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Abstract

Health monitoring is critical for the maintenance and risk management of reinforced concrete (RC) structures. In this paper,

a robust adaptive Kalman filter is proposed for an interstory drift estimation problem to show the health condition of RC

structures in the case that the statistics or internal dynamics describing the signals and measurements are not known precisely.

More precisely, we build an adaptive current Jerk model (ACJM) where the model parameters are updated in each time step

to presuppose the statistics characterization of the RC dynamic, while the unknown measurement noise covariance is adapted

based on a fixed-lag innovation with respect to measurements. Moreover, a robust adaptive Kalman filter is designed for the

modeling mismatch in each time increment by solving a minimax game: one “hostile” player tries to select a worst model far

from the proposed ACJM with an exponential decay tolerance, while an optimum filter is designed by minimizing the estimation

error according to this worst model. Finally, some simulation and experimental results show the effectiveness of the proposed

algorithm.
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Summary

Health monitoring is critical for the maintenance and risk management of rein-
forced concrete (RC) structures. In this paper, a robust adaptive Kalman filter is
proposed for an interstory drift estimation problem to show the health condition
of RC structures in the case that the statistics or internal dynamics describing the
signals and measurements are not known precisely. More precisely, we build an adap-
tive current Jerk model (ACJM) where the model parameters are updated in each
time step to presuppose the statistics characterization of the RC dynamic, while the
unknown measurement noise covariance is adapted based on a fixed-lag innovation
with respect to measurements. Moreover, a robust adaptive Kalman filter is designed
for the modeling mismatch in each time increment by solving a minimax game: one
“hostile” player tries to select a worst model far from the proposed ACJM with an
exponential decay tolerance, while an optimum filter is designed by minimizing the
estimation error according to this worst model. Finally, some simulation and exper-
imental results show the effectiveness of the proposed algorithm.
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1 INTRODUCTION

Structural health monitoring (SHM) is an ongoing process involving continuous observation and analysis of engineering struc-
tures, e.g., RC structures, over time1,2. Recent severe earthquakes, such as the 2019 Peru earthquake and the 2021 Haiti
earthquake, have highlighted the application of SHM, particularly for RC structure maintenance and risk management. Over the
last two decades, in order to assess the RC structural health and detect its potential structural damage or degradation, various
SHM approaches have been proposed, including model-based, data-based, and performance-based approaches3. One emerging
SHM approach is performance-based structural health monitoring (PSHM)4, which integrates tools from performance-based
earthquake engineering to establish correlations between structural damage states and engineering demand parameters (EDPs).
Among the various EDPs, the interstory drift ratio (IDR)5, defined as the interstory drift (ID) normalized by the corresponding
story height, serves as a universal indicator for evaluating structural performance against seismic actions. Here, ID quantifies the
relative translational displacement between consecutive floors in multistory buildings. Studies have shown that IDR exhibits a
better correlation with observed damage compared to other response quantities, such as peak floor acceleration6. However, the
raw measurements of ID are extraordinarily noisy and fail to work, which motivates researchers to design more sophisticated
estimation approaches to extract useful information from the noisy sensor signal4,7,8.

Dynamic state estimation (DSE) approaches, such as Kalman filtering (KF) and KF-like filtering, have been extensively used
for the estimation problem9,2. The estimation task requires a nominal dynamic model to characterize the statistics or internal
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dynamics of signals. Several dynamic models, such as constant velocity (CV) model10, constant acceleration (CA) model11,
Singer model12, and Jerk model13, have been proposed over the past 35 years for the typical tracking scenarios where the prior
knowledge of such dynamic models is obtained through numerous repeated experiments. Indeed, it is reasonable to apply the
tracking dynamic model when estimating the relative displacement, i.e. ID, because the motion of the RC structure in response
to the seismic activity also aligns with the inertial law. However, it may lead to poor performances in the seismic test due to
practical limitations including the inaccuracy of dynamic models and the complexity of systems. To address such a weakness,
adaptive state-space models14,15 that analyze the dynamic behavior of the system state have been explored to identify the model
parameters. Later on, it has been proved that such paradigms can also be used to estimate the RC structural damage through a
quasi-static test when the structural damage states do not change significantly over time16.

In this paper, we focus on estimating the ID in a four-layer RC structure17 subjected to a structural seismic test. The seismic
waves are simulated using El Centro waves18 from the United States. Unlike the slight structural vibrations observed in the
quasi-static test, our seismic test exposes the RC structure to severe vibrations. To capture such severe vibrations, the dynamic
characteristics are described using the Jerk model13, which employs a four-dimensional state space model with state components:
displacement, velocity, acceleration, and Jerk. Accordingly, drawing inspiration from the philosophy of adaptive models in
References 14,15,16, we use the Yule-Walker algorithm to estimate the unknown parameters in this Jerk model. Moreover,
considering that the vibrations of the RC structure should be confined to a range so that it does not exceed its original length, the
“current model concept”19,20 is introduced. In this way, an adaptive current Jerk model (ACJM) is proposed to characterize the
dynamic behavior of the RC structure under the seismic testing in the case that the state, i.e. Jerk, in the next instant is around
the “current” state, and its corresponding model parameters are adapted in each time increment.

We consider the ACJM to presuppose the statistics characterization of the RC dynamic, however, one is faced with a lack of
statistical knowledge of the measurement noise process. To estimate the measurement noise, one possible way has been also
investigated in References 14 and 15, however, under the assumption that the measurement noise is zero-mean, white Gaussian,
and mutually independent. An alternative approach involves adopting a data-driven approach, wherein the relationship between
raw inertial measurements and latent variables is learned. Such data-driven approaches have been widely studied in denoising,
tracking, and monitoring applications21,22. In this context, a joint estimation technique has been introduced to simultaneously
compute model parameters and state vectors. A parameter identification method based on the innovation with respect to mea-
surements is responsible for calibrating the unknown noise parameters, while the primary interest lies in estimating the state
trajectory.

In addition, it is worth noting that model uncertainties might arise in the aforementioned approaches since both the model and
noise parameters are estimated from measurements23,24. Up to this point, some robust versions based on the KF or KF-like algo-
rithms have been developed to solve this problem. These techniques assume a nominal dynamic model, nominal noise processes,
and initialization (referred to collectively as the nominal model) have already been estimated from data, but in practice, there
might be a mismatch between the actual model and this identified nominal model. Several robust Kalman filters (RKF)25,26,27

have been proposed recently, taking into account the modeling mismatch. In particular, risk-sensitive filters utilize an exponen-
tial quadratic loss function, imposing a more severe penalty for large errors compared to the classical KF with the standard
quadratic loss function28. Hereafter, manifold robust versions29,24, which are the continuation of the aforementioned work, have
been provided in recent years. For instance, Levy and Nikoukhah30 presented a robust least-squares estimation method, reformu-
lating risk-sensitive filters into a minimax problem. They further refined their approach into a robust state-space filter31, which
incorporates a separate constraint to counter incremental model perturbations. Then, more extensions of such a paradigm have
been presented, for example, the case with the Tau-divergence family32, the case with degenerate densities33,23 and the case
for the nonlinear system18. The aforementioned literatures address the robust estimation problem under the assumption that the
actual model is within a ball centered about the nominal model, where the ball is specified by a Kullback-Leibler (KL) tolerance
(or other ambiguity sets).

In this paper, we design a robust adaptive Kalman filter (RAKF) for an ID estimation problem under the seismic testing to show
the structural health condition of RC in the case that the statistics or internal dynamics describing the signals and measurements
are not known. In particular, the contributions of this paper are listed as follows:

1. The dynamic behavior of the RC structure in the seismic test using El Centro waves is reanalyzed in each time step, which
results in the prescribed process dynamic model, named ACJM. The model captures the dynamic characteristics of the
severe RC structural vibrations while restricting its estimated ID to a valid range.
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2. The measurement noise parameter is updated in each time inclement via a fixed-lag innovation with respect to the
measurements.

3. A robust Kalman-like iteration is designed for the modeling mismatch by solving a minimax game in each time increment
where the tolerance is tuned in an exponential decay form.

The outline of the paper is as follows. Section 2 shows the adaptive current Jerk model construction including the process
model parameters estimation and the measurement noise covariance estimation. In Section 3, we derive the robust adaptive
Kalman filter. The simulation study is discussed in Section 4. The experimental results are presented in Section 5. Finally,
Section 6 concludes the paper.

2 ADAPTIVE CURRENT JERK MODEL

We consider a nominal discrete-time state space model of the form

𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝑢𝑘 +𝑤𝑘 (1a)
𝑦𝑘 = 𝐶𝑘𝑥𝑘 + 𝑣𝑘 (1b)

where𝐴𝑘 ∈ ℝ𝑛×𝑛,𝐵𝑘 ∈ ℝ𝑛×𝑝,𝐶𝑘 ∈ ℝ𝑚×𝑛, 𝑥𝑘 ∈ ℝ𝑛 is the state vector, 𝑢𝑘 ∈ ℝ𝑝 is the input vector, and 𝑦𝑘 ∈ ℝ𝑚 is the observation
vector. Accordingly, the process noise and the measurement noise are treated as independent Gaussian noise sequences with
time-varying covariances, i.e., 𝑤𝑘 ∼  (0, 𝑄𝑘) and 𝑣𝑘 ∼  (0, 𝑅𝑘), respectively.

In this paper, measurement data collected from the sensors is the relative translational displacement, i.e. ID, between consecu-
tive floors in multistory buildings shown in Fig. 3(a). Since the RC structure is under seismic vibration, its dynamic characteristics
are generally non-uniformly accelerated, but can not be too far away from the current state. Thus, drawn inspiration from the
Jerk model13 and current model19,20, a current Jerk (CJ) model is proposed to describe the dynamic characteristic of the RC
structure. More precisely, the state vector is defined as 𝑥 ∶=

[

x𝑝, x𝑣, x𝑎, x𝑗
]⊤ where x𝑝, x𝑣 and x𝑎 denote the position, velocity

and acceleration of the object, respectively, as well as x𝑗 is the Jerk as shown in Reference 13. Our process model can be written
as (1a) with

𝐴𝑘 =

⎡

⎢

⎢

⎢

⎢

⎣

1 𝑇 𝑇 2

2
𝑎1,𝑘

0 1 𝑇 𝑎2,𝑘
0 0 1 𝑎3,𝑘
0 0 0 𝑎4,𝑘

⎤

⎥

⎥

⎥

⎥

⎦

where

𝑎1,𝑘 =
2 − 2𝛼𝑘𝑇 + 𝛼2

𝑘𝑇
2 − 2𝑒−𝛼𝑘𝑇

2𝛼3
𝑘

𝑎2,𝑘 =
𝑒−𝛼𝑘𝑇 − 1 + 𝛼𝑘𝑇

𝛼2
𝑘

𝑎3,𝑘 =
1 − 𝑒−𝛼𝑘𝑇

𝛼𝑘
𝑎4,𝑘 = 𝑒−𝛼𝑘𝑇 ,

and 𝑇 denotes the sampling period; the unknown parameter 𝛼𝑘 is the reciprocal of the Jerk time constant in each time increment
𝑘 of the model. In other words, the higher correlation parameter 𝛼𝑘 permits the more rapidly fluctuating Jerk of the object. Next,

𝐵𝑘 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

6
𝛼3𝑘
(𝛼3

𝑘𝑇
3 − 3𝛼2

𝑘 − 6 + 6𝛼𝑘𝑇 + 6𝑒−𝛼𝑘𝑇 )
1
𝛼𝑘

(

−𝑇 + 𝛼𝑘𝑇 2

2
+ 1−𝑒−𝛼𝑘𝑇

𝛼𝑘

)

𝑇 − 1−𝑒−𝛼𝑘𝑇

𝛼𝑘
1 − 𝑒−𝛼𝑘𝑇

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

Note that the input vector 𝑢𝑘 is defined as a mean value of the Jerk, which is considered as a constant in each sampling period so
that what is of concern is only the “current” probability density of Jerk, i.e. x̄𝑗,𝑘, see also in Reference 19 where it first proposed
a “current model” concept to describe the statistical distribution of acceleration in the continuous-time state space model. Here,
we extend it to the fourth-order discrete-time state space model, so called CJ model. Moreover, the process noise covariance 𝑄𝑘
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𝑄𝑘 = 2𝛼𝑘𝜎2
𝑘

⎡

⎢

⎢

⎢

⎢

⎣

𝑞11,𝑘 𝑞12,𝑘 𝑞13,𝑘 𝑞14,𝑘
𝑞12,𝑘 𝑞22,𝑘 𝑞23,𝑘 𝑞24,𝑘
𝑞13,𝑘 𝑞23,𝑘 𝑞33,𝑘 𝑞34,𝑘
𝑞14,𝑘 𝑞24,𝑘 𝑞34,𝑘 𝑞44,𝑘

⎤

⎥

⎥

⎥

⎥

⎦

𝑞11,𝑘 =
1
2𝛼7𝑘

[

𝛼5𝑘𝑇
5

10
− 𝛼4𝑘𝑇

4

2
+ 4𝛼3𝑘𝑇

3

3
− 2𝛼2

𝑘𝑇
2 + 2𝛼𝑘𝑇 − 3 + 4𝑒−𝛼𝑘𝑇 + 2𝛼2

𝑘𝑇
2𝑒−𝛼𝑘𝑇 − 𝑒−2𝛼𝑘𝑇

]

𝑞12,𝑘 =
1
2𝛼6𝑘

[

1 − 2𝛼𝑘𝑇 + 2𝛼2
𝑘𝑇

2 − 𝛼3
𝑘𝑇

3 + 𝛼4𝑘𝑇
4

4
+ 𝑒−2𝛼𝑘𝑇 + 2𝛼𝑘𝑇 𝑒−𝛼𝑘𝑇 − 2𝑒−𝛼𝑘𝑇 − 𝛼2

𝑘𝑇
2𝑒−𝛼𝑘𝑇

]

𝑞13,𝑘 =
1
2𝛼5𝑘

[

2𝛼𝑘𝑇 − 𝛼2
𝑘𝑇

2 − 𝛼3𝑘𝑇
3

3
− 3 − 2𝑒−2𝛼𝑘𝑇 + 4𝑒−𝛼𝑘𝑇 + 𝛼2

𝑘𝑇
2𝑒−𝛼𝑘𝑇

]

𝑞14,𝑘 =
1
2𝛼4𝑘

[

1 + 𝑒−2𝛼𝑘𝑇 − 2𝑒−𝛼𝑘𝑇 − 2𝛼2
𝑘𝑇

2𝑒−𝛼𝑘𝑇
]

𝑞22,𝑘 =
1
2𝛼5𝑘

[

1 − 𝑒−2𝛼𝑘𝑇 + 2𝛼3𝑘𝑇
3

3
+ 2𝛼𝑘𝑇 − 2𝛼2

𝑘𝑇
2 − 4𝛼𝑘𝑇 𝑒−𝛼𝑘𝑇

]

𝑞23,𝑘 =
1
2𝛼4𝑘

[

1 + 𝛼2
𝑘𝑇

2 − 2𝛼𝑘𝑇 + 2𝛼𝑘𝑇 𝑒−𝛼𝑘𝑇 + 𝑒−2𝛼𝑘𝑇 − 2𝑒−𝛼𝑘𝑇
]

𝑞24,𝑘 =
1
2𝛼3𝑘

[

1 − 𝑒−2𝛼𝑘𝑇 − 2𝛼𝑘𝑇 𝑒−2𝛼𝑘𝑇
]

𝑞33,𝑘 =
1
2𝛼3𝑘

[

4𝑒−𝛼𝑘𝑇 − 𝑒−2𝛼𝑘𝑇 + 2𝛼𝑘𝑇 − 3
]

𝑞34,𝑘 =
1
2𝛼2𝑘

[

𝑒−2𝛼𝑘𝑇 + 1 − 2𝛼𝑘𝑇
]

𝑞44,𝑘 =
1
2𝛼𝑘

[

1 − 𝑒−2𝛼𝑘𝑇
]

.

(2)

is shown in the equation (2) where 𝜎2
𝑘 denotes the unknown variance of the jerk noise. In addition, for the measurement model

(1b), we have 𝐶𝑘 = 𝐶 =
[

1 0 0 0
]

. However, the measurement noise covariance 𝑅𝑘 is not known in our practical application.
Accordingly, the output 𝑦𝑘 denotes the noisy ID measurements.

2.1 Process model parameters estimation
Next, we tend to update the unknown parameters in the process model, i.e., 𝛼𝑘 and 𝜎2

𝑘. Drawing inspiration from the “current
concept ” in the continuous-time state space model on the basis of a nonzero mean-value and time-correlation model, see
Reference 19, we have

x𝑗,𝑡 = x̄𝑗 + 𝛿𝑡,
𝛿̇𝑡 = −𝛼𝑡𝛿𝑡 + 𝜔𝑡 (3)

where 𝛿𝑡 is the maneuvering parameter, and 𝜔𝑡 is a white noise with zero mean and variance 2𝛼𝜎2. Here, note that in every single
time increment, x̄𝑗 and 𝛼 are considered as a constant, however, in the whole time horizon, it should be time-varying indeed.
Therefore, in our nominal discrete-time model (1), the input vector 𝑢𝑘 as well as the process model 𝐴𝑘, 𝐵𝑘 and 𝑄𝑘 are defined
as time-varying. Then, via discretizing (3), we have

𝛿𝑘 = 𝛽𝑘−1𝛿𝑘−1 + 𝜔𝑘−1

where 𝜔𝑘−1 is a discrete-time zero-mean white noise sequence with covariance:

𝜎2
𝜔𝑘−1

= 𝜎2
𝑘−1(1 − 𝛽2𝑘−1), and 𝛽𝑘−1 = 𝑒−𝛼𝑘−1𝑇

with the sampling interval 𝑇 .
Let x̂𝑗,𝑘 be the estimate of the Jerk at time 𝑘, i.e. x𝑗,𝑘, given 𝑌𝑘 = {𝑦0,⋯ 𝑦𝑘}. Then, based on the Yule-Walker algorithm, 𝛼𝑘

and 𝜎2
𝑘 in the process model (1a) can be calculated in a recursive way as follows:

𝛼̂𝑘 = − ln 𝛽𝑘∕𝑇 , and 𝜎̂2
𝑘 = 𝜎̂2

𝜔,𝑘∕(1 − 𝛽2𝑘) (4)

where 𝜎̂2
𝜔,𝑘 and 𝛽𝑘 are formulated by

𝛽𝑘 = 𝑟𝑘∕𝑟𝑘, and 𝜎̂2
𝜔,𝑘 = 𝑟𝑘 − 𝛼̂𝑘 𝑟𝑘.
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Here, 𝑟𝑘 and 𝑟𝑘 are autocorrelation functions of the form:

𝑟𝑘 = 𝑟𝑘−1 + (𝛿𝑘𝛿𝑘−1 − 𝑟𝑘−1)∕𝑘,
𝑟𝑘 = 𝑟𝑘−1 + (𝛿𝑘𝛿𝑘 − 𝑟𝑘−1)∕𝑘

where 𝛿𝑘 is given by

𝛿𝑘 = x̂𝑗,𝑘 − ̄̂
x𝑗,𝑘 with ̄̂

x𝑗,𝑘 =
1

𝐿 + 1

𝑘
∑

𝑖=𝑘−𝐿
x̂𝑗,𝑖.

Note that the mean value of Jerk ̄̂
x𝑗,𝑘 is considered as the mean in the time horizon [𝑘 − 𝐿, 𝑘] with the lag 𝐿 > 0, which can

reduce the computational redundancy. In this way, it is not difficult to update matrices 𝐴̂𝑘, 𝐵̂𝑘 and 𝑄̂𝑘 based on the adaptive
model parameters in view of (4).

Remark 1. Since 𝑘 < 𝐿 + 1, instead of using (4), we adopt the following strategy to force the Jerk to be within an area:

1. If x̂𝑗,𝑘 ≥ 0, then
𝜎̂2
𝑘 = (4 − 𝜋)(x𝑗,𝑚𝑎𝑥 − x̂𝑗,𝑘)2∕𝜋;

2. If x̂𝑗,𝑘 < 0, then
𝜎̂2
𝑘 = (4 − 𝜋)(x̂𝑗,𝑘 − x𝑗,𝑚𝑖𝑛)2∕𝜋,

Note that x̂𝑗 ∈ [x𝑗,𝑚𝑖𝑛, x𝑗,𝑚𝑎𝑥] is the bound of the Jerk according to the earthquake magnitude.

2.2 Measurement noise covariance estimation
Then, we seek to estimate the measurement noise covariance 𝑅̂𝑘 at time step 𝑘. Let 𝑥̂𝑘 and 𝑃𝑘 denote the estimate and error
covariance matrix of 𝑥𝑘 give 𝑌𝑘. Then, we have the innovation:

𝑒𝑘 = 𝑦𝑘 − 𝐶𝑘𝑥̂𝑘.

Accordingly, its covariance 𝑆𝑘 is.
𝑆𝑘 = 𝐶𝑘𝑃𝑘𝐶

⊤
𝑘 + 𝑅𝑘. (5)

Inspired by the fixed-lag smoother34, a lag 𝐿 is introduced. More precisely, for the measurement noise statistics, we tend to
estimate the measurement noise covariance 𝑅𝑘 using the observations in the [𝑘−𝐿, 𝑘] with 𝐿 > 1. Then, the sample covariance
of the innovation with respect to lag 𝐿 + 1 is as follows:

𝑆̄𝑖,𝑘 =
1
𝐿

𝑘
∑

𝑖=𝑘−𝐿
(𝑒𝑖 − 𝑒𝑘)(𝑒𝑖 − 𝑒𝑘)

⊤

where 𝑒𝑘 is the mean of the estimation innovation in the time horizon [𝑘 − 𝐿, 𝑘] with

𝑒𝑘 =
1

𝐿 + 1

𝑘
∑

𝑖=𝑘−𝐿
𝑒𝑖 =

𝐿
𝐿 + 1

𝑒𝑘−1 +
1

𝐿 + 1
𝑒𝑘. (6)

In addition, under the assumption that the noise covariance in every time step 𝑘 is considered as constant, 𝑆̄𝑖,𝑘 also can be
denoted as:

𝑆̄𝑖,𝑘 =
1

𝐿 + 1

𝑘
∑

𝑖=𝑘−𝐿
𝐶𝑖𝑃𝑖𝐶

⊤
𝑖 + 𝑅𝑘.

Thus, it can be shown that an unbiased estimate of 𝑅𝑘 is given by Reference 35:

𝑅̂𝑘 =
1
𝐿

𝑘
∑

𝑖=𝑘−𝐿
(𝑒𝑖 − 𝑒𝑘)(𝑒𝑖 − 𝑒𝑘)⊤ − 1

𝐿 + 1

𝑘
∑

𝑖=𝑘−𝐿
𝐶𝑖𝑃𝑖𝐶

⊤
𝑖 , (7)

which can be further divided into two parts:
𝑅̂𝑘 =

𝐿
𝐿 + 1

𝑅̃ + Δ𝑅𝑘 (8)

where the first one 𝑅̃ is with respect to the time horizon [𝑘 − 𝐿, 𝑘 − 1], i.e.,

𝑅̃ =𝐿 + 1
𝐿2

𝑘−1
∑

𝑖=𝑘−𝐿
(𝑒𝑖 − 𝑒𝑘)(𝑒𝑖 − 𝑒𝑘)⊤ − 1

𝐿

𝑘−1
∑

𝑖=𝑘−𝐿
𝐶𝑖𝑃𝑖𝐶

⊤
𝑖 (9)
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FIGURE 1 Error corresponding to the lag 𝐿.

while the other part Δ𝑅𝑘 is only corresponding to the time instant 𝑘

Δ𝑅𝑘 =
1
𝐿
(𝑒𝑘 − 𝑒𝑘)(𝑒𝑘 − 𝑒𝑘)⊤ − 1

𝐿 + 1
(𝐶𝑘𝑃𝑘𝐶

⊤
𝑘 ). (10)

In addition, according to (7), the measurement noise covariance at the time instant 𝑘 − 1 can be computed as:

𝑅̂𝑘−1 =
1

𝐿 − 1

𝑘−1
∑

𝑖=𝑘−𝐿
(𝑒𝑖 − 𝑒𝑘−1)(𝑒𝑖 − 𝑒𝑘−1)⊤ − 1

𝐿

𝑘−1
∑

𝑖=𝑘−𝐿
𝐶𝑖𝑃𝑖𝐶

⊤
𝑖 . (11)

Here, it is easy to see that comparing (9) with (11), they would be identical if and only if lim
𝐿→∞

𝜖 → 0 where the error 𝜖 is defined
as 𝜖 = (𝐿 + 1)∕𝐿2 − 1∕(𝐿 − 1). Clearly, as shown in Fig. 1, the error 𝜖 is negligible when 𝐿 ≥ 50. Thus, we can update the
estimated measurement noise covariance in a recursive way:

𝑅̂𝑘 =
𝐿

𝐿 + 1
𝑅̂𝑘−1 + Δ𝑅𝑘. (12)

where Δ𝑅𝑘 is shown in (10).

Remark 2. It is worth noting that if 𝑘 < 𝐿 + 1, then in the equation (6), 𝑒𝑘 should be redefined as 𝑒𝑘 = 𝑦𝑘 − 𝐶𝑘𝑥̂𝑘. Also, the
computations of 𝑅̂𝑘 and Δ𝑅𝑘 in (8) and (10) are needed to be restructured into:

𝑅̂𝑘 = 𝑘 × 𝑅̂𝑘−1∕(𝑘 − 1) + Δ𝑅𝑘,where Δ𝑅𝑘 = ‖𝑒𝑘 − 𝑒𝑘‖
2∕(𝑘 − 1) − 𝐶𝑘𝑃𝑘𝐶

⊤
𝑘 ∕𝑘.

3 ROBUST ADAPTIVE KALMAN FILTER

In last section, we derived the nominal model, which is estimated from measurements in each time increment. Accordingly,
we define 𝑧𝑘 ∶= [ 𝑥⊤𝑘+1 𝑦⊤𝑘 ]

⊤. Then, let 𝜙(𝑧𝑘|𝑥𝑘) denote the transition probability density function of 𝑧𝑘 given 𝑥𝑘 with respect
to the nominal model. Thus, the nominal conditional density that can characterize the nominal model derived by Section 2, is
𝜙𝑘(𝑧𝑘|𝑥𝑘) ∼ 

(

𝑚𝑧𝑘 , 𝐾𝑧𝑘

)

with

𝑚𝑧𝑘 =
[

𝐴̂𝑘𝑥𝑘 + 𝐵̂𝑘𝑢𝑘
𝐶𝑘𝑥𝑘

]

, 𝐾𝑧𝑘 =
[

𝑄̂𝑘 0
0 𝑅̂𝑘

]

.

In addition, the joint nominal probability density of the nominal model (1) over a finite time horizon 𝑘 ∈ [0, 𝑁] is as follows:

𝑝
(

𝑋𝑁+1,Y𝑁
)

= 𝑝̃0
(

𝑥0
)

𝑁
∏

𝑘=0
𝜙𝑘

(

𝑧𝑘|𝑥𝑘
)

(13)

where
𝑋⊤

𝑁+1 =
[

𝑥⊤0 … 𝑥⊤𝑘 … 𝑥⊤𝑁+1

]

, 𝑌 ⊤
𝑁 =

[

𝑦⊤0 … 𝑦⊤𝑘 … 𝑦⊤𝑁
]

,
with 𝑝̃0(𝑥0) ∼  (𝑥̂0, 𝑉0). However, it might be poor performance due to the emergence of model uncertainties when the
estimated model or noise parameters, especially in the initial phase, are not exactly accurate. Thus, we assume that the probability
density of the actual model is different from the one in the equation (13), which is given by

𝑝̃
(

𝑋𝑁+1, 𝑌𝑁
)

= 𝑝̃0
(

𝑥0
)

𝑁
∏

𝑘=0
𝜙̃𝑘

(

𝑧𝑘|𝑥𝑘
)

(14)
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where 𝜙̃𝑘(𝑧𝑘|𝑥𝑘) is defined as the actual transition probability density function of 𝑧𝑘 given 𝑥𝑘 according to the actual model.
Then, in view of the KL-divergence philosophy23, the modeling mismatch between the 𝑝 and 𝑝̃ can be measured as:

𝐷(𝑝̃, 𝑝) ∶= ∫ ∫ 𝑝̃
(

𝑋𝑁+1, 𝑌𝑁
)

ln
𝑝̃
(

𝑋𝑁+1, 𝑌𝑁
)

𝑝
(

𝑋𝑁+1, 𝑌𝑁
)𝑑𝑌𝑁𝑑𝑋𝑁+1.

Accordingly, we have

𝐷(𝑝̃, 𝑝) =
𝑁
∑

𝑘=0
𝐷
(

𝜙̃𝑘, 𝜙𝑘
)

(15)

where

𝐷(𝜙̃𝑘, 𝜙𝑘) = ∫ ∫ 𝜙̃𝑘
(

𝑧𝑘|𝑥𝑘
)

𝑝̃𝑘
(

𝑥𝑘
)

ln

(

𝜙̃𝑘
(

𝑧𝑘|𝑥𝑘
)

𝜙𝑘
(

𝑧𝑘|𝑥𝑘
)

)

𝑑𝑧𝑘𝑑𝑥𝑘,

and 𝑝̃𝑘(𝑥𝑘) is the actual marginal density of 𝑥𝑘. In what follows, we assume that the actual model is within a ball centered about
our nominal Gaussian model (1), where the ball is specified by a KL tolerance, hereafter called 𝑐𝑘. Thus, we assume that the
actual conditional density 𝜙̃𝑘 given 𝑌𝑘−1 is included in an ambiguity set shown as:

𝑘 ∶=

{

𝜙̃𝑘 s.t. 𝔼̃

[

ln

(

𝜙̃𝑘
(

𝑧𝑘|𝑥𝑘
)

𝜙𝑘
(

𝑧𝑘|𝑥𝑘
)

)

|

|

|

|

𝑌𝑘−1

]

≤ 𝑐𝑘

}

where

𝔼̃

[

ln

(

𝜙̃𝑘
(

𝑧𝑘|𝑥𝑘
)

𝜙𝑘
(

𝑧𝑘|𝑥𝑘
)

)

|

|

|

|

𝑌𝑘−1

]

∶= ∫ ∫ 𝜙̃𝑘
(

𝑧𝑘|𝑥𝑘
)

𝑝̃𝑘
(

𝑥𝑘|𝑌𝑘−1
)

ln

(

𝜙̃𝑘
(

𝑧𝑘|𝑥𝑘
)

𝜙𝑘
(

𝑧𝑘|𝑥𝑘
)

)

𝑑𝑧𝑘𝑑𝑥𝑘.

Note that 𝑐𝑘 > 0 is the budget of modeling mismatch allowed at each sampling time instant 𝑘.

Remark 3. In Section 2, the nominal model is estimated from the data, this could introduce the larger mismodeling budget in the
beginning because of the lack of the prior knowledge. For such a reason, the value of the tolerance 𝑐𝑘 is designed as a decadent
exponential function with a decay rate of 0.1 starting from the initial value 𝑐0 and a constant 𝑐1: 𝑐𝑘 = 𝑐0𝑒−0.1𝑘 + 𝑐1.

Up to this point, in view of the robust philosophy30,31, a minimax game is designed for this modeling mismatch where one
player, say nature, tends to find the worst model in the ball 𝑘, while the other one conspires to select the optimum filter
minimizing the estimation error within the worst model:

𝑥̂𝑘 = argmin
𝑓𝑘∈𝑘

max
𝜙̃𝑘∈𝑘

𝐽𝑘(𝜙̃𝑘, 𝑓𝑘) (16)

where
𝐽𝑘(𝜙̃𝑘, 𝑓𝑘) =

1
2
𝔼̃
[

‖

(

𝑥𝑘 − 𝑓𝑘
(

𝑦𝑘
))

‖

2
|𝑌𝑘−1

]

=1
2 ∫ ∫ ‖

(

𝑥𝑘 − 𝑓𝑘
(

𝑦𝑘
))

‖

2𝜙̃𝑘
(

𝑧𝑘|𝑥𝑘
)

𝑝̃𝑘
(

𝑥𝑘|𝑌𝑘−1
)

𝑑𝑧𝑘𝑑𝑥𝑘,

𝑘 denotes the class of estimators with finite second-order moments with respect to all the densities 𝜙̃𝑘
(

𝑧𝑘|𝑥𝑘
)

𝑝̃𝑘(𝑥𝑘|𝑌𝑘−1) such
that 𝜙̃𝑘 ∈ 𝑘. Here, the optimization variables are the actual model 𝜙̃𝑘 and the robust filter 𝑓𝑘. Moreover, it is not difficult to
see that the actual probability density function (PDF) 𝜙̃𝑘 must be under the following constraint:

𝐼𝑘(𝜙̃𝑘) ≜ ∫ ∫ 𝜙̃𝑘
(

𝑧𝑘|𝑥𝑘
)

𝑝̃𝑘
(

𝑥𝑘|𝑌𝑘−1
)

𝑑𝑧𝑘𝑑𝑥𝑘 = 1. (17)

Lemma 1. For a fixed estimator 𝑓𝑘 ∈ 𝑘 with the given nominal PDF, the actual PDF 𝜙̃𝑘
(

𝑧𝑘|𝑥𝑘
)

∈ 𝑘 that maximizes the
objective function

𝐽𝑘(𝜙̃𝑘, 𝑓𝑘) = 𝔼̃
[

‖

‖

𝑥𝑘 − 𝑓𝑘(𝑦𝑘)‖‖
2
|𝑌𝑘−1

]

under the constraint 𝐷(𝜙̃𝑘, 𝜙𝑘) ≤ 𝑐𝑘 is given by

𝜙̃𝑘 =
1

𝑀𝑘
(

𝜆𝑘
) exp

(

1
2𝜆𝑘

‖

‖

𝑥𝑘 − 𝑓𝑘(𝑦𝑘) ‖‖
2
)

𝜙𝑘. (18)

Moreover, 𝑀𝑘(𝜆𝑘) is the normalizing constant such that (17) holds. Finally, for 𝑐𝑘 > 0 sufficiently small, there exists a unique
𝜆𝑘 > 0 such that 𝐷(𝜙̃0

𝑘, 𝜙𝑘) = 𝑐𝑘.

Proof. The proof is similar to the Lemma 1 in Reference 31.
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Algorithm 1 Robust adaptive Kalman filter (RAKF)

Require: 𝐶 , 𝑉0, 𝑅̂0, 𝛼̂0, 𝜎̂2
0 , 𝑟𝐿+1, 𝑟𝐿+1, x𝑗,𝑚𝑖𝑛, x𝑗,𝑚𝑎𝑥, 𝑥̂0, 𝑐0, 𝑐1, 𝑦0 … 𝑦𝑁 .

Ensure: 𝑥̂𝑘+1, 𝑘 = 0…𝑁 .
1: Find 𝐴̂0, 𝐵̂0, 𝑄̂0, w.r.t. 𝛼̂0, 𝜎̂2

0 .
2: Find ̄̂

x𝑗,0 w.r.t. 𝑥̂0.
3: for 𝑘 = 0 ∶ 𝐿 do
4: 𝐺𝑘 = 𝐴̂𝑘𝑉𝑘𝐶⊤(𝐶𝑉𝑘𝐶⊤ + 𝑅̂𝑘)−1;
5: 𝑥̂𝑘+1 = 𝐴̂𝑘𝑥̂𝑘 + 𝐵̂𝑘

̄̂
x𝑗,𝑘 + 𝐺𝑘

(

𝑦𝑘 − 𝐶𝑥̂𝑘
)

;
6: 𝑃𝑘+1 = 𝐴̂𝑘𝑉𝑘𝐴̂⊤

𝑘 − 𝐺𝑘
(

𝐶𝑉𝑘𝐶⊤ + 𝑅̂⊤
𝑘

)

𝐺⊤
𝑘 + 𝑄̂𝑘;

7: 𝑐𝑘 = 𝑐0𝑒−0.1𝑘 + 𝑐1;
8: Find 𝜆−1𝑘 s.t. 𝛾(𝑃𝑘+1, 𝜆𝑘) = 𝑐𝑘;
9: 𝑉𝑘+1 = (𝑃 −1

𝑘+1 − 𝜆−1𝑘 𝐼)−1;
10: 𝑒𝑘+1 = 𝑦𝑘+1 − 𝐶𝑥̂𝑘+1;
11: 𝑒𝑘+1 =

∑𝑘+1
𝑖=1 𝑒𝑖∕(𝑘 + 1);

12: Δ𝑅𝑘+1 = ‖𝑒𝑘+1 − 𝑒𝑘+1‖2∕𝑘 − 𝐶𝑉𝑘+1𝐶⊤∕(𝑘 + 1);
13: 𝑅̂𝑘+1 = (𝑘 + 1)𝑅̂𝑘∕𝑘 + Δ𝑅𝑘+1;
14: 𝛼̂𝑘+1 = 𝛼̂0;
15: Find x̂𝑗,𝑘+1 w.r.t. 𝑥̂𝑘+1 ;
16: if x̂𝑗,𝑘+1 ≥ 0 then
17: 𝜎̂2

𝑘+1 = (4 − 𝜋)(x𝑗,𝑚𝑎𝑥 − x̂𝑗,𝑘+1)2∕𝜋;
18: else
19: 𝜎̂2

𝑘+1 = (4 − 𝜋)(x̂𝑗,𝑘+1 − x𝑗,𝑚𝑖𝑛)2∕𝜋;
20: end if
21: Find 𝐴̂𝑘+1, 𝐵̂𝑘+1, 𝑄̂𝑘+1, w.r.t. 𝛼̂𝑘+1, 𝜎̂2

𝑘+1.
22: end for
23: for 𝑘 = 𝐿 + 1 ∶ 𝑁 do
24: Run Step 4 - Step 10;
25: 𝑒𝑘+1 = (𝐿 + 1)𝑒𝑘∕𝐿 + 𝑒𝑘+1∕(𝐿 + 1);
26: Δ𝑅𝑘+1 = ‖𝑒𝑘+1 − 𝑒𝑘+1‖2∕𝐿 − 𝐶𝑉𝑘+1𝐶⊤∕(𝐿 + 1);
27: 𝑅̂𝑘+1 = (𝐿 + 1)𝑅̂𝑘∕𝐿 + Δ𝑅𝑘+1;
28: Find x̂𝑗,𝑘+1 w.r.t. 𝑥̂𝑘+1 ;
29: ̄̂

x𝑗,𝑘+1 =
∑𝑘+1

𝑖=𝑘−𝐿+1 x̂𝑗,𝑖∕(𝐿 + 1);
30: 𝛿𝑘+1 = x̂𝑗,𝑘+1 − ̄̂

x𝑗,𝑘+1;
31: 𝑟𝑘+1 = 𝑟𝑘 + (𝛿𝑘+1𝛿𝑘 − 𝑟𝑘)∕(𝑘 + 1);
32: 𝑟𝑘+1 = 𝑟𝑘 + (𝛿𝑘+1𝛿𝑘+1 − 𝑟𝑘)∕(𝑘 + 1);
33: 𝛼̂𝑘+1 = (ln 𝑟𝑘+1 − ln 𝑟𝑘+1)∕𝑇 ;
34: 𝜎̂2

𝑘+1 = (𝑟𝑘+1 − 𝛼̂𝑘+1 𝑟𝑘+1)∕(1 − (𝑟𝑘+1∕𝑟𝑘+1)2);
35: Find 𝐴̂𝑘+1, 𝐵̂𝑘+1, 𝑄̂𝑘+1, w.r.t. 𝛼̂𝑘+1, 𝜎̂2

𝑘+1.
36: end for

At this point, it is not difficult to see that the worst density solution to the minimax problem (16) depends on the estimator
𝑥̂𝑘, while the optimal estimator depends on the worst density. Hence, in order to break this deadlock, we assume that the actual
a priori probability density 𝑝̃𝑡(𝑥𝑘|𝑌𝑘−1) ∼  (𝑥̂𝑘, 𝑉𝑘) with 𝑉𝑘 > 0. Since 𝑝̃𝑘

(

𝑧𝑘|𝑌𝑘−1
)

enjoys the aforementioned properties
and 𝑉𝑡 > 0, in view of the nominal model shown in Section 2 and the results shown in Theorem 1 of Reference 30 , it follows
that the optimal robust estimator solution to (16) is given by Algorithm 1. Note that to find the optimal solution of the dynamic
game (16), we do not compute numerically any integral. Indeed, the dynamic game (16) admits the solution through Lagrange
multipliers theory which can provide a similar structure of the standard Kalman filter, however, the filtering performance is
computed in a different way, see Step 9 in Algorithm 1. Then, 𝛾(𝑃𝑘, 𝜃𝑘) in Step 8 is given by (19):

𝛾(𝑃𝑘, 𝜆𝑘) ∶=
1
2
[

lndet(𝐼 − 𝜆−1𝑘 𝑃𝑘) + tr
(

(𝐼 − 𝜆−1𝑘 𝑃𝑘)−1 − 𝐼
)]

= 𝑐𝑘 (19)
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and 𝜃𝑘 = 𝜆−1𝑘 . Furthermore, the inclusion of 𝑉𝑡 in the process necessitates the computation of 𝜃𝑡 at Step 8, which is crucial for
the success of our RAKF in handling model uncertainties. It should be noted that determining the risk sensitivity parameter 𝜃𝑡
can not be achieved through a straightforward closed-form solution and requires the Bisection method.

Remark 4. It is worth noting that the proposed robust adaptive Kalman filter allows for exploiting the recursive expressions
with a lack of statistical knowledge of the dynamic and noise processes. The same philosophy can be adopted not only for our
interstory drift estimation problem but also for the adaptive tracking scenarios.

4 SIMULATION STUDY

We analyze the impact of the model parameters on the estimated results based on a maneuvering target tracking problem. In
particular, analysis of the model parameters such like 𝑐𝑘, 𝛼̂𝑘 and 𝜎̂2

𝑘 has been studied References 12,13 and 24. Thus, we only
focus on the measurement noise covariance 𝑅̂𝑘. More precisely, we generated a random two-dimensional trajectory in a two-
dimensional interval [−10, 10] × [−10, 10], see the red line in Fig. 2, to simulate the maneuvering target movement. Next, a
white noise sequence with variance 𝑅̄𝑘 = 𝑟̄𝑘 ⋅ 𝐼2 where 𝑟̄𝑘 ∼ 𝕌{1.5, 2.5} has been added to the reference trajectory. Thus, we
obtained a measurement trajectory as well, see the blue line.
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FIGURE 2 Reference trajectory, measurement trajectory and estimated trajectories with 𝑅0 = 1 ⋅𝐼2, 𝑅0 = 2 ⋅𝐼2 and 𝑅0 = 5 ⋅𝐼2.

Here, we select 𝑇 = 0.01, and then the initialization of the model parameters are: 𝑐0 = 1, 𝛼̂0 = 0.05, 𝜎̂2
0 = 10, 𝑟𝐿+1 = 0,

𝑟𝐿+1 = 0, x𝑗,𝑚𝑖𝑛 = −1, x𝑗,𝑚𝑎𝑥 = 1, and 𝑐1 = 0.15. Subgraphs in Fig. 2 show estimated trajectories with different initial
measurement noise covariances: 𝑅0 = 1 ⋅ 𝐼2, 𝑅0 = 2 ⋅ 𝐼2 and 𝑅0 = 5 ⋅ 𝐼2. Clearly, the results are not affected by the initial value.
Besides, we also design the following two methods: robust Signer adaptive Kalman filter (RSAKF) and robust Jerk adaptive
Kalman filter (RJAKF). In other words, the only difference between RAKF and RJAKF is that the measurement noise covariance
in RAKF is adaptive by using our method 2.2, while RSAKF is the third-order paradigm of RJAKF. Table 1 shows RAKF has
the better performance than RSAKF and RJAKF. More importantly, the results of the proposed RAKF are not affected by the
initial value of the noise covariance even it was assumed time varying.

5 EXPERIMENT

Structural seismic test, based on the earthquake simulation shaking table, can evaluate the seismic performance and understand
the seismic response of the RC structure36. In our test, we generated seismic waves that simulate El Centro waves18 in the
United States to study the level of the structural damage of a four-story RC structure. Fig. 3 shows our experiment platform
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TABLE 1 RMSE for RAKF, RSAKF and RJAKF

RAKF RSAKF RJAKF
Latitudinal Longitudinal Latitudinal Longitudinal Latitudinal Longitudinal

𝑅0=5 0.214 0.192 2.016 2.246 0.821 0.982
𝑅0=2 0.180 0.172 0.676 0.644 0.363 0.233
𝑅0=1 0.164 0.162 1.987 1.433 0.540 0.699

where the yellow rope on the top was used to provide backup support without the direct contact, the red part is our four-layer RC
structure with the story height ℎ = 0.53𝑚, and in the bottom, it is the earthquake simulation shaking table which can provide
the simulated seismic signal. Moreover, it is worth noticing that the structural damage usually occurs on the first floor, as shown
in Fig. 3(b). This means, in general case, we only need to focus on the ID of the first floor. Accordingly, before the observable
structural damage occurs, we obtained two trajectories over a finite time interval 𝑁 = [0, 10000] of the ID of the first floor: one
is from a low-cost sensor with the massive measurement noise shown in the dark green line in Fig. 4, the other is from a high
precision sensor that is impossible to assemble on a large scale, shown in the red line in Fig. 4, which is treated as the reference
signal. Clearly, our measurement data is extraordinarily noisy and the dynamic characteristic of the reference displacement is
almost covered by noise. In addition, we notice that the reference data is also slightly disturbed. Indeed, this disturbance, which
could be from the measuring error of our high-precision sensor or the vibration of the RC structure, is acceptable because of its
negligible size. Accordingly, we seek to match our estimated trajectory with the reference trajectory as closely as possible.

(a) Before the test. (b) After the test.

FIGURE 3 Red four-layer RC frame, yellow rope providing backup support but no direct contact and earthquake simulation
shaking table.

In what follows, we consider the following three filters over the time horizon 𝑁 : the proposed RAKF in Algorithm 1, the
robust Kalman filter23 based on the Singer model (RSKF)12 and the robust Kalman filter23 based on the Jerk model (RJKF)13.
The model parameters are selected to be the same as those in the simulation. Note that the initial conditions of the predicted
state vector and the covariance matrix for the initial state are given by 𝑥̂0 = [0 0 0 0]⊤ and 𝑉0 = 10 ⋅ 𝐼4, respectively. Here, for
RSKF, they are 𝑥̂0 = [0 0 0]⊤ and 𝑉0 = 10 ⋅ 𝐼3, respectively. Finally, 𝑅̂0 = 10.

Fig. 5 shows the online estimated trajectories obtained by RAKF (blue line), RSKF (gray line) and RJKF (orange line)
compared with the reference trajectory (red line). Clearly, RAKF outperforms RSKF and RJKF. Moreover, the first subgraph
in Fig. 5 shows the convergence speed of three filters. As excepted, both RAKF and RJKF are convergent rapidly with the help
of our robust approach. Interestingly, RSKF converges almost in an instant. This is because the vibration of the RC structure
is relatively weak when the seismic excitation first arrived. At this time, the jerk has increased the modeling mismatch instead,
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FIGURE 4 Reference trajectory and measurement trajectory of ID.

which affects the estimation accuracy. However, as time goes on, it is easy to see in the next two subgraphs, due to the update of
model parameters, only RAKF can accurately match the reference trajectory. Moreover, we quantify the performance of three
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FIGURE 5 Reference trajectory and estimated trajectories obtained by RAKF, RSKF and RJKF.

filters via mean, standard deviation (Std) and root-mean-squared error (RMSE). More precisely, the RMSE is given by:

RMSE =

√

√

√

√
1
𝑁

𝑁
∑

𝑘=1
(x̃𝑝,𝑘 − x̂𝑝,𝑘)2

where x̃𝑝,𝑘 represents the reference ID and x̂𝑝,𝑘 is the estimated ID extracted from 𝑥̂𝑘. Then, values of mean, Std and RMSE for
aforementioned three filters are displayed in Table 2. As expected, compared to RSKF and RJKF, RAKF can track the reference
trajectory more accurately and process measurement noise better.

TABLE 2 Performance for RAKF, RSKF and RJKF

Mean Std RMSE
RAKF 0.0514 0.0026 0.0968
RSKF 0.2739 0.4071 0.3206
RJKF 0.5046 0.1034 0.4239
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Then, it is not difficult to show the IDR, namely, 𝜃𝑘, which is the ratio of the ID to the story height in every time step37,
defined as:

𝜃̂𝑘 = x̂𝑝,𝑘∕(100ℎ), 𝜃𝑘 = x̃𝑝,𝑘∕(100ℎ), 𝜃̌𝑘 = x̌𝑝,𝑘∕(100ℎ)
where 𝜃̂𝑘, 𝜃𝑘 and 𝜃𝑘 are the estimated IDR with respect to x̂𝑝,𝑘 by means of RAKF, the reference IDR with respect to x̃𝑝,𝑘
and the measurement IDR with respect to the measurement ID, i.e., x̌𝑝,𝑘, respectively. In addition, based on “General Rule for
Performance-based Seismic Design of Buildings” with the No. CECS 160-2004 in China, we have the Table 3 showing the IDR
corresponding to different building status. According to Table 3, we classified our obtained IDR into three labels, i.e., 0, 1 2. Fig.
6 shows the corresponding confusion matrices: due to our proposed algorithm, the accuracy of the structural health monitoring
is obviously improved.

TABLE 3 IDR corresponding to different building status

Building status Criteria Label
No damage 𝜃𝑘 < 1∕550 0

Slight damage 1∕550 < 𝜃𝑘 < 1∕250 1
Moderate damage 1∕250 < 𝜃𝑘 < 1∕125 2

Confusion matrix

83.46%

36.89%

23.39%

15.01%

23.24%

30.85%

1.52%

39.87%

45.76%

0 1 2

Measurement label

0
 

1
2

R
e
fe

re
n

c
e
 l

a
b

e
l

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(a) Confusion matrix between 𝜃𝑘 and 𝜃̌𝑘.

Confusion matrix

99.33%

3.62%

0.00%

0.60%

92.75%

0.41%

0.07%

3.62%

99.59%

0 1 2

Estimated label

0
 

1
2

R
e
fe

re
n

c
e
 l

a
b

e
l

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) Confusion matrix between 𝜃𝑘 and 𝜃̂𝑘.

FIGURE 6 Results of the structural health monitoring.

6 CONCLUSION

In this paper, we have proposed an adaptive robust Kalman filter for an interstory drift estimation problem to show the structural
health condition of RC. Since the statistics or internal dynamics describing the signals and measurements are not known, we
build an adaptive current Jerk model where the model parameters are updated in each time step to presuppose the statistics
characterization of the RC dynamic, while the unknown measurement noise covariance is adapted based on a fixed-lag innovation
with respect to measurements. Then, considering the possible modeling mismatch between the identified nominal model and
the actual one, a robust adaptive Kalman filter is designed with a exponential decay tolerance in each time increment by solving
a minimax game: one “hostile” player tries to select an “actual” model far from the proposed ACJM, while an optimum filter is
designed by minimizing the estimation error according to this actual model. Finally, in our experimental test, we obtained the
measured ID on the first floor of a four-story RC structure under a seismic wave that simulates El Centro waves in the United
States. The experimental results show that compared with two other filters, RAKF offers the better estimation performance.
Moreover, we have also presented a simulation study showing the satisfactory adaptability of the proposed algorithm in the
absence of prior knowledge of the measurement noise process.
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