model that
incorporates K-means clustering, Random Forest (RF), and Gradient Boosting Classifier (GBC).
K-means is used for initial categorization, followed by RF model training, and ultimately, the RF
output is used as input for the GBC to generate the final classification. The performance of this
stacked machine learning model is examined and compared to single models using the Accuracy
measure. The findings show that the suggested technique is efficient, with an accuracy of 0.99,
showing its potential for effective outlier detection in data.

KEYWORDS: outlier detection, k-means, random forest, gradient boosting classifier, air pollution,
data mining
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1 Introduction
Air quality is a major factor in determining one’s health and quality of life. Monitoring and un-
derstanding air quality has become increasingly vital as global urbanization and industrialization
continue to rise. The AQI is a critical instrument in this attempt, offering a standardized, under-
standable assessment of air quality that policymakers, researchers, and the general public can all
utilize [10]. The AQI is a composite metric that reflects the quantities of numerous pollutants in
the air, such as particulate matter (PM2.5 and PM10), nitrogen dioxide (NO2), carbon monoxide
(CO), and ozone (O3). Each of these pollutants can have various health effects, and their levels can
fluctuate dramatically depending on factors such as weather, time of day, and human activity. As
a result, AQI data can display significant variety and complexity (Table 3) [5, 9]. One key problem
in analyzing AQI data is the occurrence of outliers, or data points that differ dramatically from the
rest of the data. Outliers might occur as a result of measurement mistakes, odd meteorological cir-
cumstances, uncommon pollution incidents, or other abnormalities. While outliers can occasionally
give significant insights into unusual occurrences or data-collecting concerns, they can also affect
statistical studies and prediction models if not handled appropriately [6]. In this work, we offer a
powerful strategy for detecting outliers in data by combining machine learning and clustering ap-
proaches. A layered model including K-means clustering, RF, and GBC is used in our technique.
We first categorize the data using K-means, then train the RF model on these categories, and lastly
utilize the output of the RF model as input to the GBC to make the final outlier classifications. We
compare our stacked model’s performance to single models such as Decision Trees, Support Vector
Machines, K-Nearest Neighbors, and Naive Bayes using different metrics such as precision, recall,
accuracy, and F1-score. Our findings illustrate the efficacy of this strategy, with good scores across
all measures. This study adds to continuing efforts to enhance the accuracy and reliability of air
quality evaluations and projections, which are critical for influencing public health treatments and
environmental policy.

2 Literature Review
This study introduces a method for detecting outliers in urban NO2 concentrations using low-cost air
quality sensors, based on spatiotemporal categorization into 16 groups. Outliers are identified using
mean and standard deviation within these groups, with the method detecting 0.1-0.5% of outliers
in a sensor network in Eindhoven. The research concludes that this approach effectively identifies
outliers while maintaining the spatio-temporal variability of air pollution [19]. The study proposes a
three-module method for outlier detection in indoor air quality data, using a long short-term mem-
ory auto-encoder and a vector machine detector to form two distinct models. These models are then
unified using an ensemble-based decision rule in the third module, with laboratory tests validating
the framework’s consistent effectiveness in identifying outliers across various industrial scenarios
[14, 16]. The study introduces FForest, a novel anomaly detection method that combines Isolation
Forest with fuzzy set theory, focusing on isolating anomalies for efficient computation. It enhances
stability by using quartile-based identification of potential anomalies instead of random sampling.
Experimental results on seven real-world datasets show FForest’s superior performance in anomaly
detection compared to four baseline methods [17, 27].

This study introduces an automated outlier detection method for air quality data, based on dis-
crepancies between observed and estimated pollutant concentrations. Applied to data from China’s
National Environmental Monitoring Network, it effectively identified outliers in six pollutants, re-
vealing a trend of decreasing outliers over time. The method also highlighted the significant impact
of outliers on annual mean concentrations of PM2.5 at multiple sites [3, 23]. The article empha-
sizes the importance of reliable data collection from surface sensors for managing air pollution and
highlights the challenge of outliers in the data. Current outlier detection methods are noted to be
inaccurate and susceptible to false positives. The authors propose a two-step strategy to discern
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between real and false outliers, reducing false positives and enhancing the accuracy of air pollu-
tion forecasting, thereby facilitating effective solutions to this global problem [12, 29]. The study
develops an automated outlier detection system for air quality networks, accounting for issues like
instrument problems and harsh conditions. Applied to six pollutants across 1436 sites in China,
the system detected outliers in 0.65%-5.68% of measurements, significantly influencing yearly mean
PM2.5 concentrations at 66 locations [7, 23].

Findings from the current introduces a new hybrid air pollution forecasting model that enhances
accuracy by integrating an outlier identification and correction technique with a heuristic intelli-
gent optimization algorithm. The model outperforms existing ones, providing reliable forecasts and
aiding in the development of effective strategies to reduce air pollutant emissions [15, 21]. The es-
say addresses the challenge of outliers in spatiotemporal data streams from geographically dispersed
sensor networks, which can distort future analyses. The study proposes two novel IPCA-based outlier
detection methods, compares them with existing techniques, and provides insights into IPCA’s appli-
cability for real-time applications such as image analysis, pattern recognition, and credit card fraud
detection [4, 28]. This paper focuses on the air quality index (AQI), a numerical measure affected
by human activities, industrial operations, and weather conditions, and uses regression models to
estimate AQI based on data from a monitoring station in Chennai, India. The study investigates the
significance of the regression model, performs residual analysis to evaluate the model’s fit, and aims
to provide insights into AQI changes and enhance understanding of Chennai’s air quality [8, 11].

The article discusses the impact of outliers in sensor-generated data used for air pollution reduc-
tion modelling and decision-making, emphasizing the need for an incremental technique to detect
outliers in temporal air quality data streams. The paper presents a methodology for assessing the
effectiveness of statistical outlier detection approaches, comparing five techniques both on the entire
dataset and incrementally, providing insights into the efficacy of these techniques for air quality data
streams and aiding in the development of efficient air pollution control strategies [2, 13]. The paper
introduces a two-stage outlier detection method for non-parametric profile monitoring to enhance
the robustness of existing techniques. It uses extended least trimmed squares and a non-parametric
test statistic to create an outlier identification measure, followed by hypothesis testing to identify
outlying profiles, with a one-step refinement process for precise identification, demonstrating control
over type-I error rates and high outlier detection power in simulations. The method is tested with
real data, addressing the issue of outlying profiles in statistical process control [22, 25]. This article
discusses the use of machine learning for anomaly detection to identify outliers or abnormal data
points in air quality measurements. The study aims to analyze data and pinpoint pollution concen-
tration outliers based on probability factors, contributing to the understanding of local air quality
requirements [1, 18].

3 MATERIALS AND METHODS

3.1 Hybrid Model
This paper presents a hybrid strategy for outlier discovery in data, integrating K-means cluster-
ing for categorization and a mixture of Random Forest and Gradient Boosting Classifier for outlier
classification (Figure: 1). The method takes advantage of the capabilities of both unsupervised and
supervised learning techniques, improving the resilience and accuracy of outlier detection.
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Figure 1: Flowchart of the proposed models.

3.2 Model Specification of the Hybrid
3.2.1 K-means

Given a collection of observations (vectors), divide them into K clusters so that the sum of the squared
Euclidean distances between each observation and the mean of its assigned cluster (the centroid) is
minimized. The goal function of K-means, also known as the inertia or within-cluster sum of squares
(WCSS), is described mathematically as follows:

K∑
i=1

∑
x∈Ci

||x−µi||2 (1)

Where K is the number of clusters, Ci represents the set of observations in the i-th cluster, x is a
single observation (a vector), and µ is the centroid of the i-th cluster, defined as the mean of the
vectors in Ci. Until convergence, the algorithm iteratively conducts two steps:

Step 1: Each observation is allocated to the cluster with the closest centroid, where the closest is
determined by Euclidean distance.

Step 2: Recompute the centroids by taking the mean of all observations in the cluster.

3.2.2 RF - GBC

The following is the mathematical formula of RF - GBC

GM(X )=G0(X )+∑
(∨⋎m) (2)

Where: X is the output of Random Forest, GM(X ) is the final prediction of the hybrid after M stages
of boosting, ∨ is a learning rate ranging from 0 to 1, which governs the degree to which the new tree
prediction ⋎m contributes to the combined prediction.

X =Y (x) (3)

The final prediction Y(x) of the Random Forest is the most common class prediction among all the
trees. This is also known as majority voting:

Y (x)= mode(yi(x)) (4)
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Where mode is the most common prediction among all the decision trees in the forest and yi(x)
represents the prediction made by the i-th decision tree in the forest. The GBC begins by predicting
the average value of the target variable in the training set using a loss function, determining the loss
for each instance. It then creates a new weak model that forecasts the negative gradient of the loss
function concerning the target variable, approximating the error of recent forecasts. This process is
repeated until a set number of weak learners have been added or the loss reaches a certain threshold,
using a gradient descent approach to calculate weights for each weak learner’s contribution, which
are then added to the ensemble’s current predictions.

1. Is the Initial model with a constant value:

G0(X )= argmin_⋎
∑

L(yi,⋎) (5)

Where L is the loss function, yi are the true target values and it is either 0 or 1 and ⋎ is a constant.
The argmin operation finds the value ⋎ that minimizes the sum of the loss function over all data
points. Making an initial constant forecast value of G0 is the first step. Log loss, often known as
cross-entropy loss or L, is the loss function that we are utilizing.

L =−(yi · log(p)+ (1− yi) · log(1− p)) (6)

The anticipated probability of class 1 is p. Depending on the target class yi, you can observe L taking
on different values.

L =
{ −log(p) if yi = 1

−log(1− p) if yi = 0 (7)

Since −log(x) is a decreasing function of x, our loss will be reduced the better our prediction (by
raising p for yi=1) is. argmin denotes that we are looking for the gamma value ⋎ that minimizes
L(yi,⋎). Even though it would be simpler to assume that ⋎ is the anticipated probability p, we do so
because doing so simplifies all the calculations that follow. For those who missed it, the definition of
log-odds, which we reviewed in the previous section, is log(odds) = log(p/(1-p)). We are converting the
loss function into the log-odds function to be able to solve the arming issue in terms of log-odds.

L =−(yi · log(p)+ (1− yi) · log(1− p)) (8)

=−(yi · (log(p)− log(1− p))+ log(1− p)) (9)

=−
(
yi · log

(
p

1− p

)
+ log(1− p)

)
(10)

=−(yi · log(odds)+ log(1− p)) (11)

Now, we may substitute anything with a log-odds expression for p in the equation above. P may be
expressed by log-odds by changing the already given log-odds expression:

log
(

p
1− p

)
= log(odds) (12)

p
1− p

= elog(odds) (13)

p = (1− p)elog(odds) (14)(
1+ elog(odds)

)
p = elog(odds) (15)

p = elog(odds)

1+ elog(odds) (16)

The preceding L equation is then simplified by substituting this value for p.

L =−
(
yi · log(odds)+ log

(
1− elog(odds)

1+ elog(odds)

))
(17)
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=−
(
yi · log(odds)+ log

(
1

1+ elog(odds)

))
(18)

=−
(
yi · log(odds)+ log(1)− log

(
1+ elog(odds)

))
(19)

=−
(
yi · log(odds)− log

(
1+ elog(odds)

))
(20)

We are now looking for ⋎ that minimizes
∑

L (please note that we are considering it to be log odds).
A derivative of

∑
L about log odds is being taken.

∂

∂log(odds)

n∑
i=1

L =− ∂

∂log(odds)

n∑
i=1

(
yi · log(odds)− log

(
1+ elog(odds)

))
(21)

=−
n∑

i=1
yi +n

elog(odds)

1+ elog(odds) (22)

=−
n∑

i=1
yi +np (23)

To make the equations above simpler, we substituted p for the fraction containing the log-odds. The
next step is to put ∂

∑
L/∂log(odds) equal to 0 and solve for p.

−
n∑

i=1
yi +np = 0 (24)

np =
n∑

i=1
yi (25)

p = 1
n

n∑
i=1

yi = y (26)

y is either 0 or 1 in this binary classification issue. As a result, the mean of y equals the fraction of
class 1. You can probably understand why we chose p = mean(y) for our first forecast.
We convert it to log-odds since ⋎ is log-odds rather than probability p.

G0(X )= ⋎̇= log
(

y
1− y

)
(27)

2. For each stage m = 1 to M (where M is the total number of stages):
(a). Compute the negative gradient (also known as the residual or pseudo-residual):

r im =−
[
∂L(yi,G(X i))

∂G(X i)

]
, for i = 1 to n (28)

Where r im is the residual for the i-th observation at the m-th stage of boosting. The equation is
applied for i = 1 to n, meaning it is calculated for each data point in the datasets. In simpler terms,
the equation is calculating the direction and magnitude to adjust the prediction for each observation
to reduce the error (loss), hence improving the model’s prediction.
Here, let’s calculate the residuals.

r im =− ∂

∂log(odds)
L (29)

=− ∂

∂log(odds)

(
yi · log(odds)− log

(
1+ elog(odds)

))
(30)

= yi − elog(odds)

1+ elog(odds) (31)

= yi − p (32)
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You may now see why we refer to r residuals. This also offers us the intriguing insight that the
negative gradient that provides us with the direction and size of the loss is merely residual.

(b).Train regression tree with features X against r and create terminal node reasons R jm for
j = 1, ..., Jm, j symbolizes a terminal node (or leaf) in the tree, m the tree index, and capital J the
total number of leaves.

(c). Compute the multiplier ⋎_m that minimizes the loss:

⋎ jm = argmin_⋎
∑

L(yi,Gm−1(X i)+⋎), for j = 1, ..., Jm (33)

On each terminal node j, we are trying to find the value of ⋎ jm that minimizes the loss function.∑
X i ∈ R jmL denotes that we are adding up all of the losses on the X is that are connected to the

terminal node R jm. Now let’s add the loss function to the formula.

⋎ jm = argmin_⋎
∑−

(
y(Gm−1(X i)+⋎)− log

(
1+ eGm−1(X i)+⋎

))
(34)

It will be quite difficult to solve this equation for ⋎ jm. We are approximating L with a second-order
Taylor polynomial to make it more easily solvable. A Taylor polynomial is a method for representing
any function as a polynomial with an infinite/finite number of terms. While we will not go into depth
here, if you are interested, you may look at this tutorial which explains the concept beautifully. The
second-order Taylor polynomial is used to approximate L:

L(y,Gm−1(X i)+⋎)≈ L(y,Fm−1(X i))+ ∂

∂G
L(yi,Gm−1(X i))⋎+1

2
∂2L(yi,Gm−1(X i))

∂G2 ⋎2 (35)

We are seeking the value of jm that causes the derivative of
∑

(*) to equal zero by substituting this
approximation for L in the equation of ⋎ jm.

∂

∂⋎

∑(
L(yi,Gm−1(X i))+ ∂

∂G
L(yi,Gm−1(X i))⋎+1

2
∂2L(yi,Gm−1(X i))

∂G2 ⋎2
)
= 0 (36)

∑(
∂

∂G
L(yi,Gm−1(X i))+ ∂2L(yi,Gm−1(X i))

∂G2 ⋎
)
= 0 (37)

∑ ∂2L(yi,Gm−1(X i))
∂G2 ⋎=−∑ ∂

∂G
L(yi,Gm−1(X i)) (38)

⋎= −∑ ∂
∂G L(yi,Gm−1(X i))∑ ∂2

∂G2 L(yi,Gm−1(X i))
(39)

As ∂L/∂G was previously calculated in the step below:

∂L(yi,G(X i))
∂G(X i)

=−(yi − p) (40)

This is being used as a substitution for ∂L/∂G in the ⋎ equation.

⋎=
∑

(yi − p)∑ ∂
∂G (−yi + p)

(41)

=
∑

(yi − p)∑ ∂
∂G

(
−yi + elog(odds)

1+elog(odds)

) (42)

=
∑

(yi − p)∑ ∂
∂G

(
−yi + elog(odds)

(
1+ elog(odds)

)−1
) (43)
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=
∑

(yi − p)∑ ∂
∂G

(
elog(odds)

(
1+ elog(odds)

)−1
) (44)

=
∑

(yi − p)∑ (
elog(odds)

(
1+ elog(odds)

)−1 − e2log(odds)
(
1+ elog(odds)

)−2
) (45)

=
∑

(yi − p)∑ (
elog(odds)

1+elog(odds) −
(

elog(odds)

1+elog(odds)

)2
) (46)

=
∑

(yi − p)∑ (
p− p2

) (47)

=
∑

(yi − p)∑
p(1− p)

(48)

This simplified equation, which was utilized in the preceding section, is what finally arrived at the
value of ⋎ jm.

(d). Update the model:

Gm(X )=Gm−1(X )+∨∑
⋎ jm1(X ∈ R jm) (49)

The prediction of the combined model Gm is updated in the last phase. ⋎ jm1(X ∈ R jm) denotes that
choose the value ⋎ jm if a given X falls in a terminal node R jm. Because all of the terminal nodes
are exclusive, each given single x may only fall into a single terminal node, and the matching ⋎ jm
is added to the prior prediction Gm−1 before making the updated prediction Gm. As noted in the
preceding section, ∨ is a learning rate ranging from 0 to 1, which governs the degree to which the
new tree prediction ⋎ contributes to the combined prediction Gm. A lower learning rate minimizes
the influence of further tree prediction, but it also reduces the likelihood of the model over-fitting to
the training data.

4 Data Description and Experiment

4.1 Data collection and preprocessing
This study utilizes a comprehensive dataset detailing daily air quality in Shanghai, including mea-
sures of pollutants like PM2.5, PM10, O3, NO2, CO, and the AQI. The dataset spans several years,
providing a detailed historical record of air quality (Table 1). The research aims to detect outliers
in the AQI and gain insights into air quality patterns, correlations between pollutants, and factors
impacting the AQI, which can inform policy decisions, guide future research, and raise awareness
about air quality issues. The initial data in this experiment are handled as follows:

Table 1: Initial Air Quality Data

Date
Pollutant Concentrations (µg/m3)

AQI
PM2.5 PM10 O3 NO2 CO

2021-01-31 58.0 56.0 37.0 17.0 7.0 162.0
2021-01-30
2021-01-29 146.0 62.0 24.0 13.0 6.0 320.0
2021-01-28 132.0 72.0 28.0 20.0 10.0 309.0
2021-01-27 90.0 50.0 38.0 16.0 9.0 200.0
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4.1.1 Data filling

Data entry. Data loss during the air quality data collection process may be brought on by network
outages, storage problems, and other issues, like the data on January 30, 2021. The learning effect
of the model will be impacted by this poor-quality data. Due to the issue of missing values in the
original data, the final forecast accuracy is not very good. This experiment utilized the average value
of the data from one hour before and one hour after to fill in the missing parts (Table 2), as indicated
in (formula 50), taking into account the fact that the air pollution data typically varies steadily with
time and there is typically no rapid shift in values [20].

Vt = Vt−1 +Vt+1

2
(50)

Where Vt represents the missing value at time t, Vt−1 represents the data from one day before to
time t, and Vt+1 represents the data from one day after time t. The six pollution indices included in
this experiment’s data set are PM2.5, O3, NO2, PM10, and CO, which are used by the environmental
protection agency to compute AQI [24, 26].

Table 2: Inputting Air Quality Data

Date
Pollutant Concentrations (µg/m3)

AQI
PM2.5 PM10 O3 NO2 CO

2021-01-31 58.0 56.0 37.0 17.0 7.0 162.0
2021-01-30 102 59 30.5 15 6.5 241
2021-01-29 146.0 62.0 24.0 13.0 6.0 320.0
2021-01-28 132.0 72.0 28.0 20.0 10.0 309.0
2021-01-27 90.0 50.0 38.0 16.0 9.0 200.0

4.1.2 Data normalization

The sample values of some features in the data set deviate significantly from those of other features,
which might cause sluggish convergence and lower model training accuracy. In this experiment, the
original data are processed using z-score normalization as given in (formula 51), where σ is the orig-
inal data standard deviation, X is its mean, and X∗ is the value after standardization. The data is
dimensionless and scaled to the same interval after data normalization. Additionally, because the
features are comparable and the trend and relative size of the scaled data remain constant, the model
convergence occurs more quickly.

X∗ = X − X
σ

(51)

The indicators listed below are used to measure the AQI (Table 3).

Description AQI Value PM10 PM2.5 CO O3 NO2
Good + Satisfactory 0-100 0-100 0-60 0-1.7 0-50 0-43

Moderate 101-200 101-250 61-90 1.8-8.7 51-84 44-96
Poor 201-300 251-350 91-120 8.-14.8 85-104 97-149

Very Poor 301-400 351-430 121-250 14.9-29.7 105-374 150-213
Severe 401-500 431-550 251-350 29.8-40 375-450 214-750

Table 3: AQI Levels and Associated Pollutants
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4.2 Exploratory Data Analysis
In this study, we conducted an exploratory data analysis to gain a deeper understanding of the AQI
dataset. We visualized the data in various ways to understand the distribution of AQI values, the
trend of AQI over time, and the relationships between AQI and other pollutants. The daily AQI
showed significant fluctuations, with periods of both high and low AQI, suggesting possible seasonal
patterns. However, discerning a clear trend from the daily AQI was challenging due to its high vari-
ability. A clearer picture of the overall trend was provided by the average annual AQI (Figure 2).
The histogram of AQI values revealed that most values clustered in the 100 to 300 range, with fewer
values in the upper range, indicating a right-skewed distribution. This suggests that certain days
experience extremely poor air quality. The box plot confirmed the observations from the histogram,
providing a summary of the statistical distribution of AQI. The box represented the interquartile
range (IQR), the middle 50% of the data, with the median represented by the line in the centre of
the box. The "whiskers" extended to the minimum and maximum values within 1.5 times the IQR,
and outliers, which fell outside of this range, were plotted as separate points. A few outliers were
observed in the higher range (Figure 3).

Figure 2: AQI Trend by Day and Year.

AQI versus PM2.5: This graph illustrates a favourable relationship between AQI and PM2.5 lev-
els. This suggests that greater levels of PM2.5 (particulate matter with a diameter of fewer than
2.5 micrometres) are related to a higher AQI. This positive link is predicted given that PM2.5 is a
key contaminant that affects air quality. AQI versus PM10: This plot, too, indicates a favourable
relationship between AQI and PM10 levels (particulate matter smaller than 10 micrometres in di-
ameter). This implies that greater PM10 levels are related to a higher AQI. PM10, like PM2.5, is a
substantial pollutant, and hence a positive connection with AQI is predicted (Figure 4).
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Figure 3: Histogram and Box plot of AQI.

Figure 4: Scatter plots of AQI vs Other Pollutants.

4.3 Evaluation Metrics
To assess the efficacy of a classification model, several metrics such as accuracy (ACC), precision,
recall, Receiver Operating Characteristic (ROC) curve, and F1-score can be used. Before delving into
each of these measurements, it’s critical to grasp the following abbreviations: TP (True Positive),
TN (True Negative), FP (False Positive), and FN (False Negative). These formulae most effectively
reflect the concepts that are examined as a consequence of a classifier.

Accuracy= TP +TN
TP +TN +FP +FN

(52)

Precision = TP
TP +FP

(53)
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Recall = TP
TP +FN

(54)

F1− score = 2∗ precision∗ recall
precision+ recall

(55)

5 RESULTS AND DISCUSSION
In this study, machine learning algorithms were used to generate labels for the AQI and categorize
them accordingly. The data was divided into two clusters based on commonalities in pollution mea-
surements, with the majority of data points assigned to Cluster 0 having 2453 and a smaller number
to Cluster 1 having 50. Both the RF and GBC models performed flawlessly across several metrics, in-
cluding accuracy, precision, recall, and the F1 score (Table 4). The Receiver Operating Characteristic
(ROC) curves for the models were visualized, with the Area Under the Curve (AUC) score calculated
for each model (Figure 5). The RF-GBC models appeared to outperform the other variants, indicating
successful discrimination between the two groups and balanced trade-offs between sensitivity and
specificity.

Table 4: Performance evaluation summary
Model Accuracy Precision Recall F1-Score
Decision Tree 0.96 0.93 0.91 0.92
SVM 0.95 0.92 0.89 0.91
KNN 0.94 0.88 0.88 0.88
Naive Bayes 0.96 0.92 0.94 0.93
RF-GBC 0.99 0.99 0.96 0.98

Figure 5: AUC-ROC cuve for Ensemble RF-GBC.
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5.1 Discussion
In this study, we explored the relationship between the AQI and various pollutants using a compre-
hensive dataset from Shanghai. Through exploratory data analysis, we observed the distribution of
AQI values, analyzed AQI trends over time, and investigated correlations between AQI and other
pollutants. Our analysis revealed a slight downward trend in AQI over time, suggesting a poten-
tial improvement in air quality. However, the existence of numerous outliers at the higher end of
the AQI spectrum indicates occasional instances of extremely poor air quality. Notably, we found
positive correlations between AQI and PM2.5 and PM10, indicating that higher levels of these pollu-
tants correspond to a higher AQI. In the machine learning phase of our study, we utilized K-Means
clustering labels as the basis for several classification models, including RF, GBC, Decision Tree,
SVM, KNN, and Naive Bayes. Evaluation metrics such as accuracy, precision, recall, and F1 score
revealed near-perfect or perfect scores for most models, suggesting their effectiveness in classifying
AQI into two distinct groups. However, our study is not without limitations. The K-means labels
are somewhat arbitrary and may not accurately represent the underlying categories in the AQI. The
strong performance of the models may be attributed more to the clear separability of the two clusters
rather than their predictive power. Additionally, the imbalance in our dataset could potentially affect
model performance. Despite these limitations, our study provides valuable insights into Shanghai’s
air quality and the factors influencing AQI. It also demonstrates the potential of machine learning in
analyzing and predicting air quality. Future research could delve deeper into the factors contributing
to poor air quality, validate our findings using other datasets, and refine the models to enhance their
robustness and reliability.

5.2 Conclusion
In this research, we have effectively employed machine learning techniques to delve into the com-
plexities of the Air Quality Index (AQI) in Shanghai. Our focus has been on the detection of outliers,
which are crucial in understanding the full spectrum of air quality conditions and the impact of var-
ious pollutants on AQI. Through exploratory data analysis, we have unearthed significant patterns
and correlations between AQI and other pollutants. This foundational understanding of the dataset
has been instrumental in our subsequent analyses. We have observed a slight but promising de-
crease in AQI over time, suggesting a potential trend towards improved air quality. However, the
existence of outliers serves as a stark reminder of the occasional instances of extremely poor air
quality. We have utilized the power of K-Means clustering to create distinct AQI categories, which
have then been used to train a suite of classification models. These models, including but not limited
to RF - GBC but Decision Tree, Support Vector Machine, KNN, and Naive Bayes, have demonstrated
exceptional performance, achieving near-perfect or perfect scores across multiple performance met-
rics. Our research stands as a testament to the transformative power of machine learning in shaping
our understanding of air quality. By leveraging these insights and predictions, we aspire to inform
and influence air quality management and policy decisions, ultimately contributing to the creation
of healthier, safer, and more sustainable environments.
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