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Abstract

This paper is concerned with high moment and pathwise error estimates for both velocity and pressure approximations of the

Euler-Maruyama scheme for time discretization and its two fully discrete mixed finite element discretizations. Optimal rates of

convergence are established for all pth moment errors for p[?]2 using a novel bootstrap technique. The almost optimal rates of

convergence are then obtained using Kolmogorov’s theorem based on the high moment error estimates. Unlike for the velocity

error estimate, the high moment and pathwise error estimates for the pressure approximation are proved in a time-averaged

norm. In addition, the impact of noise types on the rates of convergence for both velocity and pressure approximations is

also addressed. Finally, numerical experiments are also provided to validate the proven theoretical results and to examine the

dependence/growth of the error constants on the moment order p.
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HIGH MOMENT AND PATHWISE ERROR ESTIMATES FOR
FULLY DISCRETE MIXED FINITE ELEMENT APPROXIMATIONS

OF THE STOCHASTIC STOKES EQUATIONS WITH
MULTIPLICATIVE NOISE∗

LIET VO†

Abstract. This paper is concerned with high moment and pathwise error estimates for both
velocity and pressure approximations of the Euler-Maruyama scheme for time discretization and its
two fully discrete mixed finite element discretizations. Optimal rates of convergence are established
for all pth moment errors for p ≥ 2 using a novel bootstrap technique. The almost optimal rates
of convergence are then obtained using Kolmogorov’s theorem based on the high moment error
estimates. Unlike for the velocity error estimate, the high moment and pathwise error estimates for
the pressure approximation are proved in a time-averaged norm. In addition, the impact of noise
types on the rates of convergence for both velocity and pressure approximations is also addressed.
Finally, numerical experiments are also provided to validate the proven theoretical results and to
examine the dependence/growth of the error constants on the moment order p.

Key words. Stochastic Stokes equations, multiplicative noise, Wiener process, Itô stochastic
integral, Euler-Maruyama scheme, mixed finite element method, high moment error estimates.

AMS subject classifications. 65N12, 65N15, 65N30,

1. Introduction. In this paper, we establish high moment and pathwise error
estimates for fully discrete mixed finite element approximations of the following time-
dependent stochastic Stokes problem:

du =
[
ν∆u−∇p+ f

]
dt+B(u)dW (t) a.s. inDT := (0, T )×D,(1.1a)

divu = 0 a.s. inDT ,(1.1b)

u(0) = u0 a.s. inD,(1.1c)

where D = (0, L)d ⊂ Rd (d = 2, 3) represents a period of the periodic domain in Rd,
u and p stand for respectively the velocity field and the pressure of the fluid, B is an
operator-valued random field, {W (t); t ≥ 0} denotes an R-valued Wiener process, and
f is a body force function (see Section 2 for their precise definitions). Here we seek
periodic-in-space solutions (u, p) with period L, that is, u(t,x + Lei) = u(t,x) and
p(t,x + Lei) = p(t,x) almost surely and for any (t,x) ∈ (0, T ) × Rd and 1 ≤ i ≤ d,
where {ei}di=1 denotes the canonical basis of Rd.

The above stochastic Stokes equations can be viewed as a stochastic perturbation
of the deterministic non-stationary Stokes equations by a white-noise-driven random

force B(u)dW (t)
dt , it intends to model turbulence flows and also serves as a prototypical

stochastic partial differential equation (SPDE) model to study analytically and to
approximate numerically (cf. [1, 11, 20, 22, 5, 9, 3, 15]). It should be noted that
although the Stokes operator is linear since B(u) is nonlinear in u, the stochastic
Stokes system (1.1a) is intrinsically a nonlinear system.

Numerical analysis of the stochastic Stokes (as well as the stochastic Navier-
Stokes) equations has received a lot of attention in recent years, various numerical
methods, including finite element and mixed finite element, stabilized methods, and

∗This work was partially supported by the NSF grant DMS-1620168.
†Department of Mathematics, The University of Tennessee, Knoxville, TN 37996. Current Ad-

dress: Department of Mathematics, Statistics and Computer Science, The University of Illinois at
Chicago, Chicago, IL 60607, U.S.A. (lietvo@uic.edu).
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2 LIET VO

splitting methods, have been developed and analyzed (cf. [2, 3, 4, 5, 9, 10, 13, 15, 16]).
Optimal and sub-optimal error estimates in strong and weak norms have been estab-
lished. Unlike in the deterministic case, the primary goal of the numerical analysis
of SPDEs is to derive error estimates for the quantities of stochastic interests of the
error functions. The best-known such quantities are the pth moment, E[∥u−U∥p] for
2 ≤ p ≤ ∞ as well as the variance Var[∥u − U∥], where E[·] and Var[·] stand for the
expectation and variance operators, u and U denote respectively the exact and numer-
ical solutions and ∥·∥ denotes some space-time norm. We note that when p = ∞, such
an estimate is often called a pathwise error estimate. As expected, among these quan-
tities of stochastic interests, the easiest one is the second moment E[∥u−U∥2]. This is
indeed what was done in the above cited works for problem (1.1). Moreover, in prac-
tice, numerical simulations for the approximate solution U are done for sample paths
when the Monte Carlo method is used to compute the quantities of stochastic interests,
which requires to use a large number of samples. However, to the best of our knowl-
edge, no qualitative estimate was known for esssupω∈Ω max1≤n≤N ∥u(tn, ω)−Un(ω)∥
in the literature for the stochastic Stokes (and stochastic Navier-Stokes) equations.
Such error estimates would provide valuable information about the quality of each
computed sample path U(ω).

The goal of this paper is to fill this gap by establishing arbitrarily high order
moment and pathwise error estimates for both velocity and pressure approximations
of the stochastic Stokes problem (1.1) discretized by two fully discrete mixed finite
element methods. This paper extends the results of [13, 15] where the second moment
error estimates were obtained for those mixed finite element methods.

The remainder of this paper is organized as follows. In Section 2, we introduce no-
tations and preliminaries which include the solution definition and the well-posedness
of the stochastic Stokes problem (1.1). In Section 3, we first formulate the Euler-
Maruyama time-stepping scheme for problem (1.1) and then derive high moment and
pathwise error estimates for the velocity and pressure approximations of the time-
stepping scheme. Our main idea for deriving pth (p ≥ 2) moment error estimates
for the velocity approximation is to use a bootstrap technique starting from the sec-
ond moment error estimate and the pathwise error estimate, which is sub-optimal
in the energy norm, is obtained by using Kolmogorov’s theorem based on the high
moment error estimates. In Section 4, the standard mixed finite element method is
introduced for spatial discretization. The stable Taylor-Hood mixed element is cho-
sen as a prototypical example for analysis. The highlight of this section is to derive
high moment and pathwise error estimates for the velocity and pressure approxima-
tions of the mixed finite element method. In Section 5, we consider the modified
mixed method of [15] for problem (1.1) and obtain high moment and pathwise error
estimates for this non-standard mixed finite method as well. Finally, numerical exper-
iments are provided in Section 6 to verify the proved error estimates and to examine
the dependence/growth of the error constants on the moment order p.

2. Preliminaries. Standard function and space notation will be adopted in this
paper. Let H1

0(D) denote the subspace of H1(D) whose Rd-valued functions have zero
trace on ∂D, and (·, ·) := (·, ·)D denote the standard L2-inner product, with induced
norm ∥ · ∥. We also denote Lp

per(D) and Hk
per(D) as the Lebesgue and Sobolev

spaces of the functions that are periodic and have vanishing mean, respectively. Let
(Ω,F , {Ft},P) be a filtered probability space with the probability measure P, the
σ-algebra F and the continuous filtration {Ft} ⊂ F . For a random variable v defined
on (Ω,F , {Ft},P), E[v] denotes the expected value of v. For a vector space X with
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norm ∥ · ∥X , and 1 ≤ p < ∞, we define the Bochner space
(
Lp(Ω, X); ∥v∥Lp(Ω,X)

)
,

where ∥v∥Lp(Ω,X) :=
(
E[∥v∥pX ]

) 1
p . We also define

H :=
{
v ∈ L2

per(D); divv = 0 in D
}
, V :=

{
v ∈ H1

per(D); divv = 0 in D
}
.

We recall from [17] that the (orthogonal) Helmholtz projection PH : L2
per(D) → H

is defined by PHv = ηηη for every v ∈ L2
per(D), where (ηηη, ξ) ∈ H × H1

per(D)/R is a
unique tuple such that v = ηηη +∇ξ , and ξ ∈ H1

per(D)/R solves the following Poisson
problem with the homogeneous Neumann boundary condition:

(2.1) ∆ξ = divv.

We also define the Stokes operator A := −PH∆ : V ∩H2
per(D) → H.

Throughout this paper we assume that B : L2
per(D) → L2

per(D) is a Lipschitz
continuous mapping and has linear growth, that is, there exists a constant C > 0
such that for all v,w ∈ L2

per(D)

∥B(v)−B(w)∥ ≤ C∥v −w∥ ,(2.2a)

∥B(v)∥ ≤ C
(
∥v∥+ 1

)
,(2.2b)

In this paper, we shall use C to denote a generic positive constant which may
depend on ν, T , the datum functions u0, f , and the domain D but is independent of
the mesh parameter h and k. In addition, unless it is stated otherwise, we assume
that f ∈ Lq(Ω;C

1
2 (0, T ;H−1(D))) for some ∀q ∈ [1,∞).

2.1. Some useful facts and inequalities. In this subsection, we collect some
well-known theorems and useful facts which will be used in the later sections.

First of all, we recall the following Kolmogorov Criteria for a path-wise continuity
of stochastic processes, its proof can be found in [12, Theorem 3.3].

Theorem 2.1. Let X(t), t ∈ [0, T ], be a stochastic process with values in a
separable Banach space E such that, for some positive constant C > 0, α > 0, β > 0
and all t, s ∈ [0, T ],

E
[
∥X(t)−X(s)∥β

]
≤ C|t− s|1+α.(2.3)

Then for each T > 0, almost every ω and each 0 < γ < α
β there exists a constant

K = K(ω, γ, T ) such that

∥X(t, ω)−X(s, ω)∥ ≤ K|t− s|γ for all t, s ∈ [0, T ].(2.4)

Moreover, E
[
|K|β

]
<∞ for all β > 0.

Next, we recall a useful inequality for martingale processes. This inequality is
often referred to as the Burkholder-Davis-Gundy inequality in the literature, see [7,
Theorem 2.4].

Lemma 2.2. Let ϕϕϕ(t) ∈ L2(D) be a random field for all t ∈ [0, T ]. For any q > 0,
there exists a positive constant Cb = Cb(T, q) > 0 such that

E
[
max
0≤t≤T

∥∥∥∥∫ t

0

ϕϕϕ(ξ) dW (ξ)

∥∥∥∥q
L2

]
≤ Cb E

[(∫ T

0

∥ϕϕϕ(ξ)∥2L2 dξ

)q/2]
.(2.5)

.
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The next lemma recalls the well-known Itô isometry and introduces a related
inequality for stochastic processes.

Lemma 2.3. Let ϕϕϕ(t) be a stochastic process on [0, T ]. Define Xt =

∫ t

0

ϕϕϕ(ξ) dW (ξ).

We have
(i) If ϕϕϕ ∈ L2(Ω;L2(0, T ;L2(D))), then

E
[
∥Xt∥2L2

]
= E

[∫ t

0

∥ϕϕϕ(ξ)∥2L2 dξ

]
.(2.6)

(ii) If ϕϕϕ ∈ Lq(Ω;Lq(0, T ;L2(D))), for q > 2, then

E
[
∥Xt∥qL2

]
≤ C(t, q)E

[∫ t

0

∥ϕϕϕ(ξ)∥qL2 dξ

]
,(2.7)

where C(t, q) =
Cb

2
(q − 1)(q − 2)t

q
2 + (q − 1)Cb.

Proof. The proof of (2.6) can be found in [12]. Below we only give a proof for
(2.7), which is based on the Itô formula and Burkholder-Davis-Gundy inequality.

By Itô’s formula, we have

E
[
∥Xt∥qL2

]
≤ qE

[∫ t

0

∥Xτ∥q−2
L2

(
Xτ ,ϕϕϕ(τ)

)
dW (τ)

]
(2.8)

+
1

2
q(q − 1)E

[∫ t

0

∥Xτ∥q−2
L2 ∥ϕϕϕ(τ)∥2L2 dτ

]
.

The expectation of the first term on the right side of (2.8) vanishes due to the
martingale property of Itô integrals. Therefore, we obtain

E
[
∥Xt∥qL2

]
≤ 1

2
q(q − 1)

∫ t

0

E
[
∥Xτ∥q−2

L2 ∥ϕϕϕ(τ)∥2L2

]
dτ

=
1

2
q(q − 1)

∫ t

0

E
[∥∥∥∥∫ τ

0

ϕϕϕ(ξ) dW (ξ)

∥∥∥∥q−2

L2

∥ϕϕϕ(τ)∥2L2

]
dτ

≤ 1

2
p(p− 1)

∫ t

0

(
E
[∥∥∥∥∫ τ

0

ϕϕϕ(ξ) dW (ξ)

∥∥∥∥α(q−2)

L2

]) 1
α (

E
[
∥ϕϕϕ(τ)∥2βL2

]) 1
β dτ(2.9)

≤ 1

2
q(q − 1)

∫ t

0

(
E
[
max
0≤τ≤t

∥∥∥∥∫ τ

0

ϕϕϕ(ξ) dW (ξ)

∥∥∥∥α(q−2)

L2

]) 1
α (

E
[
∥ϕϕϕ(τ)∥2βL2

]) 1
β dτ.

We have used Hölder’s inequality with 1
α + 1

β = 1 to obtain the second inequality.

Next, applying the Burkholder-Davis-Gundy inequality to the last line of (2.9),
we get

E
[
∥Xt∥qL2

]
≤ 1

2
q(q − 1)Cb

∫ t

0

(
E
[(∫ t

0

∥ϕϕϕ(ξ)∥2L2 dξ

)α(q−2)
2

]) 1
α (

E
[
∥ϕϕϕ(τ)∥2βL2

]) 1
β dτ.

Setting α = q
q−2 , β = q

2 and using Young’s inequality with the conjugate pair q−2
q

and 2
q , we obtain

E
[
∥Xt∥qL2

]
≤ Cb

2
q(q − 1)

∫ t

0

(
E
[(∫ t

0

∥ϕϕϕ(ξ)∥2L2 dξ

) q
2
]) q−2

q (
E
[
∥ϕϕϕ(τ)∥qL2

]) 2
q dτ
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≤ 1

2
q(q − 1)CbtE

[(∫ t

0

∥ϕϕϕ(τ)∥2L2 dτ

) q
2
]
q − 2

q

+
1

2
q(q − 1)Cb

∫ t

0

E
[
∥ϕϕϕ(τ)∥qL2

]
q/2

dτ

≤
(
1

2
(q − 1)(q − 2)t

q
2 + (q − 1)

)
CbE

[∫ t

0

∥ϕϕϕ(τ)∥qL2 dτ

]
.

The proof is complete.

Finally, we recall the following property of the R-valued Wiener process:

E
[
|W (t)−W (s)|2m

]
≤ Cm|t− s|m ∀m ∈ N.(2.10)

When m = 1, the inequality becomes an equality with Cm = 1. We refer the reader
to [21] for its generalization to infinite-dimensional Wiener processes.

2.2. Variational formulation of problem (1.1). We now recall the variational
solution concept for (1.1) and refer the reader to [11, 12] for a proof of its existence
and uniqueness.

Definition 2.4. Given (Ω,F , {Ft},P), let W be an R-valued Wiener process
on it. Suppose u0 ∈ L2(Ω,V) and f ∈ L2(Ω;L2((0, T );L2

per(D))). An {Ft}-adapted
stochastic process {u(t); 0 ≤ t ≤ T} is called a variational solution of (1.1) if u ∈
L2

(
Ω;C([0, T ];V)) ∩ L2

(
Ω; 0, T ;H2

per(D)
)
, and satisfies P-a.s. for all t ∈ (0, T ]

(
u(t),v

)
+ ν

∫ t

0

(
∇u(s),∇v

)
ds = (u0,v) +

∫ t

0

(
f(s),v

)
ds(2.11)

+

∫ t

0

(
B
(
u(s)

)
,v

)
dW (s) ∀v ∈ V .

Definition 2.4 only defines the velocity u for (1.1), its associated pressure p is
subtle to define. In that regard we quote the following theorem from [15].

Theorem 2.5. Let {u(t); 0 ≤ t ≤ T} be the variational solution of (1.1). There
exists a unique adapted process P ∈ L2

(
Ω, L2(0, T ;H1

per(D)/R)
)
such that (u, P )

satisfies P-a.s. for all t ∈ (0, T ](
u(t),ϕϕϕ

)
+ ν

∫ t

0

(
∇u(s),∇ϕϕϕ

)
ds−

(
divϕϕϕ, P (t)

)
(2.12a)

= (u0,ϕϕϕ) +

∫ t

0

(
f(s),ϕϕϕ

)
ds+

∫ t

0

(
B
(
u(s)

)
,ϕϕϕ

)
dW(s) ∀ϕϕϕ ∈ H1

per(D) ,(
divu, q

)
= 0 ∀ q ∈ L2

0(D) := {q ∈ L2
per(D) : (q, 1) = 0} .(2.12b)

System (2.12) can be regarded as a mixed formulation for the stochastic Stokes
system (1.1), where the (time-averaged) pressure P is defined. Below, we also define
another time-averaged “pressure”

R(t) := P (t)−
∫ t

0

ξ(s) dW (s),(2.13)

where we use the Helmholtz decomposition B(u(t)) = ηηη(t) + ∇ξ(t), where ξ ∈
H1

per(D)/R P-a.s. such that

(2.14)
(
∇ξ(t),∇ϕ

)
=

(
B(u(t)),∇ϕ

)
∀ϕ ∈ H1

per(D) .
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The time-averaged “pressure” {R(t); 0 ≤ t ≤ T} will also be a target process to be
approximated in our numerical methods in Section 5.

The following stability estimate for the velocity u was proved in [5, 10].
Lemma 2.6. Let u be solution defined in (2.11). Assume that u0 ∈ Lr

(
Ω;V

)
for

some r ≥ 2. Then we have

E
[(

sup
0≤t≤T

∥∇u(t)∥2L2 +

∫ T

0

ν∥∇2u(t)∥2L2 dt
) r

2

]
≤ CrE

[
∥∇u0∥rL2

]
.(2.15)

Next, we introduce the Hölder continuity estimates for the variational solution u,
a similar proof can be found in [5, 10] for the stochastic Navier-Stokes equations. we
provide a proof below for completeness.

Lemma 2.7. Suppose u0 ∈ Lq
(
Ω;V

)
and f ∈ Lq(Ω;C

1
2 (0, T ;H−1(D))), ∀q ≥ 2.

For 0 < γ < 1
2 , there exists a constant C ≡ C(DT ,u0) > 0, such that the variational

solution to problem (1.1) satisfies for s, t ∈ [0, T ]

E
[
∥u(t)− u(s)∥qV

]
≤ C|t− s|γq.(2.16)

Proof. Following [10, 5], we have that the mild solution of (1.1) can be represented
as follow:

u(t) = e−tAu0 +

∫ t

0

e(t−s)APHB(u(s)) dW (s).(2.17)

For t2 < t1, write u(t1)− u(t2) = I+ II where

I =
(
e−t1A − e−t2A

)
u0,(2.18)

II =

∫ t1

0

e(t1−s)APHB(u(s)) dW(s)−
∫ t2

0

e(t2−s)APHB(u(s)) dW (s).

By the standard estimates of semigroup theory, we have

∥Aae−tA∥ ≤ Ct−a, ∥A−b(I− e−tA)∥ ≤ Ctb.

Thus,

∥I∥V = ∥e−t2A(e−(t1−t2)A − I)A
1
2u0∥L2(2.19)

≤ C(t1 − t2)
γ∥∇u0∥L2 .

Therefore, E[∥I∥qV] ≤ C(t1 − t2)
γqE

[∥∥u0

∥∥q
V

]
.

Next, we can write

II =

∫ t2

0

(
e−(t1−s)A − e−(t2−s)A

)
B(u(s)) dW (s)(2.20)

+

∫ t1

t2

e−(t1−s)AB(u(s)) dW (s) =: IIa + IIb.

By the Burkholder-Davis-Gundy inequality and the fact that ∥ · ∥V = ∥A1/2 · ∥L2 ,
we obtain

(
E
[∥∥IIa∥∥qV])1/q ≤ C

(∫ t2

0

(
E
[∥∥(e−(t1−s)A − e−(t2−s)A

)
B(u(s))

∥∥q
V

])2/q

ds

)1/2

(2.21)
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≤ C

(∫ t2

0

∥∥A(1−ε)e−(t2−s)A
∥∥2
L(L2)

×
∥∥A−(1−ε)

(
e−(t1−t2)A − I

)∥∥2
L(L2)

(
E
[
∥u(s)∥qV

])2/q

ds

)1/2

≤ C(t1 − t2)
1−ε sup

0≤s≤T

(
E
[
∥u(s)∥qV

])1/q
(∫ t2

0

ds

(t2 − s)2(1−ε)

)1/2

≤ C(t1 − t2)
1−ε,

where 1
2 < ε < 1, and

(
E
[
∥u(s)∥qV

])1/q

< Cq by Lemma 2.6.

To estimate IIb, we use Lemma 2.3 (ii) and then also apply Lemma 2.6 to obtain:

E
[∥∥IIb∥∥qV] ≤ Cq

∫ t1

t2

E
[∥∥e−(t1−s)AB(u(s))

∥∥q
V

]
ds(2.22)

≤ Cq(t1 − t2) sup
0≤s≤T

E
[
∥u(s)∥qV

]
.

Finally, combining (2.19), (2.21) and (2.22) we obtain

E
[
∥u(t1)− u(t2)∥qV

]
≤ C(t1 − t2)

γq,(2.23)

where 0 < γ < 1
2 . The proof is complete.

Remark 2.1. We note that due to the obstruction of nonlinearity, the estimate
obtained in [5] requires higher regularity of u0 and B ∈ L(L2

per,H
2
per) to obtain the

optimal order γ. On the other hand, the estimate of [10] is limited to the order γ
2

under the same assumptions as in Lemma 2.7 above.

3. Semi-discretization in time. In this section, we consider the implicit Euler-
Maruyama scheme for the time discretization of (2.11).

3.1. Formulation of the scheme and stability estimates. We recall the
Euler-Maruyama scheme for problem (1.1) in the following algorithm (cf. [9, 13, 15]).
Let Ik := {tn}Mn=1 be a uniform mesh of the interval [0, T ] with the time step-size
k = T

M . Note that t0 = 0 and tM = T .

Algorithm 1
Let u0 = u0 be a given V-valued random variable. Find the pair {un+1, pn+1} ∈

V× L2
per recursively such that P-a.s.(

un+1 − un,ϕϕϕ
)
+ νk

(
∇un+1,∇ϕϕϕ

)
− k

(
pn+1,divϕϕϕ

)
(3.1a)

= k
(
fn+1,ϕϕϕ

)
+

(
B(un)∆Wn+1,ϕϕϕ

)
,(

divun+1, ψ
)
= 0(3.1b)

for all ϕϕϕ ∈ H1
per(D) and ψ ∈ L2

per(D). Where fn+1 := f(tn+1).
The following stability estimates for the velocity approximation {un} of Algorithm

1 were proved in in [10, Lemma 3.1].
Lemma 3.1. Let u0 ∈ L2q (Ω;V) for an integer 1 ≤ q < ∞ be given, such

that E
[
∥u0∥2

q

V
]
≤ C. Then there exists a constant CT,q = C(T, q,u0) such that the

following estimations hold:

(i) E
[

max
1≤n≤M

∥un∥2
q

V + νk

M∑
n=1

∥un∥2
q−2

V ∥Aun∥2L2

]
≤ CT,q.
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(ii) E

[( M∑
n=1

∥un − un−1∥2V
)q

+

(
νk

M∑
n=1

∥Aun∥2V
)q

]
≤ CT,q.

Next, we want to derive some high moment stability estimates for the pressure
approximation {pn} of Algorithm 1, which plays a crucial role in the error analysis of
the full-discrete scheme later.

Lemma 3.2. Let {(um+1, pm+1)}n be generated by Algorithm 1. Assume that
u0 ∈ Lq(Ω;V) for 1 ≤ q <∞. Then, there exists a constant C > 0 such that

(i) if B : L2 → V, then

E
[(
k

M∑
n=1

∥∇pn∥2L2

)q]
≤ CT,q;(3.2)

(ii) if B : L2 → H1
per, then

E
[(
k

M∑
n=1

∥∇pn∥2L2

)q]
≤ CT,q

kq
.(3.3)

Proof. When q = 1, both (3.2), (3.3) were already shown [10, Lemma 3.2]. Thus,
it remains to prove them for q > 1.

(i) We first multiply the strong form of (3.1a) by ∇pn+1 and use the fact that
since B(u) ∈ V, so

(
B(un)∆Wn+1,∇pn+1

)
= 0 to conclude that

k∥∇pn+1∥2L2 ≤ Ck∥fn+1∥2L2 .(3.4)

Next, taking the summation over the index n followed by taking the qth power
and expectation on both sides of (3.4) leads to the desired estimate.

(ii) Let B ∈ L∞(0, T ;H1
per(D)), then

(
B(un)∆Wn+1,∇pn+1

)
̸= 0. Hence,

k∥∇pn+1∥2L2 ≤ Ck∥fn+1∥2L2 +
C

k
∥B(un)∆Wn+1∥2L2 .(3.5)

Taking the summation over the index n followed by taking the qth power and
expectation on both sides of (3.5), we get

E
[(
k

M∑
n=1

∥∇pn∥2L2

)q]
≤ CqE

[(
k

M∑
n=1

∥fn∥2L2

)q]
(3.6)

+
Cq

kq
E
[( M∑

n=1

∥B(un−1)∆Wn∥2L2

)q]
.

We now bound the last term on the right side of (3.6). By the discrete Hölder
inequality for summation and (2.2b), we obtain

E
[( M∑

n=1

∥B(un−1)∆Wn∥2L2

)q]
≤ CqE

[( M∑
n=1

∥un−1∥2L2 |∆Wn|2
)q

]
(3.7)

≤ CqM
q−1E

[ M∑
n=1

∥un−1∥2qL2 |∆Wn|2q
]
.
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Using the tower property of the conditional expectation, the independence of the
increments of the Wiener process and (2.10), we obtain

E
[
∥un−1∥2qL2 |∆Wn|2q

]
≤ Cqk

qE
[
∥un−1∥2qL2

]
.(3.8)

Substitute (3.7), (3.8) into (3.6) we obtain

E
[(
k

M∑
n=1

∥∇pn∥2L2

)q]
≤ CqE

[(
k

M∑
n=1

∥fn∥2L2

)q]
+
Cq

kq
E
[
k

M∑
n=1

∥un−1∥2qL2

]
.(3.9)

Finally, the proof is complete by using the assertion (i) of Lemma 3.1.

3.2. High moment and pathwise error estimates for the velocity ap-
proximation. In this subsection, we present the first main result of this paper which
establishes the optimal order high moment error estimates for the velocity approx-
imation by Algorithm 1 and the sub-optimal order pathwise error estimate for the
velocity approximation with the help of Theorem 2.1.

Theorem 3.3. Let u be the variational solution to (2.11) and {un}Mn=1 be
generated by Algorithm 1. Assume that u0 ∈ L2q (Ω;V). Then there exists C1 =
C1(T, q,u0, f) > 0 for any integer 1 ≤ q <∞ and real number 0 < γ < 1

2 such that

E
[
max

1≤n≤M
∥u(tn)− un∥2

q

L2

]
≤ C1 k

2qγ .(3.10)

Proof. When q = 1, the estimate was already proved in [13, 15]. Thus, it remains
to show (3.10) for q ≥ 2. We start with q = 2.

Let en = u(tn)−un. Integrating (2.12a) from tn to tn+1 and choosing ϕϕϕ ∈ V, we
obtain (

u(tn+1)− u(tn),ϕϕϕ
)
+

∫ tn+1

tn

(
∇u(s),∇ϕϕϕ

)
ds =

∫ tn+1

tn

(
f(s),ϕϕϕ

)
ds(3.11)

+

∫ tn+1

tn

(
B
(
u(s)

)
,ϕϕϕ

)
dW (s).

Subtracting (3.11) from (3.1a), we obtain the following error equation for the
velocity: (

en+1 − en,ϕϕϕ
)
+ νk

(
∇en+1,∇ϕϕϕ

)
= ν

∫ tn+1

tn

(
∇(u(s)− u(tn+1)),∇ϕϕϕ

)
ds(3.12)

+

∫ tn+1

tn

(
f(s)− f(tn+1),ϕϕϕ

)
ds

+

∫ tn+1

tn

(
B(u(s))−B(un),ϕϕϕ

)
dW (s).

Choosing ϕϕϕ = en+1 in (3.12) and using the identity 2(a− b)a = a2− b2+(a− b)2,
then the left-hand side (LHS) and right-hand side (RHS) of (3.12) become

LHS =
1

2

[
∥en+1∥2L2 − ∥en∥2L2

]
+

1

2
∥en+1 − en∥2L2 + νk∥∇en+1∥2L2 .(3.13)

RHS = ν

∫ tn+1

tn

(
∇(u(s)− u(tn+1)),∇en+1

)
ds(3.14)
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+

∫ tn+1

tn

(
f(s)− f(tn+1), e

n+1
)
ds

+

(∫ tn+1

tn

(
B(u(s))−B(un)

)
dW (s), en+1 − en

)
+

(∫ tn+1

tn

(
B(u(s))−B(un)

)
dW (s), en

)
.

Next, multiplying (3.13) and (3.14) by ∥en+1∥2L2 yields

LHS =
1

4

[
∥en+1∥4L2 − ∥en∥4L2

]
+

1

4

(
∥en+1∥2L2 − ∥en∥2L2

)2
(3.15)

+
1

2
∥en+1 − en∥2L2∥en+1∥2L2 + νk∥∇en+1∥2L2∥en+1∥2L2 .

RHS = ν

∫ tn+1

tn

(
∇(u(s)− u(tn+1)),∇en+1

)
ds∥en+1∥2L2(3.16)

+

∫ tn+1

tn

(
f(s)− f(tn+1), e

n+1
)
ds∥en+1∥2L2

+

(∫ tn+1

tn

(
B(u(s))−B(un)

)
dW (s), en+1 − en

)
∥en+1∥2L2

+

(∫ tn+1

tn

(
B(u(s))−B(un)

)
dW (s), en

)
∥en+1∥2L2

=: I+ II+ III+ IV.

Now, we estimate terms of I, II, III, IV below.

I ≤ ν

∫ tn+1

tn

∥∇(u(tn+1)− u(s))∥L2∥∇en+1∥L2∥en∥L2 ds(3.17)

≤ ν

∫ tn+1

tn

∥∇(u(tn+1)− u(s))∥2L2∥en+1∥2L2 ds

+
νk

4
∥∇en+1∥2L2∥en+1∥2L2

= ν

∫ tn+1

tn

∥∇(u(tn+1)− u(s))∥2L2 ds
(
∥en+1∥2L2 − ∥en∥2L2

)
+ ν

∫ tn+1

tn

∥∇(u(tn+1)− u(s))∥2L2 ds∥en∥2L2

+
νk

4
∥∇en+1∥2L2∥en+1∥2L2

≤ 8

(
ν

∫ tn+1

tn

∥∇(u(tn+1)− u(s))∥2L2

)2

+
1

32

(
∥en+1∥2L2 − ∥en∥2L2

)2
+
ν2

4

∫ tn+1

tn

∥∇(u(tn+1)− u(s))∥4L2 ds+ k∥en∥4L2

+
νk

4
∥∇en+1∥2L2∥en+1∥2L2
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By using (2.16), we obtain

E[I] ≤ C k1+4γ +
1

32
E
[(
∥en+1∥2L2 − ∥en∥2L2

)2]
(3.18)

+
νk

4
E
[
∥∇en+1∥2L2∥en+1∥2L2

]
+ kE

[
∥en∥4L2

]

II ≤
∫ tn+1

tn

∥f(s)− f(tn+1)∥H−1∥∇en+1∥L2∥en+1∥2L2 ds(3.19)

≤ C

∫ tn+1

tn

∥f(s)− f(tn+1)∥2H−1∥en+1∥2L2 ds+
νk

4
∥∇en+1∥2L2∥en+1∥2L2

≤ C

∫ tn+1

tn

∥f(s)− f(tn+1)∥4H−1 ds+
1

32

(
∥en+1∥2L2 − ∥en∥2L2

)2
+ Ck∥en∥4L2 +

νk

4
∥∇en+1∥2L2∥en+1∥2L2 .

Since f ∈ L2q (Ω;C
1
2 (0, T ;H−1(D))) for q = 2, we have

E[II] ≤ Ck3 +
1

32
E
[(
∥en+1∥2L2 − ∥en∥2L2

)2]
(3.20)

+ CkE
[
∥en∥4L2

]
+
νk

4
E
[
∥∇en+1∥2L2∥en+1∥2L2

]
.

III =

(∫ tn+1

tn

(
B(u(s))−B(un)

)
dW (s), en+1 − en

)
∥en+1∥2L2(3.21)

≤
∥∥∥∫ tn+1

tn

(
B(u(s))−B(un)

)
dW (s)

∥∥∥2
L2
∥en+1∥2L2

+
1

4
∥en+1 − en∥2L2∥en+1∥2L2

=
∥∥∥∫ tn+1

tn

(
B(u(s))−B(un)

)
dW (s)

∥∥∥2
L2

(
∥en+1∥2L2 − ∥en∥2L2

)
+
∥∥∥∫ tn+1

tn

(
B(u(s))−B(un)

)
dW (s)

∥∥∥2
L2
∥en∥2L2

+
1

4
∥en+1 − en∥2L2∥en+1∥2L2

≤ 8
∥∥∥∫ tn+1

tn

(
B(u(s))−B(un)

)
dW (s)

∥∥∥4
L2

+
1

32

(
∥en+1∥2L2 − ∥en∥2L2

)2
+
∥∥∥∫ tn+1

tn

(
B(u(s))−B(un)

)
dW (s)

∥∥∥2
L2
∥en∥2L2

+
1

4
∥en+1 − en∥2L2∥en+1∥2L2 .

IV =

(∫ tn+1

tn

(
B(u(s))−B(un)

)
dW (s), en

)(
∥en+1∥2L2 − ∥en∥2L2

)
(3.22)
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+

(∫ tm+1

tm

(
B(u(s))−B(un)

)
dW (s), en

)
∥en∥2L2

≤ 8
∥∥∥∫ tn+1

tn

(
B(u(s))−B(un)

)
dW (s)

∥∥∥2
L2
∥en∥2L2

+
1

32

(
∥en+1∥2L2 − ∥en∥2L2

)2
+

(∫ tn+1

tn

(
B(u(s))−B(un)

)
dW (s), en

)
∥en∥2L2 .

We note that the last term on the right side of (3.22) has zero expected value because
of the martingale property of the Itô integrals.

Now, substituting the above estimates for terms I, II, III, IV into RHS in
(3.16) and taking expectation on both LHS and RHS, followed by absorbing the like
terms of LHS in (3.15) into those of RHS in (3.16), we obtain

1

4
E
[
∥en+1∥4L2 − ∥en∥4L2

]
+

1

4
E
[
∥en+1 − en∥2L2∥en+1∥2L2

]
(3.23)

+
νk

2
E
[
∥∇en+1∥2L2∥en+1∥2L2

]
≤ C k1+4γ + CkE

[
∥en∥4L2

]
+ Ck3

+ CE
[∥∥∥∫ tn+1

tn

(
B(u(s))−B(un)

)
dW (s)

∥∥∥4
L2

]
+ CE

[∥∥∥∫ tn+1

tn

(
B(u(s))−B(un)

)
dW (s)

∥∥∥2
L2
∥en∥2L2

]
≤ Ck1+4γ + CkE

[
∥en∥4L2

]
+ V+ VI,

where

V := CE
[∥∥∥∫ tn+1

tn

(
B(u(s))−B(un)

)
dW (s)

∥∥∥4
L2

]
,

VI := CE
[∥∥∥∫ tn+1

tn

(
B(u(s))−B(un)

)
dW (s)

∥∥∥2
L2
∥en∥2L2

]
.

To estimate V, we first use (2.7) and then use (2.16) to get

V = CE
[∥∥∥∫ tn+1

tn

(
B(u(s))−B(un)

)
dW (s)

∥∥∥4
L2

]
(3.24)

≤ CE
[∫ tn+1

tn

∥B(u(s))−B(un)∥4L2 ds
]

≤ C

∫ tn+1

tn

E
[
∥u(s)− un∥4L2

]
ds

≤ C

∫ tn+1

tn

E
[
∥u(s)− u(tn)∥4L2

]
ds+ CkE

[
∥en∥4L2

]
≤ Ck1+4γ + CkE

[
∥en∥4L2

]
.

To estimate VI, we use the Itô isometry given in (2.6) and (2.16) to get

VI = CE
[∥∥∥∫ tn+1

tn

(
B(u(s))−B(un)

)
dW (s)

∥∥∥2
L2
∥en∥2L2

]
(3.25)
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= CE
[∥∥∥∫ tn+1

tn

(
B(u(s))−B(un)

)
∥en∥L2 dW (s)

∥∥∥2
L2

]
= CE

[∫ tn+1

tn

∥B(u(s))−B(un)∥2L2∥en∥2L2 ds
]

≤ C

∫ tn+1

tn

E
[
∥u(s)− un∥2L2∥en∥2L2

]
ds

≤ C

∫ tn+1

tn

E
[
∥u(s)− u(tn)∥2L2∥en∥2L2

]
ds+ CkE

[
∥en∥4L2

]
≤ C

∫ tn+1

tn

E
[
∥u(s)− u(tn)∥4L2

]
ds+ CkE

[
∥en∥4L2

]
≤ Ck1+4γ + CkE

[
∥en∥4L2

]
.

Bounding V, VI by (3.24) and (3.25) in (3.23), we obtain

1

4
E
[
∥en+1∥4L2 − ∥en∥4L2

]
+

1

8
E
[(
∥en+1∥2L2 − ∥en∥2L2

)2]
(3.26)

+
1

4
E
[
∥en+1 − en∥2L2∥en+1∥2L2

]
+
νk

2
E
[
∥∇en+1∥2L2∥en+1∥2L2

]
≤ Ck1+4γ + CkE

[
∥en∥4L2

]
.

Next, lowering the index n in (3.26) by 1 and applying the summation
∑ℓ

n=1 for
any 1 ≤ ℓ ≤M , we have

E
[
∥eℓ∥4L2

]
+

ℓ∑
n=1

E
[
∥en − en−1∥2L2∥en∥2L2

]
+ 2νk

ℓ∑
n=1

E
[
∥∇en∥2L2∥en∥2L2

]
(3.27)

≤ Ck4γ + Ck

ℓ∑
n=1

E
[
∥en−1∥4L2

]
≤ Ck4γeCtℓ ,

where we have used the discrete Gronwall inequality to get the last inequality.
Taking maximum over all 1 ≤ ℓ ≤M to (3.27), we conclude that

max
1≤ℓ≤M

E
[
∥eℓ∥4L2

]
≤ Ck4γ .(3.28)

Since the maximum is taken outside of E[·], hence, (3.28) is weaker than the
desired estimate for q = 2. To show the stronger estimate, we follow the technique of
Lemma 3.1 proof [8] which uses the estimate (3.28) as a bridge to obtain the desired
estimate.

To the end, substituting (3.17)–(3.22) into RHS in (3.16) and equating it with LHS

in (3.15) (without taking expectation), we obtain

1

4

[
∥en+1∥4L2 − ∥en∥4L2

]
+

1

8

(
∥en+1∥2L2 − ∥en∥2L2

)2
(3.29)

+
1

4
∥en+1 − en∥2L2∥en+1∥2L2 +

νk

2
∥∇en+1∥2L2∥en+1∥2L2

≤ Ck∥en∥4L2 + C

∫ tn+1

tn

∥∇(u(tn+1)− u(s))∥4L2 ds
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+ C

∫ tn+1

tn

∥f(s)− f(tn+1)∥4H−1 ds

+ C
∥∥∥∫ tn+1

tn

(
B(u(s))−B(un)

)
dW (s)

∥∥∥4
L2

+ C
∥∥∥∫ tn+1

tn

(
B(u(s))−B(un)

)
dW (s)

∥∥∥2
L2
∥en∥2L2

+

(∫ tn+1

tn

(
B(u(s))−B(un)

)
dW (s), en

)
∥en∥2L2 .

Applying the summation operator
∑ℓ

n=1 followed by max1≤ℓ≤M and taking ex-
pectation on both sides, on noting that the last term on the right side of (3.29) would
not vanish anymore (which is the main difference of this new process compared with
the proof of (3.28)), and by using (3.28), we have

E
[
max

1≤ℓ≤M
∥eℓ∥4L2

]
(3.30)

≤ CE
[

max
1≤ℓ≤M

ℓ∑
n=1

(∫ tn

tn−1

(
B(u(s))−B(un−1)

)
dW (s), en−1

)
∥en−1∥2L2

]
+ C k4γ .

To bound the first term on the right side of (3.30), we appeal to Burkholder-Davis-
Gundy inequality to obtain

E
[

max
1≤ℓ≤M

ℓ∑
n=1

(∫ tn

tn−1

(
B(u(s))−B(un−1)

)
dW (s), en−1

)
∥en−1∥2L2

]
(3.31)

≤ E
[( M∑

n=1

∫ tn

tn−1

∥B(u(s))−B(un−1)∥2L2∥en−1∥6L2 ds

)1/2]

≤ CE
[( M∑

n=1

∫ tn

tn−1

∥u(s)− un−1∥2L2∥en−1∥6L2 ds

)1/2]

≤ CE
[

max
1≤ℓ≤M

∥eℓ∥2L2

( M∑
n=1

∫ tn

tn−1

∥u(s)− un−1∥2L2∥en−1∥2L2 ds

)1/2]

≤ 1

2
E
[
max

1≤ℓ≤M
∥eℓ∥4L2

]
+ CE

[ M∑
n=1

∫ tn

tn−1

∥u(s)− un−1∥2L2∥en−1∥2L2 ds

]

≤ 1

2
E
[
max

1≤ℓ≤M
∥eℓ∥4L2

]
+ CE

[ M∑
n=1

∫ tn

tn−1

∥u(s)− u(tn−1)∥2L2∥en−1∥2L2 ds

]

+ CE
[ M∑
n=1

∫ tn

tn−1

∥en−1∥4L2 ds

]

≤ 1

2
E
[
max

1≤ℓ≤M
∥eℓ∥4L2

]
+ Ck

M∑
n=1

E
[
∥en−1∥4L2

]
+ C

M∑
n=1

∫ tn

tn−1

(
E
[
∥u(s)− u(tn−1)∥4L2

])1/2(E[∥en−1∥4L2

])1/2
ds
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≤ 1

2
E
[
max

1≤ℓ≤M
∥eℓ∥4L2

]
+ Ck4γ .

Here, we have used (2.16) and (3.28) to obtain the last inequality of (3.31).
Combining (3.31) and (3.30) yields the desired estimate for the case q = 2.
To prove the general case 3 ≤ q <∞, for the sake of notation brevity but without

loss of the generality, we let f = 0. Our first task is to show the following inequality
by induction for any 1 ≤ q <∞: there exists a constant cq > 0 such that holds P-a.s.

1

2q
[
∥en+1∥2

q

L2 − ∥en∥2
q

L2

]
(3.32)

≤ cqk∥en∥2
q

L2 + cq

∫ tn+1

tn

∥∇(u(s)− u(tn+1))∥2
q

L2 ds

+ cq

q∑
j=1

∥∥∥∫ tn+1

tn

(
B(u(s))−B(un)

)
dW (s)

∥∥∥2j
L2
∥en∥2

q−2j

L2

+
(∫ tn+1

tn

(
B(u(s))−B(un)

)
dW (s), en

)
∥en∥2

q−2
L2 ,

which has been proved to hold for q = 2, 3.
Suppose that (3.32) holds for any fixed integer q(> 3) and we want to show it

also holds for q + 1. To the end, multiplying (3.32) by ∥en+1∥2qL2 and use again the
identity 2a(a− b) = a2 − b2 + (a− b)2 we obtain

1

2q+1

[
∥en+1∥2

q+1

L2 − ∥en∥2
q+1

L2

]
+

1

2q+1

(
∥en+1∥2

q

L2 − ∥en∥2
q

L2

)2
(3.33)

≤ cqk∥en∥2
q

L2∥en+1∥2
q

L2 + cq

∫ tn+1

tn

∥∇(u(s)− u(tn+1))∥2
q

L2 ds∥en+1∥2
q

L2

+ cq

q∑
j=1

∥∥∥∫ tn+1

tn

(
B(u(s))−B(un)

)
dW (s)

∥∥∥2j
L2
∥en∥2

q−2j

L2 ∥en+1∥2
q

L2

+
(∫ tn+1

tn

(
B(u(s))−B(un)

)
dW (s), en

)
∥en∥2

q−2
L2 ∥en+1∥2

q

L2

:= I+ II+ III+ IV.

For some δ1, δ2 > 0, we have

I = cqk∥en∥2
q

L2

(
∥en+1∥2

q

L2 − ∥en∥2
q

L2

)
+ cqk∥en∥2

q+1

L2(3.34)

≤
c2qk

2

4δ1
∥en∥2

q+1

L2 + δ1
(
∥en+1∥2

q

L2 − ∥en∥2
q

L2

)2
+ cqk∥en∥2

q+1

L2

=
(c2qk
4δ1

+ cq

)
k∥en∥2

q+1

L2 + δ1
(
∥en+1∥2

q

L2 − ∥en∥2
q

L2

)2
.

II = cq

∫ tn+1

tn

∥∇(u(s)− u(tn+1))∥2
q

L2 ds
(
∥en+1∥2

q

L2 − ∥en∥2
q

L2

)
(3.35)

+ cq

∫ tn+1

tn

∥∇(u(s)− u(tn+1))∥2
q

L2 ds∥en∥2
q

L2
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≤ 1

4δ2

(
cq

∫ tn+1

tn

∥∇(u(s)− u(tn+1))∥2
q

L2 ds
)2

+ δ2
(
∥en+1∥2

q

L2 − ∥en∥2
q

L2

)2
+ cq

∫ tn+1

tn

∥∇(u(s)− u(tn+1))∥2
q+1

L2 ds+ cqk∥en∥2
q+1

L2

≤
c2qk

4δ2

∫ tn+1

tn

∥∇(u(s)− u(tn+1))∥2
q+1

L2 ds+ δ2
(
∥en+1∥2

q

L2 − ∥en∥2
q

L2

)2
+ cq

∫ tn+1

tn

∥∇(u(s)− u(tn+1))∥2
q+1

L2 ds+ cqk∥en∥2
q+1

L2

=
(c2qk
4δ2

+ cq

)∫ tn+1

tn

∥∇(u(s)− u(tn+1))∥2
q+1

L2 ds

+ δ2
(
∥en+1∥2

q

L2 − ∥en∥2
q

L2

)2
+ cqk∥en∥2

q+1

L2 .

For α1, · · · , αq > 0 we have

III = cq

q∑
j=1

∥∥∥∫ tn+1

tn

(
B(u(s))−B(un)

)
dW (s)

∥∥∥2j
L2
∥en∥2

q−2j

L2

(
∥en+1∥2

q

L2 − ∥en∥2
q

L2

)(3.36)

+ cq

q∑
j=1

∥∥∥∫ tn+1

tn

(
B(u(s))−B(un)

)
dW (s)

∥∥∥2j
L2
∥en∥2

q−2j

L2 ∥en∥2
q

L2

≤
q∑

j=1

c2q
4αj

∥∥∥∫ tn+1

tn

(
B(u(s))−B(un)

)
dW (s)

∥∥∥2j+1

L2
∥en∥2

q+1−2j+1

L2

+

q∑
j=1

αj

(
∥en+1∥2

q

L2 − ∥en∥2
q

L2

)2
+ cq

q∑
j=1

∥∥∥∫ tn+1

tn

(
B(u(s))−B(un)

)
dW (s)

∥∥∥2j
L2
∥en∥2

q+1−2j

L2 .

Similarly, for some δ3 > 0 we have

IV =
(∫ tn+1

tn

(
B(u(s))−B(un)

)
dW (s), en

)
∥en∥2

q−2
L2

(
∥en+1∥2

q

L2 − ∥en∥2
q

L2

)
(3.37)

+
(∫ tn+1

tn

(
B(u(s))−B(un)

)
dW (s), en

)
∥en∥2

q−2
L2 ∥en∥2

q

L2

≤ 1

4δ3

∥∥∥∫ tn+1

tn

(
B(u(s))−B(un)

)
dW (s)

∥∥∥2
L2
∥en∥2L2∥en∥2

q+1−4
L2

+ δ3
(
∥en+1∥2

q

L2 − ∥en∥2
q

L2

)2
+
(∫ tn+1

tn

(
B(u(s))−B(un)

)
dW (s), en

)
∥en∥2

q+1−2
L2

=
1

4δ3

∥∥∥∫ tn+1

tn

(
B(u(s))−B(un)

)
dW (s)

∥∥∥2
L2
∥en∥2

q+1−2
L2

+ δ3
(
∥en+1∥2

q

L2 − ∥en∥2
q

L2

)2
+
(∫ tn+1

tn

(
B(u(s))−B(un)

)
dW (s), en

)
∥en∥2

q+1−2
L2 .



HIGH MOMENT ERROR ESTIMATES FOR STOCHASTIC STOKES EQUATIONS 17

Substitute the estimates from (3.34)–(3.37) into (3.33) we obtain

1

2q+1

[
∥en+1∥2

q+1

L2 − ∥en∥2
q+1

L2

]
(3.38)

+
( 1

2q+1
− δ1 − δ2 − δ3 − α

)(
∥en+1∥2

q

L2 − ∥en∥2
q

L2

)2
≤

(c2qk
4δ1

+ 2cq

)
k∥en∥2

q+1

L2 +
(c2qk
4δ2

+ cq

)∫ tn+1

tn

∥∇(u(s)− u(tn+1))∥2
q+1

L2 ds

+

q∑
j=1

c2q
4αj

∥∥∥∫ tn+1

tn

(
B(u(s))−B(un)

)
dW (s)

∥∥∥2j+1

L2
∥en∥2

q+1−2j+1

L2

+ cq

q∑
j=1

∥∥∥∫ tn+1

tn

(
B(u(s))−B(un)

)
dW (s)

∥∥∥2j
L2
∥en∥2

q+1−2j

L2

+
1

4δ3

∥∥∥∫ tn+1

tn

(
B(u(s))−B(un)

)
dW (s)

∥∥∥2
L2
∥en∥2

q+1−2
L2

+
(∫ tn+1

tn

(
B(u(s))−B(un)

)
dW (s), en

)
∥en∥2

q+1−2
L2 ,

where α =

q∑
j=1

αj > 0.

Now, we choose δ1, δ2, δ3, α > 0 such that 1
2q+1 − δ1 − δ2 − δ3 − α > 0 so that

the second term on the left side of (3.38) is positive and can be dropped at the end.
Next, after rearranging terms on the right side, (3.38) infers that

1

2q+1

[
∥en+1∥2

q+1

L2 − ∥en∥2
q+1

L2

](3.39)

+
( 1

2q+1
− δ1 − δ2 − δ3 − α

)(
∥en+1∥2

q

L2 − ∥en∥2
q

L2

)2
≤

(c2qk
4δ1

+ 2cq

)
k∥en∥2

q+1

L2 +
(c2qk
4δ2

+ cq

)∫ tn+1

tn

∥∇(u(s)− u(tn+1))∥2
q+1

L2 ds

+ max
1≤j≤q

c2q
4αj

q∑
j=1

∥∥∥∫ tn+1

tn

(
B(u(s))−B(un)

)
dW (s)

∥∥∥2j+1

L2
∥en∥2

q+1−2j+1

L2

+
(
cq +

1

4δ3

) q∑
j=1

∥∥∥∫ tn+1

tn

(
B(u(s))−B(un)

)
dW (s)

∥∥∥2j
L2
∥en∥2

q+1−2j

L2

+
(∫ tn+1

tn

(
B(u(s))−B(un)

)
dW (s), en

)
∥en∥2

q+1−2
L2

≤
(c2qk
4δ1

+ 2cq

)
k∥en∥2

q+1

L2 +
(c2qk
4δ2

+ cq

)∫ tn+1

tn

∥∇(u(s)− u(tn+1))∥2
q+1

L2 ds

+ max
1≤j≤q

c2q
4αj

q+1∑
j=1

∥∥∥∫ tn+1

tn

(
B(u(s))−B(un)

)
dW (s)

∥∥∥2j
L2
∥en∥2

q+1−2j

L2

+
(
cq +

1

4δ3

) q+1∑
j=1

∥∥∥∫ tn+1

tn

(
B(u(s))−B(un)

)
dW (s)

∥∥∥2j
L2
∥en∥2

q+1−2j

L2
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+
(∫ tn+1

tn

(
B(u(s))−B(un)

)
dW (s), en

)
∥en∥2

q+1−2
L2

=
(c2qk
4δ1

+ 2cq

)
k∥en∥2

q+1

L2 +
(c2qk
4δ2

+ cq

)∫ tn+1

tn

∥∇(u(s)− u(tn+1))∥2
q+1

L2 ds

+
(
cq +

1

4δ3
+ max

1≤j≤q

c2q
4αj

) q+1∑
j=1

∥∥∥∫ tn+1

tn

(
B(u(s))−B(un)

)
dW (s)

∥∥∥2j
L2
∥en∥2

q+1−2j

L2

+
(∫ tn+1

tn

(
B(u(s))−B(un)

)
dW (s), en

)
∥en∥2

q+1−2
L2

≤ cq+1k∥en∥2
q+1

L2 + cq+1

∫ tn+1

tn

∥∇(u(s)− u(tn+1))∥2
q+1

L2 ds

+ cq+1

q+1∑
j=1

∥∥∥∫ tn+1

tn

(
B(u(s))−B(un)

)
dW (s)

∥∥∥2j
L2
∥en∥2

q+1−2j

L2

+
(∫ tn+1

tn

(
B(u(s))−B(un)

)
dW (s), en

)
∥en∥2

q+1−2
L2 ,

where

cq+1 = max
{c2qk
4δ1

+ 2cq,
c2qk

4δ2
+ cq, cq +

1

4δ3
+ max

1≤j≤q

c2q
4αj

}
.

Hence, the proof of (3.32) is complete.
Next, we prove the statement of the theorem for the general case 3 ≤ q < ∞,

which will be carried out using the same technique as that in the proof of the 4th
moment (i.e. q = 2). Taking the expectation on (3.32) and using the martingale
property of Itô integrals and the Hölder continuity in Lemma 2.7, we obtain

1

2q
E
[
∥en+1∥2

q

L2 − ∥en∥2
q

L2

]
(3.40)

≤ cqkE
[
∥en∥2

q

L2

]
+ cqk

1+2qγ

+ cq

q∑
j=1

E
[∥∥∥∫ tn+1

tn

(
B(u(s))−B(un)

)
dW (s)

∥∥∥2j
L2
∥en∥2

q−2j

L2

]
≤ cqkE

[
∥en∥2

q

L2

]
+ cqk

1+2qγ

+ cq

q∑
j=1

CjE
[∫ tn+1

tn

∥∥B(u(s))−B(un)
∥∥2j
L2 ds∥en∥2

q−2j

L2

]
,

where the last inequality of (3.40) is obtained by using (ii) of Lemma 2.3. The last
term on the right side of (3.40) cab be bounded as follows

cq

q∑
j=1

CjE
[∫ tn+1

tn

∥∥B(u(s))−B(un)
∥∥2j
L2 ds∥en∥2

q−2j

L2

]
(3.41)

≤ cq

q∑
j=1

CjE
[∫ tn+1

tn

∥∥B(u(s))−B(u(tn))
∥∥2j
L2 ds∥en∥2

q−2j

L2

]
+ cq

q∑
j=1

CjE
[∫ tn+1

tn

∥∥B(u(tn))−B(un)
∥∥2j
L2 ds∥en∥2

q−2j

L2

]
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≤ cq

q∑
j=1

CjE
[∫ tn+1

tn

∥u(s)− u(tn)∥2
j

L2 ds∥en∥2
q−2j

L2

]
+ cq

q∑
j=1

CjE
[∫ tn+1

tn

∥en∥2
j

L2 ds∥en∥2
q−2j

L2

]

= cq

q−1∑
j=1

CjE
[∫ tn+1

tn

∥u(s)− u(tn)∥2
j

L2 ds∥en∥2
q−2j

L2

]
+ c̃qE

[∫ tn+1

tn

∥u(s)− u(tn)∥2
q

L2 ds
]
+ c̃qkE

[
∥en∥2

q

L2

]
≤ cq

q−1∑
j=1

CjE
[∫ tn+1

tn

∥u(s)− u(tn)∥2
j

L2 ds∥en∥2
q−2j

L2

]
+ c̃qk

1+2qγ + c̃qkE
[
∥en∥2

q

L2

]
.

In addition, for each 1 ≤ j < q, using Young’s inequality with the conjugates a = 2q−j

and b = 2q−j

2q−j−1 to the first term on the right side of (3.41), we get

cq

q−1∑
j=1

CjE
[∫ tn+1

tn

∥u(s)− u(tn)∥2
j

L2 ds∥en∥2
q−2j

L2

]
(3.42)

≤ cq

q−1∑
j=1

Cj

a
E
[∫ tn+1

tn

∥u(s)− u(tn)∥a2
j

L2 ds
]
+ cq

q−1∑
j=1

Cj

b
kE

[
∥en∥(2

q−2j)b
L2

]
≤ c̃qk

1+2qγ + c̃qkE
[
∥eq∥2

q

L2

]
,

Finally, substituting (3.42) to (3.41) and then combining it with (3.40) yield

1

2q
E
[
∥en+1∥2

q

L2 − ∥en∥2
q

L2

]
≤ c̃qkE

[
∥en∥2

q

L2

]
+ c̃qk

1+2qγ .(3.43)

Summing (3.43) in n and then using the discrete Gronwall inequality, we get

1

2q
E
[
∥eℓ∥2

q

L2

]
≤ c̃qk

ℓ∑
n=1

E
[
∥en−1∥2

q

L2

]
+ c̃qCtℓk

2qγ(3.44)

≤ c̃qCtℓk
2qγ ec̃qtℓ .

Thus,

max
1≤ℓ≤M

E
[
∥eℓ∥2

q

L2

]
≤ Ck2

qγ .

Repeating the last part of the proof of the case q = 2 we subsequently obtain

E
[
max

1≤ℓ≤M
∥eℓ∥2

q

L2

]
≤ Ck2

qγ .

The proof is complete.
Corollary 3.4. Under the assumptions of Theorem 3.3. For any real numbers

2 ≤ q <∞ and 0 < γ < 1
2 , there holds

E
[
max

1≤n≤M
∥u(tn)− un∥qL2

]
≤ C1 k

γq,(3.45)
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where C1 = C1(T, q,u0, f).
Proof. The proof follows from using Hölder inequality and Theorem 3.3.
Theorem 3.5. Under the assumptions of Theorem 3.3, there holds for 2 ≤ q <∞

and 0 < γ < 1
2

E
[∥∥∥∥νk M∑

n=1

∇(u(tn)− un)

∥∥∥∥q
L2

]
≤ C1k

γq,(3.46)

where C1 = C1(T, q,u0, f).
Proof. For the sake of notational brevity, we set ν = 1. Applying the summation

operator
∑M

n=1 to (3.12), we obtain

(
eM ,ϕϕϕ

)
+

(
k

M∑
n=1

∇en,∇ϕϕϕ
)

=

( M∑
n=1

∫ tn

tn−1

∇
(
u(s)− u(tn)

)
ds,∇ϕϕϕ

)
(3.47)

+

( M∑
n=1

∫ tn

tn−1

(
f(s)− f(tn)

)
ds,ϕϕϕ

)

+

( M∑
n=1

∫ tn

tn−1

(
B(u(s))−B(un−1)

)
dW (s),ϕϕϕ

)
.

Setting ϕϕϕ = k
∑M

n=1 e
n, and using Schwarz, Young, Poincaré inequalities, we obtain∥∥∥∥k M∑

n=1

∇en
∥∥∥∥2
L2

≤ C∥eM∥2L2 + C

∥∥∥∥ M∑
n=1

∫ tn

tn−1

∇
(
u(s)− u(tn)

)
ds

∥∥∥∥2
L2

(3.48)

+ C

∥∥∥∥ M∑
n=1

∫ tn

tn−1

(
f(s)− f(tn)

)
ds

∥∥∥∥2
H−1

+ C

∥∥∥∥ M∑
n=1

∫ tn

tn−1

(
B(u(s))−B(un−1)

)
dW (s)

∥∥∥∥2
L2

.

Taking the q
2 -power followed by expectation on both sides of (3.48), we get

E
[∥∥∥∥k M∑

n=1

∇en
∥∥∥∥q
L2

]
≤ CqE

[
∥eM∥qL2

]
(3.49)

+ CqE
[∥∥∥∥ M∑

n=1

∫ tn

tn−1

∇
(
u(s)− u(tn)

)
ds

∥∥∥∥q
L2

]

+ CqE
[∥∥∥∥ M∑

n=1

∫ tn

tn−1

(
f(s)− f(tn)

)
ds

∥∥∥∥q
H−1

]

+ CqE
[∥∥∥∥ M∑

n=1

∫ tn

tn−1

(
B(u(s))−B(un−1)

)
dW (s)

∥∥∥∥q
L2

]
=: I+ II+ III+ IV.

By using (3.10), (2.16), and the assumption on f , we get

I+ II+ III ≤ Cqk
γq.(3.50)
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To bound IV, by (2.7) we have

IV ≤ CqE
[ M∑
n=1

∫ tn

tn−1

∥B(u(s))−B(un−1)∥qL2 ds

]
(3.51)

≤ CqE
[ M∑
n=1

∫ tn

tn−1

∥u(s)− u(tn−1)∥qL2 ds

]
+ CqE

[ M∑
n=1

∫ tn

tn−1

∥en−1∥qL2 ds

]
≤ Cqk

γq.

Here, we have used (2.16) and (3.10) to obtain the last inequality of (3.51). The proof
is complete.

Remark 3.1. The second-moment (i.e., p = 2) error estimate in the H1-norm
was obtained for the velocity approximation in [13, 15]. Theorem 3.5 proves a weak
convergence of the high moments of the error in H1-norm. The difficulty of obtaining
the strong convergence of the high moments of the error in H1-norm is explained
below. After setting ϕϕϕ = en+1 in (3.12), using the binomial formula and summing
over all 0 ≤ n < M , we obtain a similar inequality as that in (3.49) but in strong
form, namely,

E
[
∥eM∥qL2

]
+ E

[(
k

M∑
n=1

∥∇en∥2L2

)q/2]
(3.52)

≤ CqE
[( M∑

n=1

∥∥∥∥∫ tn

tn−1

∇
(
u(s)− u(tn)

)
ds

∥∥∥∥2
L2

)q/2]

+ CqE
[( M∑

n=1

∥∥∥∥∫ tn

tn−1

(
f(s)− f(tn)

)
ds

∥∥∥∥2
H−1

)q/2]

+ CqE
[( M∑

n=1

∥∥∥∥∫ tn

tn−1

(
B(u(s))−B(un−1)

)
dW (s)

∥∥∥∥2
L2

)q/2]
.

It is unclear how to bound the noise term on the right-hand side of (3.52).
Finally, we are ready to state our first pathwise error estimate for the velocity

approximation, such an estimate has not been obtained before in the literature.
Theorem 3.6. Assume that the assumptions of Theorem 3.3 hold. Let 2 < q <∞

and 0 < γ < 1
2 such that γ − 1

q > 0. Then, for 0 < γ1 < γ − 1
q , there exists a random

variable K1 = K1(ω;C1) with E
[
|K1|q

]
<∞ such that there holds P-a.s.

max
1≤n≤M

∥u(tn)− un∥L2 +

∥∥∥∥νk M∑
n=1

∇
(
u(tn)− un

)∥∥∥∥
L2

≤ K1k
γ1 .(3.53)

Proof. (3.53) is an immediate consequence of Corollary 3.4, Theorem 3.5 and
Kolmogorov Criteria, Theorem 2.1.

3.3. High moment and pathwise error estimates for the pressure ap-
proximation. In this subsection we derive high moment and pathwise error estimates
for the pressure approximation generated by Algorithm 1. Once again, the pathwise
error estimate is obtained by using the Kolmogorov Criteria, Theorem 2.1 and the
high moment error estimates.
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Theorem 3.7. Let P (t) be the pressure process defined in Theorem 2.5 and
{pn}Mn=1 be the pressure approximation generated by Algorithm 1. Assume that u0 ∈
Lq(Ω;V). Then, for real number 0 < γ < 1

2 and any integer 2 ≤ q < ∞, there exists
a positive constant C2 = C2(C1, β0) such that for all 1 ≤ ℓ ≤M

E
[∥∥∥∥P (tℓ)− k

ℓ∑
n=1

pn
∥∥∥∥q
L2

]
≤ C2k

γq.(3.54)

Proof. The proof is based on the well-known inf-sup condition associated with
the Stokes problem. First, let us recall the inf-sup condition at the differential level,
it says that there exists β0 > 0 such that

sup
ϕϕϕ∈H1

per(D)

(
w,divϕϕϕ

)
∥∇ϕϕϕ∥L2

≥ β0∥w∥L2 ∀w ∈ L2
per(D).(3.55)

Now, integrating (2.12a) in t from 0 to tℓ for 1 ≤ ℓ ≤M , we obtain

(
u(tℓ),ϕϕϕ

)
+ ν

∫ tℓ

0

(
∇u(s),∇ϕϕϕ

)
ds−

(
divϕϕϕ, P (tℓ)

)
(3.56)

= (u0,ϕϕϕ) +

∫ tℓ

0

(
f(s),ϕϕϕ

)
ds+

∫ tℓ

0

(
B
(
u(s)

)
,ϕϕϕ

)
dW(s) ∀ϕϕϕ ∈ H1

per(D),

and applying
∑ℓ

n=1 to (3.1a), we get

(
uℓ,ϕϕϕ

)
+ νk

ℓ∑
n=1

(
∇un,∇ϕϕϕ

)
− k

ℓ∑
n=1

(
pn,divϕϕϕ

)
(3.57)

=
(
u0,ϕϕϕ

)
+ k

ℓ∑
n=1

(
fn,ϕϕϕ

)
+

ℓ∑
n=1

(
B(un−1)∆Wn,ϕϕϕ

)
∀ϕϕϕ ∈ H1

per(D).

Let Em
P := P (tm)− k

∑m
n=1 p

n and recall that em := u(tm)− um from the proof
of Theorem 3.3. Subtracting (3.56) from (3.57) yields

(
Eℓ

P ,divϕϕϕ
)
=

(
eℓ,ϕϕϕ

)
+ ν

( ℓ∑
n=1

∫ tn

tn−1

∇
(
u(s)− un

)
ds,∇ϕϕϕ

)
(3.58)

−
( ℓ∑
n=1

∫ tn

tn−1

(
f(s)− fn

)
ds,ϕϕϕ

)
−
( ℓ∑
n=1

∫ tn

tn−1

(
B(u(s))−B(un−1)

)
dW (s),ϕϕϕ

)
.

Applying Schwarz and Poincare’s inequality to the right side of (3.58), we obtain(
Eℓ

P ,divϕϕϕ
)

∥∇ϕϕϕ∥L2

≤ C∥eℓ∥L2 + ν

∥∥∥∥ ℓ∑
n=1

∫ tn

tn−1

∇
(
u(s)− un

)
ds

∥∥∥∥
L2

(3.59)

+

∥∥∥∥ ℓ∑
n=1

∫ tn

tn−1

(
f(s)− fn

)
ds

∥∥∥∥
H−1
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+ C

∥∥∥∥ ℓ∑
n=1

∫ tn

tn−1

(
B(u(s))−B(un−1)

)
dW (s)

∥∥∥∥
L2

.

Then, it follows from applying (3.55) to the left-hand side of (3.59) that

β0∥Eℓ
P ∥L2 ≤ C∥eℓ∥L2 + ν

∥∥∥∥ ℓ∑
n=1

∫ tn

tn−1

∇
(
u(s)− un

)
ds

∥∥∥∥
L2

(3.60)

+

∥∥∥∥ ℓ∑
n=1

∫ tn

tn−1

(
f(s)− fn

)
ds

∥∥∥∥
H−1

+ C

∥∥∥∥ ℓ∑
n=1

∫ tn

tn−1

(
B(u(s))−B(un−1)

)
dW (s)

∥∥∥∥
L2

.

Next, taking the qth power followed by taking expectation on both sides of (3.60)
yields

βq
0E

[
∥Eℓ

P ∥
q
L2

]
≤ CqE

[
∥eℓ∥qL2

]
+ CqE

[∥∥∥∥ ℓ∑
n=1

∫ tn

tn−1

∇
(
u(s)− un

)
ds

∥∥∥∥q
L2

]
(3.61)

+ E
[∥∥∥∥ ℓ∑

n=1

∫ tn

tn−1

(
f(s)− fn

)
ds

∥∥∥∥q
H−1

]

+ CqE
[∥∥∥∥ ℓ∑

n=1

∫ tn

tn−1

(
B(u(s))−B(un−1)

)
dW (s)

∥∥∥∥q
L2

]
=: a+ b+ c+ d.

We now estimate four terms on the right-side of (3.61). Using the estimates of

Corollary 3.4, (3.46), (2.16) and the assumption f ∈ Lq(Ω;C
1
2 (0, T ;H−1(D))), we

obtain

a+ b+ c ≤ CqE
[
∥eℓ∥qL2

]
+ CqE

[ ℓ∑
n=1

∫ tn

tn−1

∥∇
(
u(s)− u(tn)

)
∥qL2 ds

]

+ CqE
[∥∥∥k ℓ∑

n=1

∇en ds
∥∥∥q
L2

]
+ CqE

[ ℓ∑
n=1

∫ tn

tn−1

∥∥f(s)− fn
∥∥q
H−1 ds

]
≤ Ckγq.

Finally, to estimate term d, using (2.7), Corollary 3.4 and (2.16), we get

d ≤ CqE
[ ℓ∑
n=1

∫ tn

tn−1

∥B(u(s))−B(un−1)∥qL2 ds

]

≤ CqE
[ ℓ∑
n=1

∫ tn

tn−1

∥u(s)− u(tn−1)∥qL2 ds

]
+ CqE

[ ℓ∑
n=1

∫ tn

tn−1

∥en−1∥qL2 ds

]
≤ Ckγq.

The desired estimate follows from substituting the above estimates for terms a,b,c,d
into (3.61) and dividing the inequality by βq

0 . The proof is complete.
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Next, we state the pathwise error estimate for the pressure approximation. For
the best of our knowledge, this is the first pathwise convergence result for the pressure
approximation.

Theorem 3.8. Assume the assumptions of Theorem 3.7 hold. Let 2 < q < ∞
and 0 < γ < 1

2 such that γ − 1
q > 0. Then, for 0 < γ1 < γ − 1

q , there exists a random

variable K1 = K1(ω;C2) with E
[
|K1|q

]
<∞ such that for all 1 ≤ ℓ ≤M , there holds

P-a.s. ∥∥∥∥P (tℓ)− k

ℓ∑
n=1

pn
∥∥∥∥
L2

≤ K1k
γ1 .(3.62)

Proof. The assertion follows immediately from an application of Theorem 2.1
based on the high moment error estimates of Theorem 3.7.

4. Fully discrete mixed finite element discretization. In this section, we
formulate and analyze the spatial approximations of Algorithm 1 by using the mixed
finite element method.

4.1. Formulation of the mixed finite element method. Let Th be a quasi-
uniform mesh of the domain D ⊂ R2 with mesh size h > 0. We introduce the following
finite element spaces:

Hh =
{
vh ∈ C(D) ∩H1

per(D); vh ∈ [Pi(K)]2 ∀K ∈ Th
}
,

Lh =
{
ψh ∈ C(D)∩ ∈ L2

per; ψh ∈ Pj(K) ∀K ∈ Th
}
,

where Pi(K) denotes the space of all polynomials on K of degree at most i. It is
well-known that the mixed finite element space pair Hh and Lh must satisfies the
Ladyzhenskaja-Babuska-Brezzi (LBB) (or inf-sup condition) which is now quoted:
there exists β1 > 0 such that

sup
ϕϕϕh∈Hh

(
divϕϕϕh, ψh

)
∥∇ϕϕϕh∥L2

≥ β1∥ψh∥L2 ∀ψh ∈ Lh,(4.1)

where the constant β1 is independent of h (and k).

Algorithm 2
Let u0

h be a given Hh-valued random variable. Find
(
un+1
h , pn+1

h

)
∈ Hh×Lh such

that P-a.s. (
un+1
h − un

h,ϕϕϕh
)
+ νk

(
∇un+1

h ,∇ϕϕϕh
)
− k

(
pn+1
h ,divϕϕϕh

)
(4.2)

= k
(
fn+1,ϕϕϕh

)
+
(
B(un

h)∆Wn+1,ϕϕϕh
)
,(

divun
h, ψh

)
= 0,(4.3)

for all ϕϕϕh ∈ Hh and ψh ∈ Lh.

Below we only consider the Taylor-Hood mixed finite element pair Hh×Lh (cf. [6])
which takes i = 2 and j = 1 and is known to satisfy (4.1). For the other LBB-stable
mixed finite element spaces, the error analysis is similar.

Next, we define Vh ⊂ Hh as the following space of discretely divergent-free vector
fields:

Vh =
{
ϕϕϕh ∈ Hh;

(
divϕϕϕh, qh

)
= 0 ∀qh ∈ Lh

}
.
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We notice that in general, Vh is not a subspace of V.
Denote Qh : L2

per → Vh as the L2-orthogonal projection, which satisfies(
v −Qhv,ϕϕϕh

)
= 0 ∀ϕϕϕh ∈ Vh.(4.4)

In addition, we recall the following well-known interpolation estimates for the
Taylor-Hood element:

∥v −Qhv∥L2 + h∥∇(v −Qhv)∥L2 ≤ Ch2∥Av∥L2 ∀v ∈ V ∩H2(D),(4.5)

∥v −Qhv∥L2 ≤ Ch∥∇v∥L2 ∀v ∈ V ∩H1(D).(4.6)

We also let Ph : L2
per → Lh denote the L2-orthogonal projection defined by(

ψ − Phψ, qh
)
= 0 ∀qh ∈ Lh.(4.7)

It is well-known that there holds

∥ψ − Phψ∥L2 ≤ Ch∥∇ψ∥L2 ∀ψ ∈ L2
per(D) ∩H1(D).(4.8)

For the sake of notation brevity, in the rest of this section, we set f = 0.
We conclude this subsection by stating the following stability estimates for {un

h}
which were proved in [8, Lemma 3.1].

Lemma 4.1. Let 1 ≤ q < ∞ and u0
h ∈ L2q (Ω;Hh) satisfying E

[
∥u0

h∥2
q

L2

]
≤ C.

Then, there exists a pair
{
un
h, p

n
h

}M

n=1
⊂ L2q (Ω;Hh ×Lh) that solves Algorithm 2 and

satisfies

(i) E
[

max
1≤n≤M

∥un
h∥2

q

L2 + νk

M∑
n=1

∥un
h∥2

q−1

L2 ∥∇un
h∥2L2

]
≤ CT,q,

(ii) E
[(
k

M∑
n=1

∥∇un
h∥2L2

)2q−1 ]
≤ CT,q,

where CT,q = CT,q(DT , q,u
0
h).

4.2. High moment and pathwise error estimates for the fully discrete
velocity approximation. The goal of this subsection is to establish high moment
and pathwise error estimates for the fully discrete velocity approximation generated
by Algorithm 2.

Theorem 4.2. Let 2 ≤ q < ∞ and u0
h = Qhu0. Assume that u0 ∈ Lq(Ω;V).

Let {(un, pn)} and {un
h, p

n
h} be the velocity and pressure approximations generated by

Algorithm 1 and Algorithm 2, respectively. Then there holds

E
[

max
1≤n≤M

∥un − un
h∥

q
L2

]
+ E

[(
νk

M∑
n=1

∥∇(un − un
h)∥2L2

)q/2
]

(4.9)

≤ C3

(
hq + hqE

[(
k

M∑
n=1

∥∇pn∥2L2

)q/2])
,

where C3 = C3(T, q,u0, f) > 0 is independent of k and h.
Proof. Let En = un − un

h for 0 ≤ n ≤ M − 1. Subtracting (3.1a) from (4.2) we
obtain the following error equation:(

En+1 −En,ϕϕϕh
)
+ νk

(
∇En+1,∇ϕϕϕh

)
− k

(
pn+1 − pn+1

h ,divϕϕϕh
)

(4.10)
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=
((
B(un)−B(un

h)
)
∆Wn+1,ϕϕϕh

)
∀ϕϕϕh ∈ Hh.

Sinceϕϕϕh = QhE
n+1 = En+1−(un+1−Qhu

n+1) ∈ Vh, then
(
pn+1
h ,divQhE

n+1
)
=

0. Thus, (4.10) becomes(
En+1 −En,QhE

n+1
)
+ νk∥∇En+1∥2(4.11)

= νk
(
∇En+1,∇(un+1 −Qhu

n+1)
)
− k

(
pn+1,divQhE

n+1
)

+
((
B(un)−B(un

h)
)
∆Wn+1,QhE

n+1
)
.

Using the orthogonality of the L2-projection and the binomial 2(a, a−b) = ∥a∥2−
∥b∥2 + ∥a− b∥2, the left side of (4.11) can written as follows:

LHS =
1

2

[
∥QhE

n+1∥2L2 − ∥QhE
n∥2L2

]
(4.12)

+
1

2
∥Qh(E

n+1 −En)∥2L2 + νk∥∇En+1∥2L2 =: RHS,

and

RHS = νk
(
∇En+1,∇(un+1 −Qhu

n+1)
)
+ k

(
pn+1,divQhE

n+1
)

(4.13)

+
((
B(un)−B(un

h)
)
∆Wn+1,QhE

n+1
)

= νk
(
∇En+1,∇(un+1 −Qhu

n+1)
)
+ k

(
pn+1,divQhE

n+1
)

+
((
B(un)−B(un

h)
)
∆Wn+1,QhE

n+1 −QhE
n
)

+
((
B(un)−B(un

h)
)
∆Wn+1,QhE

n
)

= I+ II+ III+ IV.

Using Cauchy-Schwarz’s inequality and Young’s inequality, we obtain

I ≤ νk

4
∥∇En+1∥2L2 + νk∥∇(un+1 −Qhu

n+1)∥2L2 ,(4.14)

≤ νk

4
∥∇En+1∥2L2 + Ckh2∥Aun+1∥L2

where the first term on the right side of (4.14) will be absorbed to the left side of
(4.11) later. In addition,

III ≤ ∥(B(un)−B(un
h))∆Wn+1∥2L2 +

1

4
∥Qh(E

n+1 −En)∥2L2 .(4.15)

Moreover, using the fact that
(
Php

n+1,divQhE
n+1

)
= 0, we have

II = k
(
pn+1,divQhE

n+1
)

(4.16)

= k
(
pn+1 − Php

n+1,divQhE
n+1

)
≤ νk

4
∥∇En+1∥2L2 + Ck∥pn+1 − Php

n+1∥2L2

≤ νk

4
∥∇En+1∥2L2 + Ckh2∥∇pn+1∥2L2 .

Substituting (4.12)–(4.16) into (4.11) yields

1

2

[
∥QhE

n+1∥2L2 − ∥QhE
n∥2L2

]
+

1

4
∥Qh(E

n+1 −En)∥2L2 +
νk

2
∥∇En+1∥2L2(4.17)
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≤ Ckh2∥Aun+1∥2L2 + Ckh2∥∇pn+1∥2L2 + ∥(B(un)−B(un
h))∆Wn+1∥2L2

+
((
B(un)−B(un

h)
)
∆Wn+1,QhE

n
)
.

Lowering one index of (4.17) and applying the summation operator
∑ℓ

n=1 for 1 ≤ ℓ ≤
M , we get

∥QhE
ℓ∥2L2 + νk

ℓ∑
n=1

∥∇En∥2L2 ≤ Ch2k

ℓ∑
n=1

∥Aun∥2L2 + Ch2k

ℓ∑
n=1

∥∇pn∥2L2(4.18)

+ 2

ℓ∑
n=1

∥(B(un−1)−B(un−1
h ))∆Wn∥2L2

+ 2

∣∣∣∣ ℓ∑
n=1

((
B(un−1)−B(un−1

h )
)
∆Wn,QhE

n−1
)∣∣∣∣.

Next, taking maximum over all 1 ≤ ℓ ≤ M and followed by taking the q
2 -power

for any 2 ≤ q <∞ and the expectation to (4.18), we obtain

E
[
max

1≤ℓ≤M
∥QhE

ℓ∥qL2

]
+ E

[(
νk

M∑
n=1

∥∇En∥2L2

)q/2
]

(4.19)

≤ Cqh
qE

[(
k

M∑
n=1

∥Aun∥2L2

)q/2
]
+ Cqh

qE
[(
k

M∑
n=1

∥∇pn∥2L2

)q/2
]

+ CqE
[( M∑

n=1

∥(B(un−1)−B(un−1
h ))∆Wn∥2L2

)q/2
]

+ CqE
[

max
1≤ℓ≤M

∣∣∣∣ ℓ∑
n=1

((
B(un−1)−B(un−1

h )
)
∆Wn,QhE

n−1
)∣∣∣∣q/2].

We can use stability estimate (ii) in Lemma 3.1 to control the first term on the
right-hand side of (4.19) and Lemma 3.2 to bound the second term. Hence, it remains
to bound the last two terms on the right side of (4.19). Proceeding similarly as in
(3.7) and (3.8), we obtain

E
[( M∑

n=1

∥(B(un−1)−B(un−1
h ))∆Wn∥2L2

)q/2
]

(4.20)

= E
[( M∑

n=1

∥B(un−1)−B(un−1
h )∥2L2 |∆Wn|2

)q/2
]

≤ CqE
[( M∑

n=1

∥En−1∥2L2 |∆Wn|2
)q/2

]

≤ CqM
q/2−1E

[ M∑
n=1

∥En−1∥qL2 |∆Wn+1|q
]

≤ CqM
q/2−1kq/2

M∑
n=1

E
[
∥En−1∥qL2

]
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≤ Cqk

M∑
n=1

E
[
∥QhE

n−1∥qL2

]
+ Cqk

M∑
n=1

E
[
∥un−1 −Qhu

n−1∥qL2

]
≤ Cqk

M∑
n=1

E
[
∥QhE

n−1∥qL2

]
+ Cqh

qk

M∑
n=1

E
[
∥∇un−1∥qL2

]
.

To bound the second term on the right-hand side of (4.19), we use the Burkholder-
Davis-Gundy and Hölder inequalities to obtain

E
[

max
1≤ℓ≤M

∣∣∣∣ ℓ∑
n=1

((
B(un−1)−B(un−1

h )
)
∆Wn,QhE

n−1
)∣∣∣∣q/2](4.21)

≤ CqE
[( M∑

n=1

∥B(un−1)−B(un−1
h )∥2L2 |∆Wn|2∥QhE

n−1∥2L2

)q/4
]

≤ CqE
[( M∑

n=1

∥En−1∥2L2∥QhE
n−1∥2L2 |∆Wn|2

)q/4
]

≤ CqM
q/4−1kq/4

M∑
n=1

E
[
∥En−1∥q/2L2 ∥QhE

n−1∥q/2L2

]
≤ Cqk

M∑
n=1

E
[
∥QhE

n−1∥qL2

]
+ Cqk

M∑
n=1

E
[
∥un−1 −Qhu

n−1∥q/2L2 ∥QhE
n−1∥q/2L2

]
≤ Cqk

M∑
n=1

E
[
∥QhE

n−1∥qL2

]
+ Cqk

M∑
n=1

E
[
∥un−1 −Qhu

n−1∥qL2

]
≤ Cqk

M∑
n=1

E
[
∥QhE

n−1∥qL2

]
+ Cqh

qk

M∑
n=1

E
[
∥∇un−1∥qL2

]
.

Substituting (4.20) and (4.21) to the right-hand side of (4.19) yields

E
[
max

1≤ℓ≤M
∥QhE

ℓ∥qL2

]
+ E

[(
νk

M∑
n=1

∥∇En∥2L2

)q/2
]

(4.22)

≤ Cqh
qE

[(
k

M∑
n=1

∥Aun∥2L2

)q/2
]
+ Cqh

qE
[(
k

M∑
n=1

∥∇pn∥2L2

)q/2
]

+ Cqh
qk

M∑
n=1

E
[
∥∇un−1∥qL2

]
+ Cqk

M∑
n=1

E
[
∥QhE

n−1∥qL2

]
≤ Cqh

q + Cqh
qE

[(
k

M∑
n=1

∥∇pn∥2L2

)q/2
]

+ Cqk

M−1∑
n=1

E
[
max
1≤ℓ≤n

∥QhE
ℓ∥qL2

]
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≤
(
Cqh

q + Cqh
qE

[(
k

M∑
n=1

∥∇pn∥2L2

)q/2
])
eCqT ,

where the discrete Gronwall inequality is used to obtain the last inequality.
The proof is now completed by using the triangular inequality ∥En∥L2 ≤ ∥QhE

n∥L2+
∥un −Qhu

n∥L2 .
We conclude this subsection by stating a pathwise error estimate for the velocity

approximation by Algorithm 2 which is a direct corollary of the Kolmogorov Criteria
(cf. Theorem 2.1) and the high moment error estimates of Theorem 4.2.

Theorem 4.3. Assume that the assumptions of Theorem 4.2 hold. Let 2 ≤ q <∞
and 0 < γ2 < 1 − 1

q . Then, there exists a random variable K2 = K2(ω;C3) with

E
[
|K2|q

]
<∞ such that there holds P-a.s.

max
1≤n≤M

∥un − un
h∥L2 +

(
νk

M∑
n=1

∥∇(un − un
h)∥2L2

)1/2

≤ K2

(
hγ2 +

( h√
k

)γ2
)
,(4.23)

4.3. High moment and pathwise error estimates for the fully discrete
pressure approximation. In this subsection, we establish high moment and path-
wise error estimates for the pressure approximation generated by Algorithm 2.

Theorem 4.4. Let 2 ≤ q < ∞, under the assumptions of Theorem 4.2, there
holds

E
[∥∥∥∥k M∑

n=1

(
pn − pnh

)∥∥∥∥q
L2

]
≤ C4

(
hq + hqE

[(
k

M∑
n=1

∥∇pn∥2L2

)q/2])
,(4.24)

where C4 = C4(β1, C3) and independent of k, h.
Proof. The proof of (4.24) mimics that of Theorem 3.7. Let En

p = pn − pnh and
En = un − un

h be the same as in Theorem 4.2. Applying the summation operator∑M
n=1 to the pressure error equation, we obtain

(
k

M∑
n=1

En
p ,divϕϕϕh

)
=

(
EM −E0,ϕϕϕh

)
+ νk

M∑
n=1

(
∇En,∇ϕϕϕh

)
(4.25)

−
M∑
n=1

(
(B(un−1)−B(un−1

h ))∆Wn,ϕϕϕh
)
.

Using Schwarz inequality, we get(
k
∑M

n=1 En
p ,divϕϕϕh

)
∥∇ϕϕϕh∥L2

≤ C
(
∥EM∥L2 + ∥E0∥L2

)
+ νk

M∑
n=1

∥∇En∥L2(4.26)

+ C

M∑
n=1

∥
(
B(un−1)−B(un−1

h )
)
∆Wn∥L2 .

Next, applying the discrete inf-sup condition (4.1) on the left-hand side yields

β1

∥∥∥k M∑
n=1

En
p

∥∥∥
L2

≤ C
(
∥EM∥L2 + ∥E0∥L2

)
+ νk

M∑
n=1

∥∇En∥L2(4.27)
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+ C

M∑
n=1

∥
(
B(un−1)−B(un−1

h )
)
∆Wn∥L2 .

Taking the q-power to (4.27) followed by taking the expectations, we obtain

βq
1E

[∥∥∥k M∑
n=1

En
p

∥∥∥q
L2

]
≤ CqE

[
∥EM∥qL2 + ∥E0∥qL2

]
(4.28)

+ CqE
[(
νk

M∑
n=1

∥∇En∥2L2

)q/2]

+ CqE
[( M∑

n=1

∥
(
B(un−1)−B(un−1

h )
)
∆Wn∥L2

)q]
.

The first three terms on the right side of (4.28) can be controlled by Theorem 4.2,
and the noise term can be bounded similarly as in (3.7) and (3.8) and using Theorem
4.2. In summary, we obtain

E
[∥∥∥k M∑

n=1

En
p

∥∥∥q
L2

]
≤ βq

1C3

(
hq + hqE

[(
k

M∑
n=1

∥∇pn∥2L2

)q/2])
.(4.29)

Hence, the proof is complete.
An immediate consequence of the above high moment error estimates is the fol-

lowing pathwise error estimate for the pressure approximation {pnh}, its proof follows
from an application of Theorem 2.1.

Theorem 4.5. Assume that the assumptions of Theorem 4.4 hold. Let 2 ≤ q <∞
and 0 < γ2 < 1 − 1

q . Then, there exists a random variable K2 = K2(ω;C4) with

E
[
|K2|q

]
<∞ such that there holds P-a.s.

∥∥∥k M∑
n=1

(
pn − pnh

)∥∥∥
L2

≤ K2

(
hγ2 +

( h√
k

)γ2
)
.(4.30)

We conclude this section by stating the global error estimates for our fully discrete
numerical solution generated by Algorithm 2 by combining the above temporal and
spatial error estimates.

Theorem 4.6. Let 2 ≤ q <∞ and 0 < γ < 1
2 , under the assumptions of Theorem

3.3 and Theorem 4.2, there exists a constant Cq = C(DT ,u0, q, f) > 0 such that(
E
[

max
1≤n≤M

∥u(tn)− un
h∥

q
L2

]) 1
q

+

(
E
[∥∥∥∥νk M∑

n=1

∇
(
u(tn)− un

h

)∥∥∥∥q
L2

]) 1
q

(4.31)

≤ Cq

(
kγ + h+

h√
k

)
.

In addition, let 2 < q <∞ and 0 < γ < 1
2 such that γ − 1

q > 0 and 1− 1
q > 0. Then,

for any 0 < γ1 < γ − 1
q and 0 < γ2 < 1 − 1

q , there exists a random variable K with

E[|K|q] <∞ such that there holds P− a.s.

max
1≤n≤M

∥u(tn)− un
h∥L2 +

∥∥∥∥νk M∑
n=1

∇
(
u(tn)− un

h

)∥∥∥∥
L2

(4.32)
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≤ K

(
kγ1 + hγ2 +

( h√
k

)γ2
)
.

Theorem 4.7. Let 2 ≤ q < ∞ and 0 < γ < 1
2 . Under the assumptions of

Theorem 3.7 and Theorem 4.4, there exists a constant Cq = C(DT ,u0, q, f , β0, β1) > 0
such that for 1 ≤ ℓ ≤M(

E
[∥∥∥∥P (tℓ)− k

ℓ∑
n=1

pnh

∥∥∥∥q
L2

]) 1
q

≤ Cq

(
kγ + h+

h√
k

)
,(4.33)

In addition, let 2 < q <∞ and 0 < γ < 1
2 such that γ − 1

q > 0 and 1− 1
q > 0. Then,

for any 0 < γ1 < γ − 1
q and 0 < γ2 < 1 − 1

q , there exists a random variable K with

E[|K|q] <∞ such that there holds P− a.s.∥∥∥∥P (tℓ)− k

ℓ∑
n=1

pnh

∥∥∥∥
L2

≤ K

(
kγ1 + hγ2 +

( h√
k

)γ2
)
.(4.34)

Remark 4.1. The error bounds for the velocity and pressure approximations
contain a “bad” factor k−

1
2 , however, the numerical tests of [13] showed that this

dependence is sharp when q = 2 for the standard mixed finite element method in the
case of general multiplicative noises. Recently, a modified mixed method was proposed
in [15] which eliminates the k−

1
2 factor in (4.31)–(4.34) when q = 2 and hence achieve

optimal order error estimates. In the last section, we shall also drive high moment
and pathwise error estimates for that modified mixed method.

5. Extension to a modified mixed finite element method. In this section,
we consider the modified mixed formulations/methods for Algorithm 1 and 2 which
were proposed in [15]. Our goal is to obtain improved high moment and pathwise
error estimates for both modified algorithms as alluded in Remark 4.1.

First, we recall that the modified formulation of Algorithm 1 reads below.

Algorithm 3
Let u0 = u0. For n = 0, 1, . . . ,M − 1 and a fixed ω ∈ Ω do the following steps in

the P− a.s. sense:

Step 1: Find ξn ∈ H1
per(D) by solving

(5.1)
(
∇ξn,∇ϕ

)
=

(
B(un),∇ϕ

)
∀ϕ ∈ H1

per(D) .

Step 2: Set ηηηn := B(un)−∇ξn, and find (un+1, rn+1) ∈ V×L2
per(D) by solving(

un+1,v
)
+k

(
∇un+1,∇v

)
− k

(
divv, rn+1

)
(5.2a)

=
(
un,v

)
+ k

(
fn+1,v

)
+

(
ηηηn∆Wn+1,v

)
∀v ∈ H1

per(D),(
divun+1, q

)
= 0 ∀ q ∈ L2

per(D) .(5.2b)

Step 3: Define pn+1 := rn+1 + k−1ξn∆Wn+1.

We notice that Step 1 computes the Helmholtz projection of B(un) at each time
step and hence creates a divergent-free noise ηηηn = PHB(un) = B(un)−∇ξn in Step
2. Thus, In Step 2 we compute the velocity approximations {un+1} and the pseudo
pressure approximation {rn+1} with the divergent-free noise ηηηnh∆Wn+1 which ensures
a uniform bound in k for the pseudo pressure approximation as stated below.

Lemma 5.1. Let {(un+1, rn+1)}n be generated by Algorithm 3. Let 1 ≤ q < ∞
and assume that u0 ∈ L2q (Ω;V). Then, there exists C = C(T, q) > 0 such that
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(a) E
[

max
1≤n≤M

∥∇un∥2
q

V +
(
νk

M∑
n=1

∥Aun∥2L2

)q
]
≤ C ,

(b) E
[(
k

M∑
n=1

∥∇rn∥2L2

)q
]
≤ C .

Proof. We refer to [10, Lemma 3.1] for a proof of (a). The proof of (b) follows
the same lines as the proof of (3.2) in Lemma 3.2.

Let Hh × Lh be the Taylor-Hood mixed finite element space pair as defined in
Section 4 and introduce the following finite element space:

Sh =
{
ψh ∈ C(D) ∩H1

per(D); ψh ∈ P1(K) ∀ K ∈ Th
}
.

The mixed finite element approximation of Algorithm 3 can easily be formulated
as follows (cf. [15]).

Algorithm 4

Let u0
h be Hh-valued random variable. For n = 0, 1, . . . ,M−1, we do the following

steps:

Step 1: Determine ξnh ∈ Sh by solving

(5.3)
(
∇ξnh ,∇ϕh

)
=

(
B(un

h),∇ϕh
)

∀ϕh ∈ Sh, P− a.s..

Step 2: Set ηηηnh := B(un
h)−∇ξnh . Find (un+1

h , rn+1
h ) ∈ Hh × Lh by solving(

un+1
h ,vh

)
+
(
∇un+1

h ,∇vh

)
− k

(
divvh, r

n+1
h

)
(5.4a)

=
(
un
h,vh

)
+ k

(
fn+1,vh

)
+
(
ηηηnh∆Wn+1,vh

)
∀vh ∈ Hh, P− a.s.,(

divun+1
h , qh

)
= 0 ∀ qh ∈ Lh, P− a.s..(5.4b)

Step 3: Define the Lh-valued random variable pn+1
h = rn+1

h + k−1ξnh∆Wn+1.

It turns out that the improved stability estimate for the pseudo pressure approxi-
mation in Lemma 5.1 (b) is crucial for obtaining the optimal order high moment error
estimates for {un

h, p
n
h} generated by Algorithm 4. We end this section by the following

theorem which establishes those optimal estimates.

Theorem 5.2. Let 2 ≤ q < ∞ and 0 < γ < 1
2 . Assume that u0 ∈ Lq(Ω;V)

and u0
h ∈ Lq(Ω;Hh) such that E

[
∥u0 − u0

h∥
q
L2

]
≤ Chq. Let

(
u, P,R

)
be solution

defined by (2.11), Theorem 2.5 and (2.13), respectively. Let {un
h, p

n
h, r

n
h} be the velocity

and pressure approximation generated by Algorithm 4. Then, there exists a constant
Cq = C(DT ,u0, q, f) > 0 such that

(
E
[

max
1≤n≤M

∥u(tn)− un
h∥

q
L2

]) 1
q

+

(
E
[∥∥∥∥νk M∑

n=1

∇
(
u(tn)− un

h

)∥∥∥∥q
L2

]) 1
q

≤ Cq

(
kγ + h

)
,

(5.5)

(
E
[∥∥∥∥P (tℓ)− k

ℓ∑
n=1

pnh

∥∥∥∥q
L2

]) 1
q

+

(
E
[∥∥∥∥R(tℓ)− k

ℓ∑
n=1

rnh

∥∥∥∥q
L2

]) 1
q

≤ Cq

(
kγ + h),(5.6)

where 1 ≤ ℓ ≤M .
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In addition, let 2 < q < ∞ and 0 < γ < 1
2 such that γ − 1

q > 0 and 1 − 1
q > 0.

Then, for any 0 < γ1 < γ − 1
q and 0 < γ2 < 1− 1

q , there exists a random variable K

with E[|K|q] <∞ such that there holds P− a.s.

max
1≤n≤M

∥u(tn)− un
h∥L2 +

∥∥∥∥νk M∑
n=1

∇
(
u(tn)− un

h

)∥∥∥∥
L2

≤ K
(
kγ1 + hγ2

)
,(5.7)

∥∥∥∥P (tℓ)− k

ℓ∑
n=1

pnh

∥∥∥∥
L2

+

∥∥∥∥R(tℓ)− k

ℓ∑
n=1

rnh

∥∥∥∥
L2

≤ K
(
kγ1 + hγ2

)
.(5.8)

Proof. The proof of (5.5) follows the same lines as in the proofs of Theorem 3.3
and Theorem 4.2 but using instead the improved stability estimate for the pseudo
pressure approximation given in Lemma 5.1 (b). (5.6) with q = 2 was proved in [15,
Theorems 3.3 and 4.2]. Again, by mimicking the proofs of Theorems 3.7 and 4.4 we
can obtain the desired high moment error estimates. Finally, estimates (5.7) and (5.8)
are direct corollaries of Komogorov’s Criteria, Theorem 2.1.

6. Numerical experiments. In this section, we present numerical tests to
verify our theoretical results. In all our experiments we set D = (0, 1)2 ⊂ R2,
T = 1, ν = 1, the body force is f = (f1, f2) with

f1(x, y) = π cos(t) sin(2πy) sin(πx) sin(πx)− 2π3 sin(t) sin(2πy)(2 cos(2πx)− 1)

− π sin(t) sin(πx) sin(πy),

f2(x, y) = −π cos(t) sin(2πx) sin(πy) sin(πy)− 2π3 sin(t) sin(2πx)(1− 2 cos(2πy))

+ π sin(t) cos(πx) cos(πy).

We choose W (t) in (1.1) to be a R-valued Wiener process that is simulated by the
minimal time step size k0 = 1/2048. For all the tests, we use the standard Monte
Carlo method with 400 samples to compute the expectation. We take B(u) = αu
for α > 0 for the multiplicative noise. In addition, we use the Taylor-Hood mixed
finite element method for the spatial discretization, and the homogeneous Dirichlet
boundary condition is imposed on u.

We implement Algorithm 2 and compute the errors of the velocity and pressure
approximations in the specified norms below. Since the exact solutions are unknown,
the errors are computed between the computed solution (un

h(ωj), p
n
h(ωj)) and a refer-

ence solution (un
ref (ωj), p

n
ref (ωj)) (specified later) at the ωj-th sample.

Furthermore, to evaluate errors in strong norms, we use the following numerical
integration formulas: For integers q ≥ 2,

Lq
ωL

∞
t L

2
x(u) :=

(
E
[
max

1≤n≤M
∥u(tn)− un

h∥
q
L2

])1/q
≈

( 1

J

J∑
j=1

(
max

1≤n≤M
∥un

ref (ωj)− un
h(ωj)∥qL2

))1/q

,

Lq
ωL

2
xL

1
t (p) :=

(
E
[∥∥∥P (tM )− k

M∑
n=1

pnh

∥∥∥q
L2

])1/q

≈
( 1

J

J∑
j=1

(∥∥∥k M∑
n=1

(
pnref (ωj)− pnh(ωj)

)∥∥∥q
L2

))1/q

.
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Fig. 6.1. Plots of the time discretization errors and convergence order of the computed velocity
{un

h} (left) and pressure {pnh} (right) with α = 0.4, and q = 2, 4, 8, 16.

Test 1. In the first test, we verify the convergence order in high moments with
q = 2, 4, 8, 16 that were proved in Theorems 4.6, and 4.7. To do that, we run Algorithm
2 to compute the error estimates for {(unh, pnh)} with a fixed mesh size h = 1/40 and
vary the time step size by choosing k = 2ℓk0 for ℓ ∈ N and the reference solutions
{(un

ref , p
n
ref )} with kref = k/2 (i.e. we approximate the errors by comparing the

numerical solutions in two consecutive time discretizations [14]). The result errors are
shown in Figures 6.1. The numerical results verify convergence order approximately
1
2 for both velocity and pressure approximations as predicted by our error estimate
results in Theorem 4.6 and Theorem 4.7.

Test 2. In this test, we would like to check numerically how the error constant
C ′

qs in Theorem 4.6 and 4.7 depend on q. To the end, we fix h = 1
20 and choose the

time step k = 1
32 to compute the errors of the velocity and pressure approximations

for different values of q. The numerical results are given in Figure 6.2. We observe
that the numerical results suggest the constants C ′

qs are increasing (and blowing up)
in q. We still see the increase of the errors in q although the growth becomes slower
for large q. A consequence of this analysis also shows that we can not simply take
limit as p→ ∞ in the high moment error estimates of Theorem 4.6 and 4.7 to derive
pathwise error estimates (4.32) and (4.34), and using Kolmogorov’s Theorem is still
the only viable approach for the job.

Fig. 6.2. Errors of the velocity approximation (left) in Lq
ωL

∞
t L2

x(u) norm and the pressure
approximation (right) in Lq

ωL
2
xL

1
t (p) norm for different q’s.
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Test 3. In this test, we verify the L2-pathwise error estimate in (4.32). To the
end, we select the computed solutions of five sample paths and compute their L2-
norm errors for the velocity approximation. The computed results are given in Figure
6.3. The numerical results indicate that the pathwise convergence of the velocity
and pressure approximations is approximately of order O(k

1
2 ), which matches the

theoretical prediction.

Fig. 6.3. Five sample pathwise errors of the velocity approximation with different time steps
for α = 2.0.
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